• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm*

    2015-02-15 02:19:18ChuHongyan初紅艷YangJunjingCaiLigang
    High Technology Letters 2015年1期
    關(guān)鍵詞:紅艷

    Chu Hongyan (初紅艷), Yang Junjing, Cai Ligang

    (College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, P.R.China)

    ?

    Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm*

    Chu Hongyan (初紅艷)*, Yang Junjing, Cai Ligang

    (College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, P.R.China)

    In the inking system of an offset printing press, a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction. In the control process, if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller’s oscillation, the printing colour quality will be reduced. This paper describes a method of calculating the impact factor of vibrator roller’s oscillation. First, the oscillation performance is analyzed and sample data of impact factor is got. Then, a fuzzy controller used for the calculation of the impact factor is designed, and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically. This fuzzy controller can be used to calculate impact factors for any printing condition, and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.

    offset printing, colour quality control, impact factor, fuzzy control, genetic algorithm

    0 Introduction

    As people’s requirement for printing quality is increasing, printing quality control is becoming more and more important. Ink thickness on the substrate (for example, paper) affects printing quality and generally causes many printing problems. Thus, ink amount control in an offset printing process is important for printing quality.

    The role of the inking system of an offset printing press is to deliver ink from ink fountain to printing plate. Vibrator rollers are the main rollers of the inking system, which rotate to distribute ink in the circumferential direction and oscillate in the axial direction to distribute ink evenly in the axial direction.

    In a practical printing process, the vibrator rollers may cause ink flowing from one ink zone to other adjacent zones. If the ink key openings, which determine the ink feeding amount, are determined only by dot area coverage and the impact of oscillation is ignored, the accuracy of the ink key opening setting and the printing quality will be inevitably reduced.

    In the printing process, the impact of oscillation cannot be obtained through stopping the vibrator roller, so the experimental method is very difficult. The method of computer simulation to perform dynamic research and optimization of inking systems is widely adopted. Yu and Liu[1]analysed the impact of oscillation length on the ink flow and the ink distribution when different ink zones are used as the ink feeding zones, by simulation of the inking system of a Heidelberg Speedmaster offset printing press. A method to forecast the ink flow characteristics of offset printing press was proposed by Yu and Liu[2]. The method used sample data of the ink distribution on paper obtained by simulation to train a BP neural network, and used the trained BP neural network to build a matrix that reflects the ink flow characteristics. This matrix model can predict the ink distribution on paper for a certain ink amount. By simulating the web offset printing process, Chou[3]found that 1) the extent of the lateral ink distribution increases with the increasing of oscillation length, 2) the oscillation length has a greater impact than the oscillation rate, and 3) the ink tends to flow further away from the ink feeding zone as the image coverage decreases.

    Currently, for either manual adjustment or automatic control of the ink amount, most of researches ignore the impact of oscillation. And most of simulation analysis determines the performance curves of the oscillation, but there are few quantitative analysis and applications of the impact. The problems that need to be solved include determining what affects the impact of oscillation, how to quantify the impact factors, and how to apply the impact factors to the adjustment of ink amount.

    A method for calculating the impact factors of oscillation for any printing condition is described by using an optimised fuzzy controller. Based on sample data from a simulation analysis of the oscillation performance, fuzzy control rules can be got using a genetic algorithm. Simultaneously, membership functions can also be optimized through the genetic algorithm. Thus the impact factors can be quantified.

    1 Impact factors of oscillation

    1.1 Oscillation performance analysis

    The oscillation performance of the vibrator roller is determined by three parameters: oscillation length, oscillation rate and initial phase.

    Oscillation length is the distance that vibrator rollers oscillate back and forth in the axial direction[4]. In this paper, oscillation length is represented by the number of ink zones, that is, if the oscillation length is 2, and the width of each ink zone is 30mm, that means the distance that vibrator rollers oscillate back and forth in the axial direction is 60mm.

    Oscillation rate is the ratio of the oscillation speed of the vibrator roller to the rotation speed of the printing plate cylinder. For example, the oscillation rate is l:3, that means the printing plate cylinder rotates 3 circles while the vibrator roller oscillates 1 back and forth[4]. Here, oscillation rate of l:3 is higher than l:6.

    Initial phase: if 0 is the phase angle that the vibrator roller oscillates in one cycle, then the phase angle when the vibrator roller begins to oscillate is called initial phase[4].

    Wu[5]built a model of the relative rolling between the vibrator roller and the rider roller to study the oscillation performance. In this model, the vibrator roller oscillates in the axial direction while rotating, and the rider roller rotates only. To study the oscillation performance when an intermediate ink zone is the ink feeding zone, only the intermediatehth (h≠1andh≠n)inkzoneissetastheinkfeedingzone.Theinktransferratiobetweenthetwoinkrollersissettobe0.5.Thentheoscillationperformancecurvesaregot.Thecurvescanbeapproximatedbytheirenvelopecurves,thatis,normaldistributioncurves,asshowninFig.1.

    Fig.1 Envelope curves of the oscillation performance

    In Fig.1, the curves 1, 2, 3 are the ink thickness distribution curves for different conditions. The extent of the lateral ink distribution increases with the increasing of oscillation length and oscillation rate, but the initial phase has little impact on it (the impact of initial phase on the performance is not listed in Fig.1). The greater the extent of the lateral ink distribution is, the lower the ink amount left in the ink feeding zone is, the greater the ink amount flow to the adjacent ink zones is, and more ink zones are impacted. The lateral ink distribution leads to unconformity between the actual and the expected ink thickness, thus reduces the printing quality.

    1.2 Impact factor

    When one ink zone is fed ink, there is a certain proportion of ink left in its own zone and there is also a certain proportion of ink flow to its adjacent ink zones. These proportions are denoted as the impact factors of their own zone and their adjacent zones. That is, the impact factor of each ink zone is the proportion of the ink amount in each ink zone to the total ink amount.

    The envelope curves are normal curves, so the impact factors of two symmetrical ink zones are the same. The integrations of each ink zone are calculated and divided by the total ink amount, then the impact factors are determined, as listed in Table 1.

    In Table 1, the data columns of 0, 1, …, 5 are the impact factors of the ink feeding zone and the zones adjacent to it in the left. It can be seen in Table 1 that most of ink stays in the ink feeding zone, and its impact factor is the largest, the second largest impact factor is in thed=1inkzone,andtheimpactfactorsofotheradjacentinkzonesbecomesmallergraduallywiththeincreaseoftheirinkzonedistancesandtendingtobe0.Whentheoscillationrateisconstant,thegreatertheoscillationlengthis,thesmallertheimpactfactoroftheinkfeedingzoneis,andthemoreinkzonesareimpacted.Whentheoscillationlengthisconstant,thegreatertheoscillationrateis,thesmallertheimpactfactoroftheinkfeedingzoneis,andthemoreinkzonesareimpacted.

    Table 1 Oscillation impact factors

    Table 2 is generated from Table 1 for the following research. Data are rounded to 2 digits after the decimal point, and data of the symmetrical left and right ink zones are added to ensure that the errors of the ink feeding zones and thed=1inkzonesareassmallaspossiblewhencalculatingtheimpactfactorsthroughthefuzzycontroller,andthedatathatislessthan0.06isremoved.

    Table 2 Final oscillation impact factors

    From Table 2, six groups of sample data (d、l、v、w)areobtained,wheredrepresents the ink zone distance,lrepresents the oscillation length,vrepresents the oscillation rate, andwis the impact factor. In this paper, the impact factorwof the ink feeding zone is the impact factor of the ink feeding zone itself, and the impact factorwof the adjacent ink zones is the sum of the impact factors of two symmetrical ink zones. For example, sample data (1,1.5,6,0.42) indicate that the oscillation length is 1.5; the printing plate cylinder rotates 6 circles while the vibrator roller oscillates 1 back and forth; 42% of the ink flows to the two symmetricald=1inkzones,andtheimpactfactorofoneofthezonesis42%/2=21%.

    2 Fuzzycontrollerforimpactfactor

    Whenoscillationperformancecurvesaregotthroughsimulation,impactfactorscanbecalculatedaccordingtotheabovemethod.Buttheimpactofoscillationiscomplexandwhentheprintingconditionschange,thesimulationandcalculationhavetobecarriedoutagaintogettheimpactfactors.Tosolvetheproblem,thispaperdesignsafuzzycontrollertocalculatetheimpactfactorsforanyprintingconditions.

    2.1Inputandoutputvariables

    Accordingtoaboveanalysis,theinputvariablesofthefuzzycontrolleraredeterminedtobetheinkzonedistance,theoscillationlength,andtheoscillationrate,andtheoutputvariableistheimpactfactor.ThispaperdesignsaMamdanifuzzycontrollerbasedonthesampledatainTable2,andusesageneticalgorithmtooptimisethemembershipfunctionsandgeneratethefuzzycontrolrulesautomatically.Thentheimpactofoscillationcanbecalculatedquantitativelyfordifferentprintingconditions.TheschematicdiagramofthefuzzycontrollerisshowninFig.2.D,L,Vare language variables corresponding tod,l,vrespectively.

    2.2 Quantisation factor and scaling factor

    Assuming that the ink feeding zone impacts at mostmink zones, the practical domain of variabledis [0m], the maximum oscillation length ispink zones,and the practical domain of variablelis [0,p], the printing plate cylinder rotatesqcircles at most while the vibrator roller oscillates 1 back and forth, and the practical domain of variablevis [0,q], the impact factorwis a positive number that is less than 1, supposing that the maximal value of the impact factor iss, and its practical domain is [0,s]. The practical domains ofd、landvare transformed into fuzzy domain [0,1],thenthequantisationfactorscanbeobtainedkd=1/m;kl=1/p;kv=1/q.Thefuzzydomainofwis the same as its practical domain, so the scaling factor iskw=1.

    Fig.2 Schematic diagram of the fuzzy controller

    Inthisresearch,themaximumoftheinputvariableisdeterminedaccordingtothesampledata:m=5,p=2,q=6,s=0.6,sokd=1/5,kl=1/2,kv=1/6,andthescalingfactoriskw=1.

    Forapracticaloffsetprintingpress,theoscillationlengthandtheoscillationratemayexceedtherangeofthesimulationconditionsinRef.[5],thenthepracticaldomainoftheoscillationlengthland the oscillation ratevshould be determined according to the practical condition, and the practical domain ofdandsshouldbedeterminedafterperformingasimulationanalysis.Thenthequantisationfactorscanbecalculatedbytheappropriateformula.

    2.3Membershipfunctions,controlrules,anddefuzzificationmethod

    Here,eachinputvariablehas3fuzzysetsthataredenotedasS,M, andB, which represent small, medium, and large respectively. To obtain an accurate output, the output variable has 7 variable values denoted asS3,S2,S1,M,B1,B2, andB3. And the Gaussian function is chosen as the membership function of the input and output variable:

    y(x,c,σ)=exp(-(x-c)2/2σ2)

    (1)

    wherecis the centre of the membership function, andσisthewidthofthemembershipfunction.

    Thereare33=27rulestocovertheentireinputspace,thatis,toensurethecompletenessoftherules[6].The27rulesarelisted:

    IFD=SL=SV=STHENW=?

    IFD=SL=SV=MTHENW=?

    ……

    IFD=BL=BV=MTHENW=?

    IFD=BL=BV=BTHENW=?

    where,Win each rule is the parameter to be optimised, i.e.,S3,S2,S1,M,B1,B2, andB3.

    Finally, the centroid method is chosen as the defuzzification method.

    3 Fuzzy controller optimisation

    This research uses the genetic algorithm to determine the membership functions and the control rules simultaneously based on sample data. When calculating impact factors, the error between the output of the fuzzy controller and the sample data should be ensured to be the smallest.

    3.1 Encoding and decoding

    The researches on fuzzy control show that the shape of the membership function has little effect on the controller, and its coverage on the domain has great effect on the characteristics of controller[7]. So centrecof each membership function remains constant, its values are distributed evenly in the fuzzy domain, and widthσofeachmembershipfunctionistobeoptimised.Eachinputvariablehas3parameterstobeoptimised,so3inputvariableshave9parameterstobeoptimisedtotally,andtherangeofeachσispreliminarilydefinedas[0.05, 0.4]accordingtoexperience.Anoutputvariablehas7parameterstobeoptimised,andtheirrangesareall[0.01, 0.08].

    The7languagevaluesoftheoutputvariableWare expressed as 1, 2, 3, 4, 5, 6, 7 in turn. To find the best solution as soon as possible, the range of the output variableWis given preliminarily based on the sample data: whenDisS, the range ofWis [1, 2], whenDisM, the range is [2, 5], whenDisB, the range is [2, 7]. Because there are 27 rules, there are 27 parameters to be optimised.

    The membership functions and control rules are encoded together, so the final coding length is 9+7+27=43. The 43 values compose a chromosome. The decomposition schematic diagram of the code string is shown in Fig.3.

    3.2 Fitness function

    Because most of the ink stays in its own zone, then the adjacent ink zoned=1,andtheinkamountofotheradjacentinkzonesbecomesmallergraduallywith their ink zone distances increasing and tend to be 0. So in the optimisation process, when the conditionsd、l、vof sample data are the input variables of the fuzzy controller, we should ensure that all the errors between the output of fuzzy controller and the sample data are minimised, especially, the errors of the ink feeding zone and the adjacent ink zoned=1.Tomeettheaboverequirements,anerrorweightingtablemustbemade.

    Fig.3 Decomposition schematic diagram of a chromosome encoded

    Throughoptimisationbysettingtheerrorweightingtablerepeatedly,thispapersuggeststhatiftheimpactfactoroftheinkfeedingzoneisnotlessthan0.5,theerrorweightingsoftheinkfeedingzoneandtheadjacentinkzonesareequaltotheirimpactfactors;iftheimpactfactoroftheinkfeedingzoneislessthan0.5,theerrorweightingoftheinkfeedingzoneis0.4,andtheerrorweightingsoftheadjacentinkzonesarecalculatedby

    (2)

    ThefinalerrorweightingscorrespondingtoTable2areshowninTable3.

    Table 3 Error weightings of impact factors

    Therefore, whenl,vare determined (thejth condition), the accumulated error is

    (3)

    where,biistheerrorbetweentheoutputoffuzzycontrollerandthesampledata.

    Thefinalobjectivefunctionis

    (4)

    where,zis the number of conditions, it is 6 in Table 3.

    The fitness function must be non-negative and maximised, so it is given by

    J=10-f

    (5)

    Thus,theproblemofdesigninganoptimalfuzzycontrolleristransformedintotheproblemofoptimisationofparametersthatmakesJthe largest.

    3.3 Genetic operations

    Here, the size of the initial population isN=100,theterminationgenerationisT=1000,thecrossoverprobabilityispc=0.9andthemutationprobabilityispm=0.1.

    Thefitnessproportionalmodel(theroulettewheelselection)isadoptedsothatthebestindividualistransmittedcontinuouslywhileselectingtheexcellentindividual.Thegreatertheindividualfitnessis,thehighertheselectedprobabilityis[8].Thearithmeticcrossoverischosen.Twoindividualsarechosenasparents,andthelinearcombinationoftheparentsisusedtoobtaintwooffsprings[9].Uniformmutationisadoptedasthemutationoperation.Avariationpointisgeneratedrandomly,anditsoriginalvalueisreplacedbyarandomnumberthatisinthevaluerangeofthispoint’scorrespondinggene.

    4 Optimizationresultsandanalysis

    Sixgroupsofsampledataareusedforthemethodinthispaper.Themembershipfunctionsthatareoptimisedthroughgeneticalgorithmareobtained,asshowninFig.4.Fuzzycontrolrulesaregeneratedaswell,aslistedinTable4.

    TheoptimizedfuzzycontrollerisobtainedusingthemembershipfunctionsinFig.4andthecontrolrulesinTable4.Whenthesampledataisinputtotheoptimizedfuzzycontroller,theoutputofthefuzzycontrollerisobtained,aslistedinTable5.

    InTable5,theoutputoftheoptimisedfuzzycontrollerconformstothetrendofthesampledatainTable2,butthefollowingphenomenamaybepresent,forexample,whenl=2.0andv=1:3,theimpactfactoroftheinkfeedingzoneis0.12,andthatofoneoftheadjacentinkzonesd=1is0.26/2=0.13,thefactorsarealmostequal;Theimpactfactoroftheadjacentinkzonesd=4isequaltothatofd=5.

    Fig.4 Optimization results of the membership functions

    Table 4 Optimization results of the fuzzy control rules

    Table 5 Output of the optimized fuzzy controller

    The error between the output of the fuzzy controller and the sample data is shown in Table 6. In Table 6, Er. means error, and REr. means relative error.

    From Table 6 it can be seen that the error between the output of the optimized fuzzy controller and the sample data is less than 0.07, which corresponds to the relative error of 15.22%; the maximal relative error is 85.71%, of which the absolute error is 0.06; the errors of the adjacent ink zonesd≥1arerelativelylarge,buttheyarethesumoftheerrorsoftwosymmetricalinkzones.Ingeneral,theoptimizationmethodthatconsiderstheerrorandtherelativeerrorsimultaneouslycanensurethat1)alltheerrorsbetweentheoutputoffuzzycontrollerandthesampledataareminimized, 2)theerroroftheinkfeedingzoneissmaller,and3)theerroroftheadjacentinkzonesd=1isalsosmaller.

    Foranyprintingcondition,whenanintermediateinkzoneisfedink,theinkzonedistance,oscillationlengthandoscillationrateareinputtotheoptimizedfuzzycontroller,thentheimpactfactorscanbecalculated.Table7isanexample.

    Table 6 Error between the output of the optimized fuzzy controller and the sample data

    Table 7 Impact factors for different conditions

    Comparing Table 7 with Table 2, it can be observed that they have the same trend. So the impact factors for any other printing conditions can be calculated through the optimized fuzzy controller, and the results conform to the simulation analysis of the oscillation performance.

    5 Impact factors when the end ink zone is set as the ink feeding zone

    The above optimized fuzzy controller can be applied to calculate the impact factors when the ink feeding zone is the intermediate zone. And when the ink feeding zone is the end ink zone, the impact factors may be different. For example, when the first ink zone is fed ink, ink only flows to one side. Yu and Liu[1]conducted some simulation analysis of oscillation performance for the cases when different ink zones are set to be the ink feeding zones, and it can be got from the analysis:

    (1) When the first ink zone is the ink feeding zone, the impact factor of its own is almost the same as the sum of the impact factors of the ink feeding zone and that of its adjacent zone when the intermediate ink zone is the ink feeding zone.

    (2) When the first ink zone is the ink feeding zone, the impact factors of the adjacent ink zones are almost the same as that of the intermediate ink zone acting as the ink feeding zone.

    (3) When the second, third, or fourth ink zone is the ink feeding zone, the impact factors of their own and the adjacent ink zones are almost the same as that of the intermediate ink zone acting as the ink feeding zone.

    According to the above description, when the end ink zone is the ink feeding zone for any printing condition, the impact factors of its own and the adjacent ink zones can be deduced as follows:

    (1) The impact factor of the ink feeding zone and one of the two symmetrical ink zonesd=1arecalculatedthroughtheaboveoptimisedfuzzycontrollerwhenanintermediateinkzoneistheinkfeedingzone.Thentheimpactfactoroftheendinkzonecanbecalculatedasfollowswhenitselfistheinkfeedingzone:

    y=x1+x2

    (6)

    where,yis the impact factor of the end ink zone;x1is the impact factor of the ink feeding zone,x2is the impact factor of one of the two symmetrical ink zonesd=1,whenanintermediatezoneistheinkfeedingzone.

    (2)Theimpactfactorsofotherinkzonesarethesameastheimpactfactorswhenanintermediateinkzoneistheinkfeedingzone.

    6 Conclusions

    Afuzzycontrollerforoscillationimpactfactorisdesignedbasedonthesampledata,whichisextractedfromasimulationanalysisoftheoscillationperformance,andthegeneticalgorithmisusedtooptimizethemembershipfunctionsandthefuzzycontrolrulesautomatically.Thefuzzycontrollercanbewidelyusedtocalculatetheoscillationimpactfactorsforanyprintingcondition.Researchofthispaperisimportantforimprovingcolourquality.

    Thereisstillsomethingspecialtobeexplained:

    (1)Theoptimizedfuzzycontrollerinthispaperissuitableforanoffsetprintingpresswheretheinktransferratiobetweentwoinkrollersis0.5,oscillationlengthisnolargerthan2inkzones,andoscillationrateisnosmallerthan1:6.

    (2)Whenusingthemethodinthispaper,therangeofinputvariablemaybeexpandedaccordingtotheactualconditions,andmoresimulationanalysismaybeneededtogetthesampledata.

    [1] Yu J Y, Liu Z. Simulation the effects of vibrator oscillation of offset printing.PackagingEngineering, 2009, 30(11): 66-72

    [2] Yu J Y, Liu Z. Study on the ink flow model of lithographic printing. In: Proceedings of the 4th International Congress on Image and Signal Processing, Shanghai, China, 2011. 4: 1757-1761

    [3] Chou S M. Computer simulation of offset printing: II. Effects of vibrator oscillation and image layout. In: TAGA Proceedings - Disseminating Graphic Arts Research Internationally Since 1948, Chicago, USA, 1997. 94-118

    [4] Ma R F. Property analysis and study on computer simulation of the web offset press inking system: [M.S dissertation]. Xi’an, China: Xi’an University of Technology, 2008. 31-32

    [5] Wu Q M. Study for computer simulation of the offset inking system: [M.S dissertation]. Xi’an, China: Xi’an University of Technology, 2005. 37-42

    [6] Qiao M L, Zhang J Y, Wen Y Y. Optimizing approach for fuzzy control rule based on genetic algorithm.ComputerMeasurement&Control, 2006, 14(10): 1349-1351

    [7] Li H., Han H, Han, C Z, et al. Optimization of fuzzy logic controller based on genetic algorithm.JournalofXi’anJiaotongUniversity, 2002, 36(4): 385-389

    [8] Liu X H, Kuai R, Guan P, et al. Fuzzy-PID control for ARC furnace electrode regulator system based on genetic algorithm. In: Proceedings of the International Conference on Machine Learning and Cybernetics, Baoding, China, 2009. 2: 683-689

    [9] Lei Y J. MATLAB genetic algorithm toolbox and application. Xi’an, China: Xidian university press, 2005. 55-58

    Chu Hongyan, born in 1972. She received her Ph.D degrees in Beijing University of Technology, in 2003. She also received her B.S. and M.S. degrees from Jilin University of Technology in 1994 and 1997 respectively. Her research interests include sheet metal forming, production planning and scheduling, and printing colour quality control.

    10.3772/j.issn.1006-6748.2015.01.003

    *Supported by the National Science and Technology Supporting Program (No. 2012BAF13B05-1), National Natural Science Foundation (No. 51105009) and Beijing Natural Science Foundation (No. 3113025).

    *To whom correspondence should be addressed. E-mail: chuhongyan@bjut.edu.cnReceived on Oct. 15, 2013

    猜你喜歡
    紅艷
    Oscillation Reduction of Breast for Cup-Pad Choice
    劉紅艷作品
    Temperature field analysis of two rotating and squeezing steel-rubber rollers①
    Forming mechanism of ink layer on the printing plate in inking process and influencing factors of its thickness①
    A Review of Classroom Interaction in Second Language Acquisition
    程序框圖常見錯(cuò)誤剖析
    Motion mechanism analysis of two contacting rollers①
    Analysis of ink flow channel between two rotating ink rollers①
    我是一朵云
    不曾改變的呼吸
    欧美区成人在线视频| 亚洲内射少妇av| 我的女老师完整版在线观看| 777米奇影视久久| 综合色丁香网| 免费观看无遮挡的男女| 日韩免费高清中文字幕av| 国产黄色免费在线视频| 97在线人人人人妻| 在线观看人妻少妇| av黄色大香蕉| 久久婷婷青草| 尾随美女入室| 国产探花极品一区二区| 亚洲av二区三区四区| av网站免费在线观看视频| 日韩一本色道免费dvd| 看非洲黑人一级黄片| av又黄又爽大尺度在线免费看| 女性生殖器流出的白浆| 人妻一区二区av| 亚洲久久久国产精品| 欧美激情极品国产一区二区三区 | 男的添女的下面高潮视频| 一个人免费看片子| 黄色配什么色好看| 国产成人免费无遮挡视频| 最近中文字幕高清免费大全6| 黑人猛操日本美女一级片| 亚洲内射少妇av| 国产精品精品国产色婷婷| 天堂8中文在线网| 99久久精品国产国产毛片| 亚洲av国产av综合av卡| 91精品国产九色| 热99国产精品久久久久久7| 最黄视频免费看| 午夜福利在线在线| 亚洲av成人精品一区久久| 亚洲色图综合在线观看| 国产欧美另类精品又又久久亚洲欧美| 男女免费视频国产| 欧美区成人在线视频| av福利片在线观看| 中国美白少妇内射xxxbb| 精品亚洲成国产av| 韩国av在线不卡| 七月丁香在线播放| 亚洲无线观看免费| 高清毛片免费看| 日韩一区二区三区影片| 午夜福利影视在线免费观看| 青春草亚洲视频在线观看| 亚洲精品色激情综合| 观看av在线不卡| 久久久久国产网址| 尤物成人国产欧美一区二区三区| 日本黄色片子视频| 在现免费观看毛片| 美女福利国产在线 | 国产在线一区二区三区精| 日韩成人av中文字幕在线观看| 人妻夜夜爽99麻豆av| 国产色爽女视频免费观看| a级毛色黄片| 国产综合精华液| 3wmmmm亚洲av在线观看| 波野结衣二区三区在线| 日韩欧美一区视频在线观看 | 亚洲国产最新在线播放| 多毛熟女@视频| 精品午夜福利在线看| 免费观看在线日韩| 国产淫语在线视频| 少妇熟女欧美另类| 久久 成人 亚洲| 午夜激情久久久久久久| 插逼视频在线观看| 欧美激情国产日韩精品一区| 精品亚洲乱码少妇综合久久| 51国产日韩欧美| 亚洲婷婷狠狠爱综合网| 多毛熟女@视频| 美女主播在线视频| av在线蜜桃| 少妇的逼水好多| 国产91av在线免费观看| 国产 精品1| 国产高清有码在线观看视频| 国产精品秋霞免费鲁丝片| 国产精品久久久久久久电影| 精品视频人人做人人爽| 国产美女午夜福利| 国产成人免费无遮挡视频| 一本—道久久a久久精品蜜桃钙片| 国产免费福利视频在线观看| 久久av网站| 久久久久久人妻| 国产精品久久久久久精品电影小说 | 女性生殖器流出的白浆| 日韩国内少妇激情av| 欧美日韩亚洲高清精品| 欧美日韩国产mv在线观看视频 | 嘟嘟电影网在线观看| 2021少妇久久久久久久久久久| 欧美少妇被猛烈插入视频| 久久精品国产自在天天线| 久久久久久久久久久免费av| 亚洲在久久综合| 在线精品无人区一区二区三 | 一级毛片 在线播放| 日韩欧美 国产精品| 日日摸夜夜添夜夜添av毛片| 蜜桃久久精品国产亚洲av| 国产人妻一区二区三区在| av不卡在线播放| 综合色丁香网| 亚洲内射少妇av| 国内揄拍国产精品人妻在线| 久久久成人免费电影| 久久久久视频综合| 亚洲国产av新网站| 18禁裸乳无遮挡动漫免费视频| 免费久久久久久久精品成人欧美视频 | 麻豆成人午夜福利视频| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 又粗又硬又长又爽又黄的视频| 国产成人精品婷婷| 久久综合国产亚洲精品| 久久 成人 亚洲| 我要看黄色一级片免费的| 2021少妇久久久久久久久久久| 亚洲国产色片| a级毛色黄片| 狠狠精品人妻久久久久久综合| 国产爽快片一区二区三区| 尤物成人国产欧美一区二区三区| 久久国产精品男人的天堂亚洲 | 熟女av电影| 看免费成人av毛片| 三级经典国产精品| 国产男女超爽视频在线观看| 成年美女黄网站色视频大全免费 | 国产69精品久久久久777片| 在线观看免费视频网站a站| 内射极品少妇av片p| 色5月婷婷丁香| 纵有疾风起免费观看全集完整版| 亚洲av二区三区四区| 欧美日韩视频精品一区| 最近最新中文字幕免费大全7| 亚洲国产精品一区三区| 久久人人爽av亚洲精品天堂 | 亚洲欧美成人精品一区二区| 天堂中文最新版在线下载| 国产伦理片在线播放av一区| 国产在线视频一区二区| 青春草视频在线免费观看| 成人高潮视频无遮挡免费网站| av网站免费在线观看视频| 汤姆久久久久久久影院中文字幕| 欧美精品国产亚洲| 免费观看性生交大片5| a 毛片基地| 蜜桃亚洲精品一区二区三区| 国产精品99久久99久久久不卡 | 久久97久久精品| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| av免费观看日本| 各种免费的搞黄视频| 舔av片在线| 激情 狠狠 欧美| 综合色丁香网| 97热精品久久久久久| 最后的刺客免费高清国语| 国产精品久久久久成人av| 亚洲欧美中文字幕日韩二区| 国产v大片淫在线免费观看| 国产爽快片一区二区三区| 久久国产精品男人的天堂亚洲 | 麻豆成人av视频| 欧美+日韩+精品| h日本视频在线播放| 永久免费av网站大全| 欧美精品一区二区大全| 亚洲真实伦在线观看| 成人国产麻豆网| 国产男人的电影天堂91| 美女福利国产在线 | 国产av精品麻豆| 少妇人妻久久综合中文| 午夜福利视频精品| 特大巨黑吊av在线直播| 黄色配什么色好看| 自拍偷自拍亚洲精品老妇| 亚洲欧洲日产国产| 我要看黄色一级片免费的| 熟妇人妻不卡中文字幕| 亚洲色图av天堂| 91久久精品电影网| 国产乱人视频| 欧美精品国产亚洲| 久久久久国产精品人妻一区二区| av线在线观看网站| 成人亚洲精品一区在线观看 | 国产av国产精品国产| 国产精品一二三区在线看| 在线精品无人区一区二区三 | 51国产日韩欧美| 亚洲在久久综合| 亚洲精品视频女| 男女国产视频网站| 国产精品99久久99久久久不卡 | 国产黄色免费在线视频| 97超视频在线观看视频| 观看美女的网站| 超碰97精品在线观看| 久久久久久久久久成人| freevideosex欧美| 亚洲在久久综合| 五月伊人婷婷丁香| 久久国产亚洲av麻豆专区| 免费看av在线观看网站| 少妇的逼水好多| 夫妻性生交免费视频一级片| 高清av免费在线| 人妻系列 视频| 欧美激情国产日韩精品一区| 国产爱豆传媒在线观看| 国产真实伦视频高清在线观看| 97在线视频观看| 亚洲国产色片| 80岁老熟妇乱子伦牲交| 久久精品人妻少妇| 爱豆传媒免费全集在线观看| 亚洲va在线va天堂va国产| 在现免费观看毛片| 99久久精品一区二区三区| 在线精品无人区一区二区三 | 热re99久久精品国产66热6| 亚洲av中文字字幕乱码综合| freevideosex欧美| 在线观看免费高清a一片| 日本黄色片子视频| 亚洲精品一二三| 欧美精品一区二区免费开放| 国产国拍精品亚洲av在线观看| 99久久精品国产国产毛片| 在线 av 中文字幕| 久久久久久久亚洲中文字幕| 欧美xxⅹ黑人| 亚洲内射少妇av| 免费观看的影片在线观看| 中文字幕免费在线视频6| 国产男女超爽视频在线观看| 搡女人真爽免费视频火全软件| 日本av手机在线免费观看| 久久精品国产亚洲av天美| 欧美人与善性xxx| 亚洲欧美精品专区久久| 欧美一区二区亚洲| 少妇人妻精品综合一区二区| 亚洲美女搞黄在线观看| 亚洲最大成人中文| 欧美日韩视频精品一区| 青春草亚洲视频在线观看| 免费看av在线观看网站| 免费看不卡的av| 2022亚洲国产成人精品| 夫妻午夜视频| 女性被躁到高潮视频| 久久久久久人妻| 99国产精品免费福利视频| 只有这里有精品99| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| 男人添女人高潮全过程视频| 人体艺术视频欧美日本| 免费观看a级毛片全部| 在线观看三级黄色| 一本一本综合久久| 国产成人a区在线观看| 日本-黄色视频高清免费观看| 丰满人妻一区二区三区视频av| 一本一本综合久久| 久热这里只有精品99| 日产精品乱码卡一卡2卡三| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久色成人| 老师上课跳d突然被开到最大视频| 国产成人freesex在线| 精品久久久久久久久亚洲| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三区在线 | 青青草视频在线视频观看| 久久久a久久爽久久v久久| 亚洲精品乱码久久久久久按摩| 久久久久久伊人网av| 下体分泌物呈黄色| 黄色欧美视频在线观看| 国产女主播在线喷水免费视频网站| 美女xxoo啪啪120秒动态图| 成年免费大片在线观看| 日韩视频在线欧美| 国产 一区精品| 国产av国产精品国产| 99热这里只有精品一区| 成人亚洲欧美一区二区av| 国产成人精品婷婷| 午夜激情福利司机影院| 日本黄色日本黄色录像| 欧美日韩视频精品一区| 欧美成人a在线观看| 人妻 亚洲 视频| 精品人妻视频免费看| 丰满少妇做爰视频| 美女中出高潮动态图| 亚洲熟女精品中文字幕| 国产淫片久久久久久久久| 精品酒店卫生间| 久久久精品94久久精品| 老熟女久久久| 亚洲av欧美aⅴ国产| 六月丁香七月| 久久久久久久亚洲中文字幕| 免费人妻精品一区二区三区视频| 麻豆国产97在线/欧美| 成人二区视频| 熟女电影av网| 欧美一区二区亚洲| 中文字幕人妻熟人妻熟丝袜美| 高清黄色对白视频在线免费看 | 久久 成人 亚洲| 在线观看一区二区三区激情| 久久久久久久久久人人人人人人| 日韩大片免费观看网站| 久久国内精品自在自线图片| 国产精品国产av在线观看| 日韩制服骚丝袜av| 亚洲欧美日韩另类电影网站 | 亚洲精品视频女| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩精品一区二区| 日韩精品有码人妻一区| 免费在线观看成人毛片| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 成人午夜精彩视频在线观看| 日韩一区二区视频免费看| 免费观看a级毛片全部| 99久国产av精品国产电影| a级一级毛片免费在线观看| 少妇丰满av| 一区二区三区乱码不卡18| 亚洲图色成人| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 妹子高潮喷水视频| 高清黄色对白视频在线免费看 | 我要看日韩黄色一级片| 久久精品国产亚洲av天美| 日韩欧美 国产精品| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 看非洲黑人一级黄片| 乱系列少妇在线播放| 熟女电影av网| 久久青草综合色| 91精品一卡2卡3卡4卡| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 国产午夜精品一二区理论片| 亚洲国产精品专区欧美| 日韩一区二区三区影片| 国产精品一区二区在线观看99| 又粗又硬又长又爽又黄的视频| 狂野欧美激情性bbbbbb| 国产在线免费精品| 视频区图区小说| 国产精品久久久久久精品电影小说 | 国产高清不卡午夜福利| 精品久久久久久久久av| 九九爱精品视频在线观看| 国产爱豆传媒在线观看| 18禁在线无遮挡免费观看视频| 久久久精品免费免费高清| 日本wwww免费看| a级毛色黄片| 99re6热这里在线精品视频| 亚州av有码| 久久 成人 亚洲| 另类亚洲欧美激情| 搡女人真爽免费视频火全软件| 国模一区二区三区四区视频| 夜夜爽夜夜爽视频| 国产真实伦视频高清在线观看| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 国产男人的电影天堂91| 熟女人妻精品中文字幕| 久久国产精品男人的天堂亚洲 | 日本黄大片高清| 视频中文字幕在线观看| 99热这里只有是精品50| 久久99精品国语久久久| 99久久精品国产国产毛片| 欧美变态另类bdsm刘玥| 十分钟在线观看高清视频www | 观看美女的网站| 国产乱人偷精品视频| 寂寞人妻少妇视频99o| 99九九线精品视频在线观看视频| 乱码一卡2卡4卡精品| 日本av免费视频播放| 国产精品久久久久久精品电影小说 | 欧美三级亚洲精品| 一边亲一边摸免费视频| 欧美成人精品欧美一级黄| 日韩av在线免费看完整版不卡| 欧美日韩视频精品一区| 18禁裸乳无遮挡免费网站照片| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜| 最近最新中文字幕免费大全7| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 一二三四中文在线观看免费高清| 午夜视频国产福利| 日本av免费视频播放| 一级毛片 在线播放| 亚洲久久久国产精品| 国产在线一区二区三区精| 中文资源天堂在线| 小蜜桃在线观看免费完整版高清| 国产成人精品福利久久| 亚洲欧美成人综合另类久久久| 热99国产精品久久久久久7| 欧美xxxx性猛交bbbb| 国产精品国产三级国产av玫瑰| a 毛片基地| 色5月婷婷丁香| 国产成人免费观看mmmm| 男人爽女人下面视频在线观看| 人妻一区二区av| 国产一区二区在线观看日韩| 日本欧美国产在线视频| 国产在线男女| 亚洲欧洲国产日韩| 老司机影院成人| 免费黄网站久久成人精品| 国产av精品麻豆| 国产精品三级大全| 国产欧美日韩一区二区三区在线 | 亚洲av国产av综合av卡| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片| 亚洲精品aⅴ在线观看| 丰满乱子伦码专区| 蜜桃久久精品国产亚洲av| 天堂中文最新版在线下载| 国产亚洲午夜精品一区二区久久| 免费看日本二区| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| av线在线观看网站| 亚洲精品自拍成人| 欧美zozozo另类| 亚洲人成网站高清观看| av网站免费在线观看视频| 少妇猛男粗大的猛烈进出视频| 又黄又爽又刺激的免费视频.| 国产永久视频网站| 嫩草影院入口| 国产伦在线观看视频一区| 亚洲一级一片aⅴ在线观看| 秋霞在线观看毛片| 国产黄片美女视频| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 国产黄频视频在线观看| 免费观看的影片在线观看| 高清视频免费观看一区二区| 国产伦精品一区二区三区视频9| 99久久综合免费| 少妇的逼水好多| 少妇人妻久久综合中文| 国产精品久久久久久精品古装| av.在线天堂| 18禁在线播放成人免费| 大又大粗又爽又黄少妇毛片口| 91aial.com中文字幕在线观看| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 国产高清国产精品国产三级 | 亚洲真实伦在线观看| 最后的刺客免费高清国语| 91精品一卡2卡3卡4卡| 久久久久久久久大av| 三级国产精品片| 国产有黄有色有爽视频| 在线观看国产h片| 国产日韩欧美在线精品| 视频区图区小说| 建设人人有责人人尽责人人享有的 | 一二三四中文在线观看免费高清| 国产伦精品一区二区三区四那| 色婷婷av一区二区三区视频| 国产一级毛片在线| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 国产一区亚洲一区在线观看| 亚洲美女搞黄在线观看| 亚洲精品视频女| 男人和女人高潮做爰伦理| 国产一区二区三区综合在线观看 | 久久影院123| 亚洲三级黄色毛片| 最近最新中文字幕免费大全7| 蜜桃亚洲精品一区二区三区| 99视频精品全部免费 在线| 久久国产亚洲av麻豆专区| 色5月婷婷丁香| 精品一区在线观看国产| 美女中出高潮动态图| 亚洲美女视频黄频| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 亚洲第一区二区三区不卡| 好男人视频免费观看在线| 十八禁网站网址无遮挡 | 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 天堂8中文在线网| 成人综合一区亚洲| 国产成人免费观看mmmm| 久久久久久人妻| 观看av在线不卡| 中文字幕制服av| 少妇被粗大猛烈的视频| 国产一级毛片在线| 国产真实伦视频高清在线观看| 国产精品一区www在线观看| 日本黄大片高清| 日本一二三区视频观看| 亚洲成色77777| 91精品国产国语对白视频| 在线精品无人区一区二区三 | 亚洲三级黄色毛片| 有码 亚洲区| 男人添女人高潮全过程视频| 亚洲一级一片aⅴ在线观看| 老女人水多毛片| 免费播放大片免费观看视频在线观看| 欧美丝袜亚洲另类| 久久女婷五月综合色啪小说| 亚洲高清免费不卡视频| 女性生殖器流出的白浆| 深爱激情五月婷婷| 精品视频人人做人人爽| 国产男人的电影天堂91| 亚洲人成网站高清观看| 又粗又硬又长又爽又黄的视频| 男人狂女人下面高潮的视频| 免费高清在线观看视频在线观看| 一本一本综合久久| 最近中文字幕2019免费版| 一本久久精品| 大陆偷拍与自拍| 男男h啪啪无遮挡| 久久久久国产网址| 国产精品三级大全| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 欧美老熟妇乱子伦牲交| 一级二级三级毛片免费看| 欧美老熟妇乱子伦牲交| 一级毛片久久久久久久久女| 欧美老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| 人妻 亚洲 视频| 欧美国产精品一级二级三级 | 久久毛片免费看一区二区三区| 国产男人的电影天堂91| 日本欧美视频一区| 中文精品一卡2卡3卡4更新| videos熟女内射| 大码成人一级视频| 中文字幕久久专区| 97在线视频观看| 久久久欧美国产精品| 国国产精品蜜臀av免费| 精品久久久噜噜| 国国产精品蜜臀av免费| 国产精品不卡视频一区二区| 男女国产视频网站| 人人妻人人看人人澡| 国产综合精华液| 国产一区二区三区综合在线观看 | 少妇人妻精品综合一区二区| 亚洲精品aⅴ在线观看| 男人爽女人下面视频在线观看| 日韩av在线免费看完整版不卡| 人妻系列 视频| 亚洲熟女精品中文字幕| 直男gayav资源| 欧美精品国产亚洲| 日韩电影二区|