• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid Aging Delay Model Considering the PBTI and TDDB

    2015-02-13 01:57:23YongMiaoMaoXiangYiGuiMaoZhangandDaWenXu

    Yong Miao, Mao-Xiang Yi, Gui-Mao Zhang, and Da-Wen Xu

    Hybrid Aging Delay Model Considering the PBTI and TDDB

    Yong Miao, Mao-Xiang Yi, Gui-Mao Zhang, and Da-Wen Xu

    —With a 45 nm process technique, the shrinking silicon feature size brings in a high-k/metal gate which significantly exacerbates the positive bias temperature instability (PBTI) and time-dependent dielectric breakdown (TDDB) effects of a NMOS transistor. However, previous works presented delay models to characterize the PBTI or TDDB individually. This paper demonstrates that the delay caused by the joint effects of PBTI and TDDB widely differs from the cumulated result of the delay caused by the PBTI and TDDB, respectively, with the experiments on an inverter chain. This paper proposes a hybrid aging delay model comprising both the PBTI and TDDB effects by analyzing the relationship between the aging propagation delay and the inherent delay of the gate. Experimental results on the logic gates under 45 nm, 32 nm, 22 nm, and 16 nm CMOS technologies show that the maximum error between the proposed model and the actual value is less than 2.5%, meanwhile the average error is about 1.5%.

    Index Terms—Circuit aging, positive bias temperature instability, time-dependent dielectric breakdown.

    1. Introduction

    Integrated circuits (ICs) have been developed more than 50 years under the prediction of the Moore’s law. With IC technologies improving and devices scaling, a series of reliability issues which accelerate the aging of the circuits have become increasingly critical. Especially for high-k (HK)/metal gates NMOS transistor, the positive bias temperature instability (PBTI) and time-dependent dielectric breakdown (TDDB) effects are the two biggest issues which affect the reliability of IC.

    Firstly, regarding to the PBTI, the electron trapping in the bulk of the high-k oxidation layer is the main reason for the threshold voltage (Vth) shifts[1]. In recent years, researches on the PBTI are based on the high-k/metal gate transistor and can be roughly divided into two parts: One is the study on itself, the impact of PBTI on Vthhas been researched through trapping and de-trapping characteristics[2], meanwhile the methods for reducing ΔVthand creating delay models based on the ΔVthare discovered[3],[4]; the other researches focus on the joint effects considering PBTI and other aging effects, such as negative bias temperature instability (NBTI), TDDB, etc.[5]-[7].

    Secondly, the TDDB effect degrades the oxide layer’s insulating properties aggressively, and finally makes complete conduction between the gate and the substrate[8]. As we know, the impact of TDDB on the device can be divided into two stages: Soft oxide breakdown and hard oxide breakdown. In the soft oxide breakdown phase, the device is still functional but the electrical properties, such as energy and delay, are changed. In the hard oxide breakdown phase, the leakage current increases exponentially and this increment will gradually lead to a permanent failure[9]. Currently, most of the researches on the TDDB have focused on studying the characteristics of static random access memory (SRAM) cells in the presence of soft oxide breakdown. The energy/delay drift in the SRAM due to the soft oxide breakdown was addressed in [10], and the impact of TDDB on the stability of SRAM was investigated in [11] and [12].

    Since both the PBTI and TDDB occur primarily in NMOS transistors, some works comprising the PBTI and TDDB have been presented. The effect of adopting HfSiON on improving the PBTI and TDDB aware reliability was studied in [13], the intrinsic correlation between the PBTI and TDDB was addressed in [14]. However, combining both of them and discussing the impact on the delay have not been involved. This paper establishes a hybrid aging propagation model considering both the PBTI and TDDB in high-k/metal gate NMOS transistors for predicting the circuit aging delay.

    The rest of this paper is organized as follows. Section 2 reviews related works including both the PBTI and TDDB models. Section 3 proposes our delay model considering both PBTI and TDDB. Section 4 is the experiments and analysis. Section 5 concludes the paper.

    2. Model of PBTI and TDDB

    2.1 PBTI

    Currently, the aging effects of circuits can be mainly categorized into bias temperature instability (BTI), time-dependent dielectric breakdown (TDDB), hot carrier injection (HCI), and electromigration (EM) according to the different physical mechanisms. As well, the BTI effect can also be continuously divided into negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI). The NBTI mainly occurs in the PMOS transistor while the PBTI occurs in the NMOS transistor. In ordinary silicon transistors, the effect of PBTI is much weaker than that of NBTI. So in the past 20 years, most of researchers have focused on the impact of NBTI. When the process geometry of integrated circuits scaled down to 45 nm and below, high-k materials begun to replace SiO2as gate oxide in order to solve the increasing serious leakage problems. And scientists have found out some specific metals, e.g. hafnium, to realize the high-k/metal gate. It is found that the Vthof the NMOS transistor changes more and more with the increase of time in the high-k/metal gate transistor, which indicates that the PBTI effect is becoming significant. Therefore, the PBTI starts to gain interest for recent years.

    The PBTI effect can be described as follows. When the NMOS transistor gate is under the positive bias state, an interface trap will form on the oxide interface of the NMOS transistor, which results in a higher Vthand smaller drive current of the NMOS transistor. Therefore, the propagation delay of the gate goes to increasingly larger. The increasing delay easily causes timing violation. The referred model considering the PBTI proposed in [15] is adopted in this paper. Meanwhile, the degradation of threshold voltage ΔVthdue to the NBTI can be calculated as

    where Vgis the gate voltage, n is found to be in the range of 0.1 to 0.2, and the value of m depends on stack details such as interfacial layer (IL) and high-k) thickness, with typical values in the range of 5 to 10. The constant A depends on the stress voltage and temperature.

    2.2 TDDB

    Time-dependent dielectric breakdown (TDDB), commonly termed gate oxide breakdown, is emerging as one of the most important sources of temporal degradation in CMOS devices[9]. For CMOS devices, thin gate oxides and saturating trend in supply voltage scaling result in a large electric field in the gate oxide, which eventually causes traps forming in the oxide interface and then the tunneling currents. As time increases, the tunneling currents further degrade the oxide and lead to the formation of more traps. Once enough traps are formed, they start affecting the electrical properties of the device.

    The referenced TDDB model used in this paper was proposed in [16]. As shown in Fig. 1, if the TDDB appeared in M2n, it can be considered that there is an equivalent resistance RBDexisted between the gate and the source. The smaller the value of RBDis, the more significant TDDB effect there will be. And the equivalent resistance RBDalso affects the size of VBD.

    Fig. 1. Breakdown equivalent model.

    When VBDis logic 1, V1is logic 0, the transistors of M1nand M2pare almost cut-off. From Ohm’s law, the current IBDis expressed as

    where Vds,1pis the drain-to-source voltage of M1p. Then from C.T.sah equation, the current IBDalso can be expressed as

    where μ0is the carrier mobility, COXis the gate oxide capacitance, W and L represent the channel width and length, respectively. Vthpis the threshold voltage for PMOS transistors. From (2) and (3), we can get Vds,1pas

    where k = μ0COXW/L and the degradation of VBDin this figure is |Vds,1p|, that is

    where

    Fig. 2. Inverter chain schematic.

    Reference [8] proposed a circuit-level TDDB delay model on the basis of [16], as shown in Fig. 2, in theinverter chain, the delay variation of INVnis expressed as

    where tpf,nis the delay for the falling transition of INVnand tpr,nis for the rising transition. Vdsatnand Vdsatpare the saturation drain voltage of the NMOS and PMOS, respectively. ΔVn-1and ΔVnare the degradations of the input voltages caused by TDDB.

    3. Delay Model for Both PBTI and TDDB

    In Fig. 2, the delay of INVncan be divided into rising transition delay and falling transition delay. As described in [17], the rising transition delay is given as

    where CL,nis the effective capacitance of the INVnand can be considered as the constant CL, Ip,nis the charging current, we consider that it remains constant as Idsatp,n, which is the saturation current of PMOS transistors.

    Similarly, the falling transition delay can be given as

    where In,nis the discharging current and we use Idsatn,nto instead of it, which is the saturation current of NMOS transistors. For INVn, ΔVthcaused by the PBTI, Rnand Rn+1caused by the TDDB can affect the time delay of INVn.

    3.1 Influence of Rnand ΔVth

    In a CMOS transistor, the saturation current is expressed as

    where Vgsis the gate-source voltage, combined with v = μ0E and E = Vds/L, we can get that

    where v is the saturation velocity of carriers.

    According to the analysis in section 2.2, when the TDDB appeared in INVn, that is the existence of Rn, the change value of the input voltage ΔVn-1of INVnis

    With the existence of PBTI, we assume the degradation of the threshold voltage swing ΔVth, then we can get the saturation current of a NMOS transistor

    as ΔVth<<Vddand ΔVn-1<<Vdd, we can derive the new propagation delay

    where VH= Vdd- Vthn- Vdsatn/2.

    Therefore, the increase of the propagation delay for the falling transition can be expressed as

    3.2 Influence of Rn+1and ΔVth

    As Fig. 3 and Fig. 4 show, the existence of Rn+1can also affect the charging current and discharging current of INVn, that is, it can affect the delay of INVn.

    Fig. 3. Delay variation for rising with ΔVn.

    Firstly, in Fig. 3, for the rising transition, Rn+1will bypass a portion of the current, the charging current can be given as Idsatp,n-V/Rn+1, and Idsatp,n>>V/Rn+1, where V is the voltage of Rn+1, and the delay for the rising transition can be described by

    and the increase of the delay can be expressed as

    According to the analysis in Section 2.2, we know that ΔVn=VddReq/Rn+1, and Reqis approximately equal to Vdsatp/Idsatp,n, thus we can get

    Fig. 4 Delay variation for falling with ΔVn.

    Secondly, in Fig. 4, for the falling transition, the discharging current can be described as Idsatn,n+V/Rn+1for the existence of Rn+1. Meanwhile, with the increase of the threshold voltage for the PBTI, we assume the value is ΔVth, thus we can derive that

    the delay variation is given that

    From the above, considering both the PBTI and TDDB, the delay variation for the rising transition of INVnshould be

    The delay variation for the falling transition of INVnshould be

    So the delay for the INVnis

    4. Results and Discussion

    4.1 Comparison with Hspice Simulated Results

    In this paper, we use the 4-stage inverter chain as benchmark. We assume that all of the equivalent resistances are the same, and the value is 50 k?, thus ΔVnare same for all the nodes. We also assume that all the inverters are the same, the delay of the inverter chain is

    The model for propagation delay is validated against Hspice simulations for 45 nm, 32 nm, 22 nm, and 16 nm technology libraries[18]. The results are shown in Table 1, in which r% is the percentage of actual Δtpsimulated by the Hspice for the inherent delay, while m% is the percentage of Δtpcalculated by the proposed model for the inherent delay.

    As shown in Table 1, the maximum error in the propagation delay of the inverter chain estimated using our analytical model is less than 2.5% as compared with the Hspice simulations. And through data analysis we know that simple TDDB mechanism may reduce the delay circuit for the value of (20). With the increase of ΔVthcaused by the PBTI, the reduction in the value of the circuit delay decrease shows that the PBTI effect will increase the circuit delay, but the degree is less than that of TDDB.

    4.2 Comparison with Previous Model Calculated Results

    In this section, we use the previous individual PBTI delay model[19]and TDDB delay model[8]to calculate their influence on the circuit respectively and compute their accumulated value directly, then compare with the proposed hybrid model. We still utilize the 4-stage inverter chain as our benchmark, and the equivalent resistances maintain 50 k?. The results are shown in Table 2, in which tPreis the delay calculated by the previous model,Δp is the difference between the previous model and the Hspice simulations, while Δh is the difference between the proposed hybrid model and the Hspice simulations.

    As shown in Table 2, all the data show that the proposed hybrid model is more accurate than the previous model. It also can be seen from Table 2 that the bigger of ΔVthmeans the greater influence of PBTI and the more accurate of the hybrid model compared with the previous model.

    The average errors and error variances of the previous model and hybrid model are calculated and shown in Fig. 5. As shown in Fig. 5 (a), the average errors of our hybrid model are smaller than the average errors of the previous model. It also can be seen that it is more accurate in 45 nm and 32 nm than that in 22 nm and 16 nm for the hybrid model. In Fig. 5 (b), for the previous model, all the error variances are bigger than the hybrid model excepted for that in 22 nm.

    5. Conclusions

    This paper proposes a hybrid aging-aware delay model considering both the PBTI and TDDB simultaneously. The experimental results show the proposed hybrid model andthe actual situation are highly consistent, and it is more accurately than the previous model. So it provides a relatively simple prediction algorithm for the circuit aging delay.

    Table 1: Delay variation of 45 nm, 32 nm, 22 nm, and 16 nm

    Table 2: Error of delay variation

    Fig. 5. Error analysis: (a) average errors and (b) error variances.

    [1] K. Zhao, J. H. Stathis, A. Kerber, and E. Cartier, “PBTI relaxation dynamics after AC vs. DC stress in high-k/metal gate stacks,” in Proc. of 2010 Intl. Reliability Physics Symposium Conf., 2010, pp. 50-54.

    [2] W. L. Lin, Y. J. Lee, W. C. Lo, Y. T. Hou, K. C. Lin, and T. S. Chao, “Trapping and de-trapping characteristics in PBTI and dynamic PBTI between HfO2 and HfSiON gate dielectrics,”in Proc. of 2008 Intl. Symposium on the Physical and Failure Analysis of Integrated Circuits Conf., 2008, pp. 1-4.

    [3] C. Schlunder, H. Reisinger, S. Aresu, and W. Gustin, “On the PBTI degradation of pMOSFETs and its impact on IC lifetime,” in Proc. of 2011 Integrated Reliability Workshop Final Report Conf., 2011, pp. 7-11.

    [4] K. Zhao, J. H. Stathis, B. P. Linder, A. Kerber, and E. Cartier,“PBTI under dynamic stress: From a single defect point ofview,” in Proc. of 2011 Intl. Reliability Physics Symposium Conf., 2011, pp. 4A.3.1-4A.3.9.

    [5] S. Kiamehr and F. Firouzi, “Aging-aware timing analysis considering combined effects of NBTI and PBTI,” in Proc. of 2013 Intl. Symposium on Quality Electronic Design Conf., 2013, pp.53-59.

    [6] J. -J. Kim, B. P. Linder, R. M. Rao, K. A. Jenkins, and C. H. Kim, “Reliability monitoring ring oscillator structures for isolated/combined NBTI and PBTI measurement in high-k metal gate technologies,” in Proc. of 2011 Intl. Reliability Physics Symposium Conf., 2011, pp. 2B.4.1-2B.4.4.

    [7] M. Sato, S. Kamiyama, Y. Sugita, and T. Matsuki,“Negatively charged deep level defects generated by Yttrium and Lanthanum incorporation into HfO2 for Vth adjustment, and the impact on TDDB, PBTI and 1/f noise,”in Proc. of 2009 Intl. Electron Devices Meeting Conf., 2009, pp. 1-4.

    [8] H. Luo, X. M. Chen, J. Velamala, Y. Wang, Y. Cao, and H. Z. Yang, “Circuit-level delay modeling considering both TDDB and NBTI,” in Proc. of 2011 Intl. Symposium on Quality Electronic Design Conf., 2011, pp.1-8.

    [9] M. Alam, B. Weir, and P. Silverman, “A study of soft and hard breakdown—Part I: Analysis of statistical percolation conductance,” IEEE Trans. on Electron Devices, vol. 49, no. 2, pp. 232-238, 2002.

    [10] H. Wand, M. Miranda, F. Catthoor, and W. Dehaene,“Impact of random soft oxide breakdown on SRAM energy/delay drift,” IEEE Trans. on Device and Materials Reliability, vol. 7, no. 4, pp. 581-591, 2007.

    [11] B. Kaczer, R. Degraeve, P. Roussel, and G. Groeseneken,“Gate oxide breakdown in FET devices and circuits: From nanoscale physics tosystem-level reliability,” in Proc. of 2007 Workshop on Dielectrics in Microelectronics Conf., 2007, pp. 559-566.

    [12] R. Rodriguez, J. Stathis, B. Linder, S. Kowalczyk, and C. Chuang, “The impact of gate-oxide breakdown on SRAM stability,” IEEE Electron Device Letters, vol. 23, no. 9, pp. 559-561, 2002.

    [13] M. Sato, N. Umezawa, J. Shimokawa, H. Arimura, S. Sugino, and A.Tachibana, “Physical model of the PBTI and TDDB of La incorporated HfSiON gate dielectrics with pre-existing and stress-induced defects,” in Proc. of 2008 Intl. Electron Devices Meeting Conf., 2008, pp. 1-4.

    [14] J. Q. Yang, M. Muhammad, K. Joshi, S. Mukhopadhyay, and J. F. Kang, “Intrinsic correlation between PBTI and TDDB degradations in nMOS HK/MG dielectrics,” in Proc. of 2012 Intl. Reliability Physics Symposium Conf., 2012, pp. 5D.4.1-5D.4.7.

    [15] D. P. Ioannou, E. Cartier, Y. Wang, and S. Mittl, “PBTI response to interfacial layer thickness variation in Hf-based HKMG nFETs,” in Proc. of 2010 Intl. Reliability Physics Symposium Conf., 2010, pp. 1044-1048.

    [16] M. Choudhury, V. Chandra, R. Aitken, and K. Mohanram,“Analytical model for TDDB—based performance degradation in combinational logic,” in Proc. of 2010 Design, Automation & Test in Europe Conf. & Exhibition Conf., 2010, pp. 423-428.

    [17] M. Hashimoto, J. Yamaguchi, T. Sato, and H. Onodera,“Timing analysis considering temporal supply voltage fluctuation,” in Proc. of 2005 Asia and South Pacific Design Automation Conf., 2005, pp. 1098-1101.

    [18] Z. Adil, G. Kapil, V. Ankit, and R. Ashish, “Design & simulation of CMOS inverter at nanoscale beyond 22 nm,”in Proc. of 2013 Intl. Journal of Emerging Science and Engineering Conf., 2013, pp.83-87.

    [19] Y. Wang, X. M. Chen, W. P. Wang, Y. Cao, Y. Xie, and H. Z. Yang, “Leakage power and circuit aging cooptimization by gate replacement techniques,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 4, pp. 615-628, 2011.

    Yong Miaowas born in Anhui Province, Chinain 1990. He received the B.S. degree in electronic science and technology from Hefei University of Technology, Hefei in 2012. He currently is a postgraduate of Hefei University of Technology. His research is to develop the circuit innate aging-tolerant ability by innovative aging-tolerant design methods for nanometer scale integrated circuits.

    Mao-Xiang Yiwas born in Anhui Province, China in 1964. He received the Ph.D. degree from Hefei University of Technology. He currently is a professor with the School of Electronic Science & Applied Physics, Hefei University of Technology. His main research interests include the design and test on the very large scale integrated circuites (VLSI) and application of microelectronics and computer.

    Gui-Mao Zhangwas born in Guangxi Province, China, in 1988. He received the B.S. degree in electronic information science and technology from Hunan University of Science and Technology, Changsha in 2012. He currently is a postgraduate with Hefei University of Technology. His research interests include circuit aging prediction and protection methods for aging.

    Da-Wen Xuwas born in 1986. He received the B.S. degree in computer science from Xi’dian University, Xi’an in 2007, and the M.S. and Ph.D. degrees from the Institute of Computing Technology, Chinese Academy of Science, Beijing in 2009 and 2013, respectively. He is currently an associate professor with Hefei University of Technology. His current research

    interests include heterogeneous computing, VLSI design and test, and reliable system.

    Manuscript received November 19, 2014; revised January 25, 2015. This work was supported by the National Natural Science Foundation of China under Grant No. 61371025 and No. 61274036.

    Y. Miao is with the School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China (Corresponding author e-mail: myfly627@163.com).

    M.-X. Yi, G.-M. Zhang, and D.-W. Xu are with the School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China (e-mail: mxyi126@126.com; zhangguimao2008 @163.com; xudawen@gmail.com).

    Digital Object Identifier: 10.11989/JEST.1674-862X.411191

    母亲3免费完整高清在线观看| 亚洲国产精品成人综合色| 国产三级在线视频| 欧美日韩综合久久久久久 | 搡女人真爽免费视频火全软件 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品成人久久久久久| 精品久久久久久久人妻蜜臀av| 国产精品久久电影中文字幕| 免费在线观看成人毛片| 舔av片在线| 亚洲天堂国产精品一区在线| 欧美成人一区二区免费高清观看| 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 亚洲真实伦在线观看| 亚洲av第一区精品v没综合| 国产高清视频在线播放一区| 欧美+日韩+精品| 91在线观看av| 国产色爽女视频免费观看| 偷拍熟女少妇极品色| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 亚洲第一欧美日韩一区二区三区| 男人的好看免费观看在线视频| 我要搜黄色片| 国产精品自产拍在线观看55亚洲| 久久精品夜夜夜夜夜久久蜜豆| 国产色爽女视频免费观看| 亚洲av二区三区四区| 亚洲狠狠婷婷综合久久图片| 午夜福利成人在线免费观看| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 女人高潮潮喷娇喘18禁视频| 午夜福利在线观看免费完整高清在 | 亚洲国产欧美网| 真实男女啪啪啪动态图| 在线看三级毛片| 日韩有码中文字幕| 听说在线观看完整版免费高清| 九色成人免费人妻av| 国产精品久久久久久精品电影| 国产欧美日韩一区二区三| 91九色精品人成在线观看| 母亲3免费完整高清在线观看| 久久香蕉精品热| 少妇人妻精品综合一区二区 | 久久久久久久午夜电影| 麻豆成人av在线观看| 少妇熟女aⅴ在线视频| 亚洲国产欧美网| 一区二区三区国产精品乱码| 丁香六月欧美| 精品国内亚洲2022精品成人| 久99久视频精品免费| 成人av一区二区三区在线看| 国模一区二区三区四区视频| 成人特级黄色片久久久久久久| 久久性视频一级片| 波野结衣二区三区在线 | 国产单亲对白刺激| 久久中文看片网| 亚洲精品色激情综合| 黄色视频,在线免费观看| 国产精华一区二区三区| 在线观看免费午夜福利视频| 欧美成狂野欧美在线观看| 国产亚洲精品久久久com| 一个人免费在线观看的高清视频| www.999成人在线观看| 精品一区二区三区视频在线观看免费| 国产亚洲av嫩草精品影院| 国产成人系列免费观看| 在线观看舔阴道视频| 午夜免费激情av| 国内精品久久久久久久电影| 最新美女视频免费是黄的| 欧美乱色亚洲激情| 欧美一区二区精品小视频在线| avwww免费| АⅤ资源中文在线天堂| 久久国产精品影院| 嫩草影院入口| 欧美乱色亚洲激情| 丝袜美腿在线中文| 搡女人真爽免费视频火全软件 | 国产高清视频在线观看网站| 色综合婷婷激情| 午夜久久久久精精品| 99久久九九国产精品国产免费| 亚洲 国产 在线| 草草在线视频免费看| 老汉色av国产亚洲站长工具| 综合色av麻豆| 丝袜美腿在线中文| 午夜精品久久久久久毛片777| 狠狠狠狠99中文字幕| 床上黄色一级片| 亚洲美女黄片视频| 国产高清videossex| 久久久久久大精品| 日本黄色视频三级网站网址| 欧美成人免费av一区二区三区| 午夜福利成人在线免费观看| 9191精品国产免费久久| 国内精品美女久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清专用| 亚洲最大成人手机在线| 日韩欧美三级三区| 免费av不卡在线播放| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 国产午夜精品论理片| 成年人黄色毛片网站| 亚洲电影在线观看av| 亚洲男人的天堂狠狠| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 日本 av在线| АⅤ资源中文在线天堂| 男女床上黄色一级片免费看| 免费大片18禁| 亚洲aⅴ乱码一区二区在线播放| 一边摸一边抽搐一进一小说| 日日干狠狠操夜夜爽| 日韩av在线大香蕉| 国产精品亚洲一级av第二区| 欧美一级a爱片免费观看看| 国产美女午夜福利| 久久久久久国产a免费观看| 亚洲精品久久国产高清桃花| 老司机午夜福利在线观看视频| 国产精品野战在线观看| 日本黄色视频三级网站网址| 久久婷婷人人爽人人干人人爱| 麻豆国产97在线/欧美| 欧美xxxx黑人xx丫x性爽| 日韩欧美三级三区| 亚洲色图av天堂| 成年免费大片在线观看| 久久精品影院6| 国产av在哪里看| 香蕉久久夜色| 欧美成狂野欧美在线观看| 日本免费a在线| 最近最新免费中文字幕在线| 国产精品久久久久久久久免 | 夜夜夜夜夜久久久久| 国产精品久久电影中文字幕| 看黄色毛片网站| 国产免费一级a男人的天堂| 午夜福利欧美成人| 亚洲狠狠婷婷综合久久图片| 69人妻影院| 亚洲五月婷婷丁香| 一区二区三区免费毛片| 中国美女看黄片| 草草在线视频免费看| 三级国产精品欧美在线观看| 亚洲午夜理论影院| 夜夜夜夜夜久久久久| svipshipincom国产片| 岛国在线观看网站| 美女免费视频网站| 观看美女的网站| 夜夜夜夜夜久久久久| 91在线观看av| 久久香蕉精品热| 午夜福利高清视频| 国产精品99久久久久久久久| 亚洲av成人精品一区久久| 非洲黑人性xxxx精品又粗又长| 偷拍熟女少妇极品色| 亚洲熟妇中文字幕五十中出| 免费无遮挡裸体视频| 欧美国产日韩亚洲一区| 久久久精品欧美日韩精品| 国产91精品成人一区二区三区| 亚洲精华国产精华精| 欧美中文综合在线视频| 欧美激情久久久久久爽电影| 亚洲精品一区av在线观看| 亚洲18禁久久av| 男插女下体视频免费在线播放| 午夜福利成人在线免费观看| 小蜜桃在线观看免费完整版高清| 在线观看免费视频日本深夜| 欧美日本亚洲视频在线播放| 国产精品香港三级国产av潘金莲| 免费电影在线观看免费观看| 亚洲精品在线美女| 老熟妇乱子伦视频在线观看| 中文字幕av在线有码专区| 欧美国产日韩亚洲一区| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类 | 久久午夜亚洲精品久久| 一进一出抽搐动态| 一本久久中文字幕| 男女之事视频高清在线观看| 久久中文看片网| 少妇人妻一区二区三区视频| 国产精品99久久99久久久不卡| 亚洲成a人片在线一区二区| 精品免费久久久久久久清纯| 五月玫瑰六月丁香| 国产成人av教育| 亚洲精品乱码久久久v下载方式 | 九九久久精品国产亚洲av麻豆| 一夜夜www| 欧美日韩福利视频一区二区| 欧美国产日韩亚洲一区| 国产亚洲精品综合一区在线观看| 韩国av一区二区三区四区| 国产探花在线观看一区二区| 久久草成人影院| 午夜福利成人在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产中年淑女户外野战色| 日韩欧美国产在线观看| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 亚洲国产中文字幕在线视频| 国产高清三级在线| 精品国内亚洲2022精品成人| 淫妇啪啪啪对白视频| 色综合欧美亚洲国产小说| 在线免费观看不下载黄p国产 | 国产熟女xx| 真实男女啪啪啪动态图| 99久久综合精品五月天人人| 久久草成人影院| 亚洲av不卡在线观看| 在线十欧美十亚洲十日本专区| 五月伊人婷婷丁香| 一区二区三区免费毛片| 天堂网av新在线| 动漫黄色视频在线观看| 中文字幕人妻丝袜一区二区| 国产亚洲精品久久久com| www.熟女人妻精品国产| 国产精品亚洲美女久久久| 麻豆久久精品国产亚洲av| www日本黄色视频网| 天堂动漫精品| 国产一区在线观看成人免费| 一a级毛片在线观看| 日韩 欧美 亚洲 中文字幕| 日韩欧美 国产精品| 亚洲av美国av| bbb黄色大片| 久久精品国产亚洲av涩爱 | 午夜福利18| 91久久精品国产一区二区成人 | 尤物成人国产欧美一区二区三区| 亚洲精品456在线播放app | 麻豆久久精品国产亚洲av| 亚洲电影在线观看av| 欧美+日韩+精品| 特级一级黄色大片| 无限看片的www在线观看| 日日夜夜操网爽| 国产成+人综合+亚洲专区| 五月伊人婷婷丁香| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 动漫黄色视频在线观看| 免费av毛片视频| 亚洲最大成人手机在线| 看黄色毛片网站| 啪啪无遮挡十八禁网站| 91麻豆av在线| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 久久精品国产亚洲av香蕉五月| 国产精品香港三级国产av潘金莲| 午夜福利18| 他把我摸到了高潮在线观看| 在线免费观看的www视频| 色在线成人网| 亚洲内射少妇av| 99久久精品国产亚洲精品| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 在线看三级毛片| 国产黄片美女视频| 久久精品影院6| 欧美中文日本在线观看视频| 精品不卡国产一区二区三区| 国产成人福利小说| 亚洲最大成人手机在线| 成年人黄色毛片网站| 亚洲精华国产精华精| 99国产精品一区二区蜜桃av| 国产真实伦视频高清在线观看 | 国产三级黄色录像| 欧美午夜高清在线| 精品久久久久久,| 亚洲av日韩精品久久久久久密| 久久久久性生活片| h日本视频在线播放| 国产高清视频在线观看网站| 久99久视频精品免费| 免费人成在线观看视频色| 97碰自拍视频| 99国产综合亚洲精品| 国产成人aa在线观看| 黄色丝袜av网址大全| 好看av亚洲va欧美ⅴa在| 夜夜看夜夜爽夜夜摸| 欧美日本亚洲视频在线播放| 国产三级在线视频| 91麻豆精品激情在线观看国产| 亚洲熟妇熟女久久| 69av精品久久久久久| 天美传媒精品一区二区| 亚洲av不卡在线观看| 免费在线观看影片大全网站| 国产高清有码在线观看视频| 怎么达到女性高潮| 18禁黄网站禁片免费观看直播| tocl精华| 国产在线精品亚洲第一网站| 一级毛片女人18水好多| 91九色精品人成在线观看| 欧美日韩综合久久久久久 | 亚洲国产精品sss在线观看| 我的老师免费观看完整版| 日本黄色视频三级网站网址| 久久久久久人人人人人| 少妇丰满av| av在线天堂中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 精品国产美女av久久久久小说| 亚洲精品影视一区二区三区av| 国产精品久久久久久久久免 | 国产高清有码在线观看视频| 亚洲成人久久爱视频| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 禁无遮挡网站| 身体一侧抽搐| 我的老师免费观看完整版| 亚洲欧美一区二区三区黑人| 午夜精品一区二区三区免费看| 久久精品亚洲精品国产色婷小说| 欧美最新免费一区二区三区 | 法律面前人人平等表现在哪些方面| 99久国产av精品| 国产色爽女视频免费观看| 国产在线精品亚洲第一网站| 成人永久免费在线观看视频| 精品国产亚洲在线| 中文字幕av成人在线电影| 久久99热这里只有精品18| 在线观看日韩欧美| 欧美日韩国产亚洲二区| 欧美在线黄色| 亚洲欧美一区二区三区黑人| 亚洲av电影不卡..在线观看| 日日夜夜操网爽| 国内精品一区二区在线观看| 一区二区三区激情视频| 亚洲美女视频黄频| 天天添夜夜摸| 成人午夜高清在线视频| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 叶爱在线成人免费视频播放| 级片在线观看| 日韩人妻高清精品专区| 男女视频在线观看网站免费| 中文字幕高清在线视频| avwww免费| 国产成人aa在线观看| 在线观看免费视频日本深夜| 久久精品影院6| 亚洲天堂国产精品一区在线| 国产精品影院久久| 最近最新免费中文字幕在线| 国产av在哪里看| 亚洲成av人片免费观看| 欧美精品啪啪一区二区三区| 国产一区二区亚洲精品在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 欧美一区二区亚洲| 久久国产精品人妻蜜桃| 国产三级中文精品| 99国产精品一区二区蜜桃av| 韩国av一区二区三区四区| 午夜福利在线观看免费完整高清在 | 国内精品久久久久精免费| 久久久久久久久大av| tocl精华| 欧美日本视频| 亚洲,欧美精品.| 亚洲成a人片在线一区二区| 1000部很黄的大片| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 亚洲成人久久性| 少妇裸体淫交视频免费看高清| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 午夜福利免费观看在线| 免费看日本二区| 在线十欧美十亚洲十日本专区| www日本黄色视频网| 欧美乱妇无乱码| 岛国在线观看网站| 国产一区二区在线观看日韩 | 天堂av国产一区二区熟女人妻| 亚洲精品日韩av片在线观看 | 国产伦在线观看视频一区| 91av网一区二区| 嫁个100分男人电影在线观看| 九九热线精品视视频播放| aaaaa片日本免费| 动漫黄色视频在线观看| 国产精品久久视频播放| 国产探花极品一区二区| a级毛片a级免费在线| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 真人一进一出gif抽搐免费| 三级男女做爰猛烈吃奶摸视频| 少妇裸体淫交视频免费看高清| 在线国产一区二区在线| 有码 亚洲区| 啦啦啦观看免费观看视频高清| 国产精品一及| www.熟女人妻精品国产| 国产国拍精品亚洲av在线观看 | 天堂动漫精品| 欧美乱码精品一区二区三区| 啪啪无遮挡十八禁网站| 三级国产精品欧美在线观看| 国产亚洲欧美98| 亚洲片人在线观看| 免费观看精品视频网站| 在线观看美女被高潮喷水网站 | 日本免费一区二区三区高清不卡| 欧美中文日本在线观看视频| 久久久久久久久大av| 免费在线观看日本一区| 国产精品女同一区二区软件 | 成人永久免费在线观看视频| 久久精品91无色码中文字幕| 国产爱豆传媒在线观看| 国产v大片淫在线免费观看| 丰满的人妻完整版| 一级毛片高清免费大全| 91在线精品国自产拍蜜月 | x7x7x7水蜜桃| 国产主播在线观看一区二区| 看免费av毛片| 制服丝袜大香蕉在线| 在线观看66精品国产| 好男人在线观看高清免费视频| 日本五十路高清| 成人亚洲精品av一区二区| 99热只有精品国产| 久久久久免费精品人妻一区二区| 国产精品久久视频播放| 大型黄色视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线观看网站| 国产伦在线观看视频一区| 久久精品91无色码中文字幕| 亚洲 国产 在线| 精品日产1卡2卡| 国产成年人精品一区二区| 韩国av一区二区三区四区| 日本 欧美在线| ponron亚洲| 婷婷丁香在线五月| 亚洲熟妇中文字幕五十中出| 搞女人的毛片| 亚洲成av人片免费观看| 精品久久久久久,| 一本精品99久久精品77| 国产一区二区三区在线臀色熟女| 婷婷精品国产亚洲av| 最近在线观看免费完整版| 无遮挡黄片免费观看| 亚洲天堂国产精品一区在线| 精品久久久久久久毛片微露脸| 精品福利观看| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 免费大片18禁| 一区二区三区激情视频| 国产亚洲欧美98| 久久精品国产清高在天天线| 在线播放无遮挡| 亚洲精品影视一区二区三区av| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 变态另类丝袜制服| 国产精品国产高清国产av| 欧美色视频一区免费| 成人三级黄色视频| 天堂网av新在线| 男女之事视频高清在线观看| 999久久久精品免费观看国产| 欧美3d第一页| 男女床上黄色一级片免费看| 日本熟妇午夜| 亚洲国产色片| avwww免费| 国产伦精品一区二区三区四那| 99国产精品一区二区蜜桃av| 色哟哟哟哟哟哟| 女人被狂操c到高潮| 美女黄网站色视频| 国产精品99久久久久久久久| 成年人黄色毛片网站| 日韩欧美 国产精品| 国产成人av教育| 精品久久久久久,| 国产精品一区二区免费欧美| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 母亲3免费完整高清在线观看| 免费在线观看影片大全网站| 欧美另类亚洲清纯唯美| 国产成人福利小说| 国产黄片美女视频| 一级黄片播放器| 香蕉av资源在线| 好看av亚洲va欧美ⅴa在| 黄片大片在线免费观看| 成人三级黄色视频| 成人一区二区视频在线观看| 免费人成视频x8x8入口观看| 国产三级中文精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av视频在线观看入口| 国产高清视频在线播放一区| 日韩欧美在线二视频| 露出奶头的视频| 亚洲人成网站在线播放欧美日韩| 成人鲁丝片一二三区免费| 日本精品一区二区三区蜜桃| 久久久久国产精品人妻aⅴ院| 成人av在线播放网站| 国产主播在线观看一区二区| 亚洲午夜理论影院| 青草久久国产| 国产真人三级小视频在线观看| 成人一区二区视频在线观看| 嫩草影院入口| 男女午夜视频在线观看| 天堂网av新在线| 丝袜美腿在线中文| 久久欧美精品欧美久久欧美| 九色国产91popny在线| 日本a在线网址| 日韩欧美 国产精品| 亚洲人成伊人成综合网2020| 久久久久久久久久黄片| 久久久久国产精品人妻aⅴ院| 国产麻豆成人av免费视频| 久久精品国产清高在天天线| 老司机深夜福利视频在线观看| av女优亚洲男人天堂| 九九久久精品国产亚洲av麻豆| 在线观看舔阴道视频| 禁无遮挡网站| 无遮挡黄片免费观看| 黑人欧美特级aaaaaa片| av视频在线观看入口| 日韩欧美国产一区二区入口| 国产高清三级在线| 日韩av在线大香蕉| 午夜免费成人在线视频| 夜夜躁狠狠躁天天躁| 母亲3免费完整高清在线观看| 免费看a级黄色片| 啦啦啦观看免费观看视频高清| 欧美黑人巨大hd| 久久人人精品亚洲av| 日日夜夜操网爽| 最后的刺客免费高清国语| 18禁黄网站禁片免费观看直播| 真人做人爱边吃奶动态| 一本久久中文字幕| 午夜福利欧美成人| 可以在线观看毛片的网站| 午夜老司机福利剧场| www日本黄色视频网| 色综合婷婷激情| 久久久色成人| 久久久成人免费电影| 久久精品亚洲精品国产色婷小说| 日韩有码中文字幕| 97超视频在线观看视频|