馮其帥,高麗娜,崔元璐
ATDC5:一株反映軟骨形成完整過程的細(xì)胞系*
馮其帥,高麗娜,崔元璐
(天津中醫(yī)藥大學(xué)中醫(yī)藥研究院,天津300193)
中醫(yī)學(xué)認(rèn)為,筋骨失養(yǎng),系肝腎虛衰所致。補腎中藥的某些有效成分具有與細(xì)胞因子、激素類似的生理活性和廣泛的藥理作用,不僅可用于骨性關(guān)節(jié)炎的治療,而且在組織工程及干細(xì)胞工程領(lǐng)域有廣泛的應(yīng)用前景。ATDC5細(xì)胞株來源于小鼠畸胎癌株AT805,作為一個前軟骨細(xì)胞株其分化過程與軟骨形成過程類似。在細(xì)胞因子、激素和無機(jī)磷酸鹽等作用下,ATDC5細(xì)胞將發(fā)生增殖、聚集進(jìn)而進(jìn)入軟骨細(xì)胞分化階段,分化為增殖性軟骨細(xì)胞。增殖性軟骨細(xì)胞隨后繼續(xù)分化為肥大性軟骨細(xì)胞,從而進(jìn)入終末分化階段,軟骨基質(zhì)發(fā)生礦化,最終沉積成骨。通過從系統(tǒng)調(diào)節(jié)因子、局部調(diào)節(jié)因子和細(xì)胞培養(yǎng)條件三個方面,揭示ATDC5細(xì)胞增殖、分化與礦化的分子機(jī)制,為軟骨發(fā)育研究及中藥有效成分高通量篩選提供理論依據(jù)。
細(xì)胞生物學(xué);補腎中藥;ATDC5細(xì)胞;軟骨形成;軟骨細(xì)胞
軟骨形成過程始于間充質(zhì)細(xì)胞增殖、聚集,其后逐步地分化為增殖性軟骨細(xì)胞,而增殖性軟骨細(xì)胞發(fā)生肥大化后分化為無增殖活性的肥大軟骨細(xì)胞,進(jìn)而肥大軟骨細(xì)胞發(fā)生礦化進(jìn)入終末分化階段,最終被骨組織取代。ATDC5細(xì)胞株來源于小鼠畸胎癌株AT805,作為一個前軟骨細(xì)胞株其分化過程與軟骨形成過程類似。研究表明,ATDC5細(xì)胞增殖、分化以及礦化階段均可受誘導(dǎo)分化因子的影響,從而加速某一階段的進(jìn)程或者增強(qiáng)某一階段的特征性軟骨基質(zhì)的表達(dá)。在軟骨細(xì)胞分化早期,ATDC5細(xì)胞通過細(xì)胞聚集形成軟骨小結(jié)并表達(dá)相應(yīng)的特征性軟骨基質(zhì),如聚集蛋白聚糖(Aggrecan)、Ⅱ型膠原蛋白(Collagen typeⅡ)等。伴隨著軟骨基質(zhì)發(fā)生礦化,ATDC5細(xì)胞進(jìn)入終末分化階段,同時表達(dá)Collagen typeⅩ、堿性磷酸酶等標(biāo)志性產(chǎn)物。研究證明,ATDC5細(xì)胞不僅具有穩(wěn)定地表達(dá)軟骨細(xì)胞外基質(zhì)的能力,而且具有較強(qiáng)的增殖能力而便于體外擴(kuò)增培養(yǎng)。
中醫(yī)認(rèn)為,腎藏精,主骨生髓,髓藏于骨腔內(nèi),滋養(yǎng)骨骼[1]。現(xiàn)代藥理學(xué)表明,補腎壯骨中藥不僅能夠延緩軟骨的損傷、降解以及退變,而且可以促進(jìn)軟骨分化與修復(fù)[2]。本文將從系統(tǒng)調(diào)節(jié)因子、局部調(diào)節(jié)因子和細(xì)胞培養(yǎng)條件三個方面,揭示不同調(diào)節(jié)因子與ATDC5細(xì)胞的增殖、分化以及礦化之間的相互關(guān)系,為探究補腎壯骨中藥軟骨保護(hù)作用的分子機(jī)制提供一個展示軟骨形成過程的細(xì)胞藥理學(xué)模型。
1.1生長激素(GH)/胰島素樣生長因子-1(IGF-1)系統(tǒng)生長激素具有廣泛的生物學(xué)功能,其主要表現(xiàn)為具有促合成與生長發(fā)育的作用。在軟骨形成過程中,生長激素可以促進(jìn)軟骨細(xì)胞的增殖與分化,調(diào)節(jié)蛋白質(zhì)、糖及脂肪的代謝[3]。一般認(rèn)為,IGF-l通過介導(dǎo)生長激素從而發(fā)揮促進(jìn)骨增長的作用,進(jìn)而形成了GH/IGF-l功能系統(tǒng)[4]。Koike等[5]對ATDC5細(xì)胞進(jìn)行成纖維細(xì)胞生長因子受體-3(FGFR3)突變誘導(dǎo),MTT實驗結(jié)果顯示FGFR3突變的細(xì)胞增殖被抑制進(jìn)而細(xì)胞凋亡。進(jìn)一步研究發(fā)現(xiàn),ATDC5細(xì)胞培養(yǎng)過程中加入IGF-1,IGF-1通過絲裂原激活蛋白激酶(MAPK)和磷脂酰肌醇-3激酶(PI3K)信號通路可以促進(jìn)細(xì)胞增殖和抑制細(xì)胞凋亡。IGF-1可以介導(dǎo)生長激素對軟骨發(fā)育不全患者的治療過程,其機(jī)制可能為通過PI3K和MAPK通路抑制FGFR3突變導(dǎo)致的凋亡。此外,生長激素可直接作用于生長激素受體而發(fā)揮其調(diào)控作用[6]。根據(jù)相關(guān)報道,ATDC5細(xì)胞自身可以表達(dá)內(nèi)源性生長激素受體。利用生長激素誘導(dǎo)ATDC5細(xì)胞研究發(fā)現(xiàn),生長激素通過直接作用于生長激素受體誘導(dǎo)STAT5磷酸化促進(jìn)Collagen typeⅡ的表達(dá)從而加速ATDC5細(xì)胞早期分化的進(jìn)程[7]。
1.2甲狀腺素甲狀腺素具有廣泛而復(fù)雜的生理作用,尤其對骨骼發(fā)育起著至關(guān)重要的作用[8],其中先天甲狀腺素分泌不足將導(dǎo)致侏儒癥發(fā)生。3,5,3,-三碘甲狀腺原氨酸(T3)和3,5,3,'5'-四碘甲狀腺原氨酸(T4)是甲狀腺素兩種主要的活性成分。分子生物學(xué)研究表明,甲狀腺素能夠靶向作用于軟骨發(fā)育調(diào)控基因,從而加速軟骨細(xì)胞趨向于肥大軟骨細(xì)胞分化的進(jìn)程,促進(jìn)軟骨基質(zhì)礦化,最終實現(xiàn)協(xié)調(diào)軟骨形成過程的作用[9]。Miura等[10]研究發(fā)現(xiàn),T3可以增強(qiáng)茜素紅S染色而對阿利新藍(lán)染色無影響,表明T3對ATDC5細(xì)胞的作用主要表現(xiàn)為促進(jìn)終末分化而對早期分化無明顯作用。Siebler等[11]也發(fā)現(xiàn)T3可以抑制ATDC5細(xì)胞增殖,誘導(dǎo)堿性磷酸酶和Collagen typeⅩ的表達(dá),加速軟骨細(xì)胞向成骨細(xì)胞分化。在軟骨分化發(fā)育過程中,T4可以被激活轉(zhuǎn)化為T3從而調(diào)控軟骨形成。
在軟骨細(xì)胞增殖與分化過程中,成纖維細(xì)胞生長因子(FGFs)是重要調(diào)節(jié)因子之一,其中FGFR3基因突變可以引起軟骨發(fā)育不全。研究發(fā)現(xiàn),T3通過靶向于FGF/FGFR信號通路中關(guān)鍵蛋白HSPGs來調(diào)控ATDC5細(xì)胞分化發(fā)育[12]。在軟骨形成階段,T3能夠激活FGF2和FGF18調(diào)控ATDC5細(xì)胞的增殖與分化[13]。除此之外,Ihh/PTHrP與甲狀腺素的代謝和其活性成分T3存在著密切的聯(lián)系,介導(dǎo)T3調(diào)控軟骨形成過程。
1.3雌激素雌激素屬于類固醇激素,靶向于細(xì)胞內(nèi)雌激素受體(ER)發(fā)揮作用。雌激素受體是核受體超家族的成員,具有轉(zhuǎn)錄因子的作用,包括ERα和ERβ兩種亞型[14]。雌激素對骨的作用可能是通過介導(dǎo)調(diào)控成骨細(xì)胞、成骨細(xì)胞前體、骨細(xì)胞和生長骨板的軟骨細(xì)胞ERα而實現(xiàn)的。為了探討雌激素對ATDC5細(xì)胞增殖的影響,Zheng等[15]利用10-11~10-8mol/L雌激素誘導(dǎo)ATDC5細(xì)胞,發(fā)現(xiàn)雌激素可以促進(jìn)細(xì)胞增殖并且表現(xiàn)出時間和劑量依賴性。進(jìn)一步研究發(fā)現(xiàn),雌激素的作用機(jī)制為促進(jìn)CNP信號通路中CNP、NPR-B和NPR-C蛋白表達(dá)而實現(xiàn)的。在軟骨細(xì)胞對數(shù)生長期,雌激素與瘦素相輔相成,調(diào)控軟骨發(fā)育過程。研究發(fā)現(xiàn),在ATDC5細(xì)胞中,雌激素與瘦素受體均有表達(dá)。雌激素可以通過雌激素受體促進(jìn)瘦素受體的表達(dá),而瘦素也可以通過ERK信號通路促進(jìn)雌激素受體的表達(dá),從而加速ATDC5細(xì)胞肥大化過程,促進(jìn)其分化為成骨細(xì)胞[16-17]。
1.4骨保護(hù)素骨保護(hù)素是一種骨代謝過程的中介分子,介導(dǎo)多種細(xì)胞因子和激素對破骨細(xì)胞分化與活化的負(fù)性調(diào)節(jié)作用[18]。骨保護(hù)素是核因子(NF)NF-κB受體活化因子配體(RANKL)的假受體,具有高度的RANKL親和力。通常認(rèn)為,骨保護(hù)素以競爭性結(jié)合的方式抑制核因子κB受體活化因子(RANK)與RANKL的結(jié)合,阻斷級聯(lián)反應(yīng)從而抑制破骨細(xì)胞的形成以及骨吸收[19]。在ATDC5軟骨分化過程中,骨保護(hù)素和RANK兩者均可以表達(dá),兩者相互結(jié)合從而抑制RANK的表達(dá),進(jìn)而抑制ATDC5細(xì)胞趨向破骨細(xì)胞分化而促進(jìn)其增殖與分化[20]。
1.5糖皮質(zhì)激素糖皮質(zhì)激素是人體在生理狀態(tài)下分泌的[21]。在關(guān)節(jié)炎治療中,地塞米松、氫化可的松、潑尼松等糖皮質(zhì)激素作為抗炎藥物經(jīng)常被使用。在治療過程中,發(fā)現(xiàn)地塞米松能夠抑制骨骼發(fā)育,尤其是抑制軟骨細(xì)胞的增殖。同樣研究表明,地塞米松可抑制ATDC5細(xì)胞增殖和蛋白多糖的合成,其抑制蛋白多糖的機(jī)制是通過調(diào)控PI3K/Akt信號通路從而抑制Runx2轉(zhuǎn)錄因子實現(xiàn)的[22],而抑制細(xì)胞增殖的機(jī)制是通過誘導(dǎo)細(xì)胞自噬而實現(xiàn)的[23]。
1.6胰島素胰島素與IGF-I相類似,具有異二聚體α2 β2蛋白結(jié)構(gòu)以及相似的下游信號通路和受體靶點。兩者均可通過胰島素受體(IR)、IGF-IR和IR/IGF-IR結(jié)合發(fā)揮其調(diào)節(jié)軟骨細(xì)胞增殖和分化的作用。Yao等[24]使用分別含有分化因子、生長因子和胰島素的細(xì)胞培養(yǎng)基對ATDC5細(xì)胞進(jìn)行培養(yǎng),觀察不同誘導(dǎo)分化因子對軟骨細(xì)胞分化發(fā)育的影響。實驗結(jié)果表明,3種細(xì)胞培養(yǎng)基均可以促進(jìn)ATDC5細(xì)胞的增殖,其中以含有胰島素的細(xì)胞培養(yǎng)基作用最為顯著。此外,含有分化因子的細(xì)胞培養(yǎng)基可顯著地增強(qiáng)軟骨細(xì)胞分化特征性基質(zhì)的表達(dá),而含有胰島素的細(xì)胞培養(yǎng)基可以促進(jìn)軟骨細(xì)胞礦化特征性基質(zhì)的表達(dá)。重要的是ATDC5細(xì)胞在含有胰島素的細(xì)胞培養(yǎng)基中培養(yǎng)時,其總糖胺聚糖表達(dá)量是最高的。胰島素對ATDC5細(xì)胞的作用主要表現(xiàn)為促進(jìn)細(xì)胞增殖和加速軟骨細(xì)胞功能的表達(dá)。
2.1轉(zhuǎn)化生長因子-β(TGF-β)在軟骨形成過程中,TGF-β通過激活經(jīng)典與非經(jīng)典的Smad通路調(diào)節(jié)軟骨特定功能蛋白的基因表達(dá),涉及到軟骨細(xì)胞聚集、增殖、細(xì)胞外基質(zhì)合成以及礦化等各個階段[25]。在軟骨細(xì)胞分化早期,TGF-β以激活Smad 3與轉(zhuǎn)錄因子形成復(fù)合物的方式,募集CREB/p300到Collagen typeⅡ啟動子上從而增強(qiáng)其表達(dá)。在ATDC5細(xì)胞中研究發(fā)現(xiàn),TGF-β主要通過兩種方式實現(xiàn)對ATDC5細(xì)胞誘導(dǎo)分化作用:一方面通過Smad 3從而啟動軟骨基質(zhì)的表達(dá)。另一方面通過p38/ERK1/2通路維持軟骨基質(zhì)長期的表達(dá)。Watanabe等[26]對TGF-β誘導(dǎo)ATDC5細(xì)胞軟骨基質(zhì)表達(dá)的作用及其機(jī)制進(jìn)行了研究。結(jié)果表明,在細(xì)胞培養(yǎng)基中添加TGF-β,可迅速地促進(jìn)ATDC5細(xì)胞中蛋白聚糖的表達(dá)。分子機(jī)制研究發(fā)現(xiàn),無論處于增殖期還是分化期,TGF-β對蛋白聚糖的誘導(dǎo)作用均由ERK1/2和p38 MAPK信號通路所介導(dǎo)。Han等[27-28]對增殖期ATDC5細(xì)胞給予TGF-β1誘導(dǎo),培養(yǎng)12 d后,蛋白聚糖和Collagen typeⅡ的表達(dá)均顯著上調(diào),并具有時間、依賴性。在ATDC5細(xì)胞中,TGF-β1可以調(diào)控SRp40的表達(dá)從而促進(jìn)纖維蛋白表達(dá),纖維蛋白通過RGDS多肽調(diào)控蛋白聚糖和多功能蛋白聚糖之間的平衡[29]。
2.2骨形態(tài)發(fā)生蛋白(BMPs) BMPs屬于TGF-β超家族,是一類具有促軟骨形成作用的內(nèi)源性蛋白。處于不同分化階段的ATDC5細(xì)胞將表達(dá)不同類型的內(nèi)源性BMPs。其中,BMP-2在軟骨細(xì)胞分化各個階段均可以表達(dá);BMP-6在軟骨小結(jié)形成階段表達(dá)上調(diào);BMP-7在細(xì)胞鈣化階段才可以被檢測到[30]。
作為誘導(dǎo)成骨細(xì)胞分化重要的細(xì)胞外信號分子之一,BMP-2是軟骨形成過程中間充質(zhì)細(xì)胞分化所必需的調(diào)節(jié)因子,其發(fā)揮作用主要涉及到兩條信號通路:BMP-2/Smads/Runx2/Osterix信號通路和BMP-2/Smads/Msx2/Osteri信號通路[31]。Shukunami等[32]研究發(fā)現(xiàn),BMP-2上調(diào)Collagen typeⅩ和ALP基因表達(dá)同時下調(diào)Collagen typeⅡ基因的表達(dá),從而促進(jìn)ATDC5細(xì)胞分化為肥大軟骨細(xì)胞。體外實驗發(fā)現(xiàn),BMP-7可以促進(jìn)軟骨細(xì)胞外基質(zhì)合成進(jìn)而促進(jìn)軟骨細(xì)胞早期分化[33-34]。Caron等[35]將BMP-7與BMP-2以微克級濃度誘導(dǎo)處于分化期ATDC5細(xì)胞,分析BMP-7與BMP-2對ATDC5細(xì)胞差異性作用。實驗結(jié)果顯示,BMP-2可以促進(jìn)ATDC5細(xì)胞Collagen typeⅩ、ALP、Runx2和MMP-13等軟骨細(xì)胞肥大化特征性產(chǎn)物的表達(dá),而BMP-7促進(jìn)軟骨細(xì)胞分化特征性基因Aggrecan、Collagen typeⅡ和Sox9的表達(dá)而抑制礦化產(chǎn)物的表達(dá)。由此表明,BMP-2是肥大軟骨細(xì)胞的誘導(dǎo)因子,而BMP-7是增殖性軟骨細(xì)胞的誘導(dǎo)因子。
2.3Sox9Sox9作為一個重要轉(zhuǎn)錄因子,在軟骨細(xì)胞早期分化中扮演著極其重要的角色。首先,Sox9與軟骨細(xì)胞特異增強(qiáng)子Col2α1結(jié)合從而直接調(diào)控Collagen typeⅡ表達(dá)[36];其次,L-Sox5、Sox6與Sox9三者能夠形成蛋白復(fù)合物,相互協(xié)同作用于Col2α1增強(qiáng)子序列從而促進(jìn)Collagen typeⅡ的表達(dá)。Sox9也可以通過結(jié)合于PTHrP基因的啟動子區(qū)增加PTHrP基因啟動子活性,進(jìn)而促進(jìn)軟骨細(xì)胞增殖和分化[37]。此外,Wnt/β-catenin和TGF-β/Smad信號通路通過調(diào)控Sox9從而參與到軟骨細(xì)胞早期分化過程中[38]。
在ATDC5細(xì)胞中,存在著一個負(fù)責(zé)調(diào)控Sox9基因表達(dá)的含有30個堿基對的增強(qiáng)子。Ushita等[39]研究發(fā)現(xiàn)NF-κB RelA可以促進(jìn)ATDC5細(xì)胞表達(dá)Collagen typeⅡ,其作用機(jī)制為NF-κB RelA靶向結(jié)合Sox9增強(qiáng)子,調(diào)控Col2a1基因從而促進(jìn)軟骨基質(zhì)Collagen typeⅡ的表達(dá)。低密度脂蛋白受體相關(guān)蛋白(LRP4)是一種Wnt信號通路抑制劑。Asai等[40]對LRP4在ATDC5細(xì)胞分化過程中的作用進(jìn)行了相關(guān)研究,結(jié)果表明LRP4通過阻斷Wnt/β-catenin信號通路而增強(qiáng)Sox9基因表達(dá)而促進(jìn)軟骨基質(zhì)Collagen typeⅡ和Aggrecan的表達(dá),促進(jìn)ATDC5細(xì)胞早期分化。
2.4Runx2作為軟骨細(xì)胞成熟的調(diào)控中心,Runx2已經(jīng)成為目前研究的熱點。Runx2是軟骨形成過程中沉積階段的特征性產(chǎn)物,在前肥大軟骨細(xì)胞和肥大軟骨細(xì)胞中表達(dá)量顯著上升,而在增生性軟骨細(xì)胞中,其表達(dá)量明顯下降[41]。在ATDC5細(xì)胞中,Runx2的表達(dá)量在其肥大化階段、增殖與分化階段顯著增加。Runx2可以通過促進(jìn)Collagen typeⅩ表達(dá)來加速ATDC5細(xì)胞向肥大軟骨細(xì)胞分化[42]。Runx2在ATDC5細(xì)胞成熟過程中發(fā)揮著重要的作用。利用siRNA技術(shù)干擾ATDC5細(xì)胞Runx2的表達(dá),發(fā)現(xiàn)肥大化的ATDC5細(xì)胞成骨特征性產(chǎn)物的表達(dá)降低,減緩軟骨細(xì)胞成熟進(jìn)程[43]。
3.1無機(jī)磷酸鹽在軟骨形成過程中,無機(jī)磷酸鹽可以加速增殖性軟骨細(xì)胞向肥大性軟骨細(xì)胞分化,促進(jìn)軟骨細(xì)胞的成熟以及細(xì)胞外基質(zhì)礦化進(jìn)程。Magne等[44]利用 CaCl2和 NaH2PO4/Na2HPO4調(diào)節(jié)ATDC5細(xì)胞培養(yǎng)基中無機(jī)磷、鈣的濃度,觀察細(xì)胞成熟和礦化情況。研究表明,無機(jī)磷酸鹽可以增加ATDC5細(xì)胞Collagen type X的表達(dá),誘導(dǎo)軟骨細(xì)胞發(fā)生礦化。此外,無機(jī)磷酸鹽也可以通過降低Bcl-2/Bax比值、DNA片段化和激活Caspase-3從而誘導(dǎo)ATDC5細(xì)胞凋亡。
3.2維生素C維生素C在骨與軟骨發(fā)育過程中發(fā)揮著至關(guān)重要的作用。對于許多間充質(zhì)來源的細(xì)胞,如脂肪細(xì)胞、成骨細(xì)胞、成肌細(xì)胞和軟骨細(xì)胞,維生素C是一種必要的誘導(dǎo)分化因子[45]。維生素C缺乏將導(dǎo)致軟骨細(xì)胞增殖緩慢、軟骨基質(zhì)合成降低以及成骨細(xì)胞數(shù)量減少。目前,很多研究工作都在ATDC5細(xì)胞培養(yǎng)基中加入維生素C,其目的在于促進(jìn)ATDC5細(xì)胞增殖和分化,從而縮短實驗周期[46-47]。在細(xì)胞培養(yǎng)基中加入高劑量的維生素C,可使ATDC5細(xì)胞軟骨基質(zhì)Aggrecan、Collagen typeⅡ和Collagen typeⅩ的表達(dá)顯著地增加,軟骨細(xì)胞增殖與分化階段的時間由21 d縮短為7 d,同時軟骨肥大分化階段也顯著地得到增強(qiáng)[48]。
在軟骨形成過程中,軟骨細(xì)胞一般需要經(jīng)歷3個不同分化階段:前軟骨細(xì)胞、增殖性軟骨細(xì)胞和肥大性軟骨細(xì)胞。在誘導(dǎo)分化因子作用下,ATDC5細(xì)胞展現(xiàn)出了分化為不同特征性軟骨細(xì)胞的潛力。在生長激素、IGF-1、骨保護(hù)素、TGF-β、BMP-7和Sox9等調(diào)節(jié)因子的作用下,ATDC5細(xì)胞趨向分化為增殖性軟骨細(xì)胞,分化早期階段特征性產(chǎn)物表達(dá)升高,其增殖與分化過程得以加快。在甲狀腺素、雌激素、BMP-2、Runx2、無極磷酸鹽等調(diào)節(jié)因子的作用下,ATDC5細(xì)胞趨向分化為肥大化軟骨細(xì)胞,進(jìn)而成熟分化為成骨細(xì)胞,分化晚期階段特征性產(chǎn)物表達(dá)升高,其礦化與成骨的過程得以加速。
綜上所述,ATDC5細(xì)胞可作為一個體外細(xì)胞藥理學(xué)模型,反映軟骨形成中軟骨細(xì)胞增殖、分化與礦化的完整過程,用以篩選具有促軟骨分化發(fā)育作用的中藥方劑或中藥的活性成分,便于揭示補腎中藥在軟骨細(xì)胞增殖、分化以及礦化各個階段調(diào)控作用的分子機(jī)制。
[1]張榮華,歐陽菁.腎主骨生髓理論與骨髓間充質(zhì)干細(xì)胞骨向分化[J].中醫(yī)雜志,2006,47(10):730-732.
[2]郭婕,張前德.補腎中藥對關(guān)節(jié)軟骨的保護(hù)作用機(jī)制研究進(jìn)展[J].中華中醫(yī)藥學(xué)刊,2010,28(12):2515-2518.
[3]賀道遠(yuǎn),曾凡星.生長激素/胰島素樣生長因子Ⅰ軸和運動[J].中國臨床康復(fù),2006,10(16):153-155.
[4]王守豐,邱勇.軟骨內(nèi)成骨的調(diào)控[J].中華外科雜志,2006,44(16):1147-1149.
[5] Koike M,Yamanaka Y,Inoue Metal,et al.Insulin-like growth factor-1 rescues the mutated FGF receptor 3(G380R)expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK[J].Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,2003,18(11):2043-2051.
[6]Argetsinger LS,Carter-Su C.Mechanism of signaling by growth hormone receptor[J].Physiological Reviews,1996,76(4):1089-1107.
[7] Gevers EF,Hannah MJ,Waters MJ,et al.Regulation of rapid signal transducer and activator of transcription-5 phosphorylation in the resting cells of the growth plate and intheliverbygrowthhormoneandfeeding[J]. Endocrinology,2009,150(8):3627-3636.
[8]Bassett JD,Williams GR.The molecular actions of thyroid hormone in bone[J].Trends in Endocrinology&Metabolism,2003,14(8):356-364.
[9]Harvey CB,O'Shea PJ,Scott AJ,et al.Molecular mechanisms of thyroid hormone effects on bone growth and function[J]. Molecular Genetics and Metabolism,2002,75(1):17-30.
[10]Miura M,Tanaka K,Komatsu Y,et al.Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate[J]. Journal of Bone and Mineral Research,2002,17(3):443-454.
[11]Siebler T,Robson H,Shalet SM,et al.Dexamethasone inhibits and thyroid hormone promotes differentiation of mouse chondrogenic ATDC5 cells[J].Bone,2002,31(4): 457-464.
[12]Bassett JH,Swinhoe R,Chassande O,et al.Thyroid hormone regulates heparan sulfate proteoglycan expression in the growth plate[J].Endocrinology,2006,147(1):295-305.
[13]Barnard JC,Williams AJ,Rabier B,et al.Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis[J].Endocrinology,2005,146(12):5568-5580.
[14]Pavao M,Traish AM.Estrogen receptor antibodies:specificity and utility in detection,localization and analyses of estrogen receptor alpha and beta[J].Steroids,2001,66(1):1-16.
[15]Zheng P,Ma H,Su Z,et al.Estrogen stimulates cellproliferation and regulates the expression of proteins in C-type natriuretic peptide signaling pathway during chondrogenesis in ATDC5 cells[J].Zhonghua Chinese Journal of Pediatrics,2014,52(8):596-601.
[16]Wang SJ,Li XF,Jiang LS,et al.Estrogen stimulates leptin receptor expression in ATDC5 cells via the estrogen receptor and extracellular signal-regulated kinase pathways[J]. Journal of Endocrinology,2012,213(2):163-172.
[17]Wang SJ,Li XF,Jiang LS,et al.Leptin regulates estrogen receptor gene expression in ATDC5 cells through the extracellular signal regulated kinase signaling pathway[J]. Journal of Cellular Biochemistry,2012,113(4):1323-1332.
[18]馬世波,孫立婷,韓璐,等.骨保護(hù)素[J].中國獸醫(yī)雜志,2007,43(2):71-72.
[19]Kobayashi Y,Takahashi N.Genomic approaches to bone and joint diseases.Mutations of RANK,OPG and RANKL genes found in humans[J].Clinical Calcium,2008,18(2):202-209.
[20]Galal N,El Beialy W,Deyama Y,et al.Effect of estrogen on bone resorption and inflammation in the temporomandibular joint cellular elements[J].International Journal of Molecular Medicine,2008,21(6):785-790.
[21]李鑫,楊蕊,臧強(qiáng),等.糖皮質(zhì)激素的藥理作用機(jī)制研究進(jìn)展[J].國際藥學(xué)研究雜志,2009,36(1):27-30.
[22]Fujita T,F(xiàn)ukuyama R,Enomoto H,et al.Dexamethasone inhibits insulin-induced chondrogenesis of ATDC5 cells by preventing PI3K-Akt signaling and DNA binding of Runx2[J]. Journal of Cellular Biochemistry,2004,93(2):374-383.
[23]Zhao Y,Zuo Y,Huo H,et al.Dexamethasone reduces ATDC5 chondrocyte cell viability by inducing autophagy[J]. Molecular Medicine Reports,2014,9(3):923-927.
[24]Yao Y,Zhai Z,Wang Y.Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells[J].BioMed Research International,2014,2014:569.
[25]Massagué J.TGFβ signalling in context[J].Nature reviews Molecular Cell Biology,2012,13(10):616-630.
[26]Watanabe H,de Caestecker MP,Yamada Y.Transcriptional cross-talk between Smad,ERK1/2,and p38 mitogenactivated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenicATDC5cells[J].TheJournalofBiologicalChemistry,2001,276(17):14466-14473.
[27]Han F,Adams CS,Tao Z,et al.Transforming growth factorbeta1(TGF-beta1)regulates ATDC5 chondrogenic differentiation and fibronectin isoform expression[J].Journal of Cellular Biochemistry,2005,95(4):750-762.
[28]Han F,Gilbert JR,Harrison G,et al.Transforming growth factor-beta1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation[J].Experimental Cell Research,2007,313(8):1518-1532.
[29]Kutsuna T,Inoue H,Takeda H,et al.Fibronectin regulates proteoglycan production balance in transforming growth factor-beta1-induced chondrogenesis[J].International Journal of Molecular Medicine,2011,28(5):829-834.
[30]Akiyama H,Shukunami C,Nakamura T,et al.Differential expressions of BMP family genes during chondrogenic differentiation of mouse ATDC5 cells[J].Cell Structure and Function,2000,25(3):195-204.
[31]王霖霞,李玉坤.BMP-2信號通路與成骨細(xì)胞分化[J].國際骨科學(xué)雜志,2009,30(2):132-133.
[32]Shukunami C,Ohta Y,Sakuda M,et al.Sequential progressionofthedifferentiationprogrambybonemorphogenetic protein-2 in chondrogenic cell line ATDC5[J].Experimental Cell Research,1998,241(1):1-11.
[33]Nishihara A,F(xiàn)ujii M,Sampath TK,et al.Bone morphogenetic protein signaling in articular chondrocyte differentiation[J].Biochemical and Biophysical Research Communications,2003,301(2):617-622.
[34]Chubinskaya S,Hurtig M,Rueger DC.OP-1/BMP-7 in cartilage repair[J].International Orthopaedics,2007,31(6): 773-781.
[35]Caron MM,Emans PJ,Cremers A,et al.Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7[J]. Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society,2013,21(4):604-613.
[36]Bi W,Deng JM,Zhang Z,et al.Sox9 is required for cartilage formation[J].Nature Genetics,1999,22(1):85-89.
[37]Huang W,Chung UI,Kronenberg HM,et al.The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(1):160-165.
[38]Topol L,Chen W,Song H,et al.Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus[J]. The Journal of biological chemistry,2009,284(5):3323-3333.
[39]Ushita M,Saito T,Ikeda T,et al.Transcriptional induction ofSOX9byNF-kappaBfamilymemberRelAin chondrogenic Cells[J].Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society,2009,17(8):1065-1075.
[40]Asai N,Ohkawara B,Ito M,et al.LRP4 induces extracellu-lar matrix productions and facilitates chondrocyte differentiation[J].Biochemical and Biophysical Research Communications,2014,451(2):302-307.
[41]Komori T.Runx2,a multifunctional transcription factor in skeletal development[J].Journal of Cellular Biochemistry,2002,87(1):1-8.
[42]Zheng Q,Zhou G,Morello R,et al.Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo[J].The Journal of Cell Biology,2003,162(5):833-842.
[43]Zhang Y,Yang TL,Li X,et al.Functional analyses reveal the essential role of SOX6 and RUNX2 in the communication of chondrocyte and osteoblast[J].Osteoporosis International,2015,26(2):553-561.
[44]Magne D,Bluteau G,F(xiàn)aucheux C,et al.Phosphate Is a Specific Signal for ATDC5 Chondrocyte Maturation and Apoptosis-Associated Mineralization:Possible Implication of Apoptosis in the Regulation of Endochondral Ossification[J]. Journal of Bone and Mineral Research,2003,18(8):1430-1442.
[45]Temu TM,Wu KY,Gruppuso PA,et al.The mechanism of ascorbic acid-induced differentiation of ATDC5 chondrogenic cells[J].American Journal of Physiology-Endocrinology and Metabolism,2010,299(2):E325-E334.
[46]Shukunami C,Ishizeki K,Atsumi T,et al.Cellular Hypertrophy and Calcification of Embryonal Carcinoma-Derived Chondrogenic Cell Line ATDC5 In Vitro[J].Journal of Bone and Mineral Research,1997,12(8):1174-1188.
[47]Altaf F,Hering T,Kazmi N,et al.Ascorbate-enhanced chondrogenesis of ATDC5 cells[J].Eur Cell Mater,2006,12: 64-69.
[48]Denison TA,Koch CF,Shapiro IM,et al.Inorganic phosphate modulates responsiveness to 24,25(OH)2D3in chondrogenic ATDC5 cells[J].Journal of Cellular Biochemistry,2009,107(1):155-162.
ATDC5:A well-characterized cell line of reflecting a complete chondrogenesis progress
FENG Qi-shuai,GAO Li-na,CUI Yuan-lu
(Research Center of Traditional Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 300193,China)
The malnutrition of bone and muscle is caused by the failure of liver and kidney in traditional Chinese medicine.Some effective components,isolated from nourishing kidney drugs have the widely pharmacological effects,which is similar to cytokines or hormones that are used for osteoarthritis treatment,tissue engineering and stem cell engineering.ATDC5 cell,derived from mouse teratocarcinoma AT805,is characterized as a chondrogenic cell line which goes through a sequential process analogy to chondrogenesis.Under the effects of the differentiation factors,such as cytokines,hormones,inorganic phosphate,etc,ATDC5 cells proliferate,gather and differentiate into proliferating chondrocytes.And then mineralized matrix is produced and proliferating chondrocytes subsequently differentiate into hypertrophic chondrocytes and are gradually replaced by bone.From system regulation factors,local regulation factors and cell culture conditions,this review will reveal the molecular mechanism of proliferation,differentiation and mineralization of ATDC5 cell,which provides the theory basis for cartilage development researches and high-throughput screening of effective components of Chinese traditional medicine.
cell biology;nourishing kidney drugs;ATDC5 cell;chondrogenesis;chondrocytes
R285.5
A
1673-9043(2015)06-0379-06
10.11656/j.issn.1673-9043.2015.12.16
國家自然科學(xué)基金項目(81473542);教育部高等學(xué)校博士學(xué)科點專項科研基金(20131210110008)。
馮其帥(1990-),男,碩士研究生,從事中藥藥理學(xué)研究。
崔元璐,E-mail:cuily@tju.edu.cn。
(2015-08-19)