• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    2015-02-10 02:45:40LevanJaparidze

    Levan Japaridze

    G.Tsulukidze Mining Institute,E.Mindeli Street,Tbilisi,0186,Georgia

    Full length article

    Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Levan Japaridze*

    G.Tsulukidze Mining Institute,E.Mindeli Street,Tbilisi,0186,Georgia

    A R T I C L E I N F O

    Article history:

    Received 17 December 2014

    Received in revised form

    21 June 2015

    Accepted 24 June 2015

    Available online 12 August 2015

    Brazilian test method Analytical solution Elliptical contact stresses Curved bearing plates Tensile strength

    In this study,the interaction between cylindricalspecimen made ofhomogeneous,isotropic,and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test.It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses.The frictional contact stresses between the specimen and platens are neglected.The analyticalsolution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen.The contact width,corresponding loading angle(2θ0),and ellipticalstresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen.The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili’s method.In this method,the displacements and stresses are represented in terms of two analytical functions of a complex variable.In the main approaches,the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account.Numericalexamples are solved using MATLAB to demonstrate the in fl uence of deformability,curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter.Derived equations also allow calculating the modulus of elasticity,total deformation modulus and creep parameters of the specimen materialbased on the experimentaldata of radial contraction of the specimen.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    The indirect tensile testing method,known as the Brazilian test, provides an alternative to direct tensile testing of cylindrical rock specimens and other brittle materials clamped between two loading fl ats or arcs.The International Society for Rock Mechanics (ISRM)(1978)of fi cially suggested the Brazilian test as a method for determining the tensile strength of rock materials.The standard test method can be followed according to ASTM D3967-08(2008). The European standard for testing the tensile strength of concrete specimens was approved by European Committee for Standardization(CEN)on 18 February 2000(EN 12390-6,2000).The history of development and applications of the Brazilian test in rock mechanics has been reviewed and investigated most recently by numerous scientists,e.g.Daemen et al.(2006),Ye et al.(2009),and Li and Wong(2013).

    Carneiro and Barcellos(1953),the pioneers of the Brazilian test method,used Hertz(1895)analysis of the action of concentrated compressive forces P in diametrically opposite points of a cylindrical disk with radius R1and length L(Fig.1a)as the theoretical basis of the method.According to this analytical model,the principal tensile stressesσxalong the vertical diameter are uniformly distributed and given by

    The normal principal compressive stressσyis given by

    where r is the distance from the origin,and-R1<r<R1.In the center(r=0),σy=-3P/(πR1L),and it is in fi nite on the periphery points(r=±R1)of the disk.

    The uniform distribution of tensile stresses(Eq.(1))as well as the preparation of cylindrical specimens from core material with ease stimulated the wide application of the Brazilian test method as standard for brittle materials.Such an approach can have an adequate accuracy and the error is smallcompared to direct tensile testing,when the experimental installation provides the action ofalmost concentrated(abstract)forcesP(Fig.1a).In practice,this model could be approximated to reality in case by using sharp wedges or small-diameter steelrods(Fig.1b)between the loading plates and the specimen.But in such a case the line load creates extremely high contact stresses,causing different modes of failure if destruction of the specimen starts at the contact points due to highly intensive shear stresses,rather than in the center because of tension.Therefore,it is assumed that a wider contact strip can reduce these problems signi fi cantly and that an arc of contact smaller than 15°causes no more than 2%error in the principal tensile stress while reducing greatly the incidence of premature cracking(ASTM D3967-08,2008).

    Fig.1.Typicalschemes of the Brazilian test:(a),(b)diametricalcompression over symmetrical points,(c)test with thin(e.g.wood,cardboard)bearing pads or strips,(d)test with fl attened specimen,and(e)curved jaws.

    When the specimen is placed directly between fl at platens,or between indenters with nonzero radius of curvature of contacting surfaces,the application of Eq.(1)can cause a certain error,the magnitude of which should be estimated.

    Anumber ofscholars have paid attention to this problemshortly after the popularization of the Brazilian test method,e.g.Hondros (1959),Jaeger and Cook(1964),Wijk(1978),Amadei(1983), Amadei et al.(1983),Chen et al.(1998),Lavrov and Vervoort (2002),Ye et al.(2009).Marion and Johnstone(1977),Procopio et al.(2003),Markides et al.(2010,2011),Markides and Kourkoulis(2012),and Li and Wong(2013)suggested different analytical and numerical solutions and improved schemes,generalized for different kinds of anisotropy and homogeneity of testing rocks,concretes,glass,and many other brittle and not quite brittle materials(e.g.nuclear wastes(ASTM C1144-89,1989),asphalt concrete).

    Jaeger and Cook(1964)and Jaeger et al.(2007)have given an analytical approach for estimating the stress-strain state of the cylindrical specimen of elastic,isotropic rock.The distribution of tractions(Fig.2)on the specimen surfaces corresponding to some central loading angle(2θ0)is uniform(Fig.1b).The radial,tangential normal and shear stress components can be expressed respectively in the polar coordinates as

    Along the x axis,whereθ=0,τrθ(θ=0)=0,-a≤r≤a,andρ=r/ a,the series in Eqs.(3)and(4)can be summed in the closed form (Hondros,1959)to give

    Amadei(1983)and Chen et al.(1998)developed an analytical approach and computer program to determine the stress at any arbitrary point in the disc made of a transversely isotropic medium under diametrical loading uniformly distributed over a strip of the same contact angle(2θ0=15°).It should be noted that such uniform distribution of contact stresses may be most characteristic of pretreated fl attened cylindricalspecimens(Fig.1d)(e.g.Wang et al., 2004;Dave et al.,2011).

    At present,most researchers usually assume a uniform distribution of contact stresses when using Brazilian tests.The uniform distribution of contact stresses seems highly unlikely.But many authors,e.g.Fairhurst(1964),Colback(1967),Vardar and Finnie (1975),Dan et al.(2013),have adopted this assumption.They argued that the details ofthe distribution ofcontact stresses should not be particularly relevant,given that the prime interest focuses on the characteristics of the rock failure at the center ofthe disk,i.e. far away from the applied(boundary)stresses.

    As is noticed by Daemen et al.(2006),the distribution ofcontact stresses between the specimen and loading platens in a Brazilian test is a typical contact problem,which remains dif fi cult to be modeled numerically(e.g.Hills et al.,1993).Since it is impossible for the real test conditions to meet all assumptions made for the theoretical development,they tried to determine the distribution of contact stresses experimentally using the pressure fi lm of SPI Corporation.

    Fig.2.(a)Diametrical compression over two symmetrical arcs of a cylinder with radius a.(b)Stresses along the loaded diameter,for the case of 2θ0=15o,normalized against P (Jaeger et al.,2007).

    Similar opinions are stated by Ye et al.(2009),who remarked that there is no way to know exactly the speci fi c variable in the processing of loading of the contact angle 2θ0of the stress distribution.The value of 2θ0varies despite using the same concave loading plates and under the same loading,due to the type of rock. These factors make it very dif fi cult to calculate the contact angle. Accordingly,it is also very dif fi cult to calculate exactly the stress fi eld in the disc subjected to distributed loads over an arc when the disc is in the elastic stage.

    There is recent work by Kourkoulis et al.(2012,2013),Markides and Kourkoulis(2012)and others.They conducted intensive research on the problems of stress-deformed state of cylindrical specimens under parabolic contact loading employing the complex potentials method(Muskhelishvili,1963).The author also paid attention to this problem,and some problems of stress-deformed state of cylindrical specimens under elliptic(parabolic)contact loading were investigated using the complex potentials method (Japaridze,1971,1972).

    Thus,the problem of the shape of the distribution of normaland tangential contact tractions for the standardized indirect tensile splitting(“Brazilian”)test,and its in fl uence on the stress concentration,tensile strength and other mechanical parameters of the rocks and other hard materials still remain topical.

    The goal of this paper is to present some new insights into the Brazilian test.It provides a solution of a nonlinear interaction between the fl at and curved loading platens and cylindrical specimens in the Brazilian test.The contact width,corresponding contact angle and elliptical contact stresses obtained from the solution of the contact problems are used as boundary conditions for the cylindricalspecimen.The problem ofthe theory of elasticity for a cylindrical specimen is solved using the complex potentials method developed by Muskhelishvili(1963).

    Numerical examples are shown to determine the in fl uence of deformability and curvatures of specimen and bearing platens on the normal contact stresses,tensile and compressive stress concentration factors across the loaded diameter.

    Suggested equations also allow calculating the modulus of elasticity,the totaldeformation modulus and the creep parameters of the specimen materialon the basis ofexperimentaldata of radial contraction of the specimen.

    2.Theoretical background

    A cylindrical specimen with radius R1and length L,and the loading jaws with radius of the contact faces R2compressed(Fig.3) by forces P,touch each other on surfaces with width 2a.

    According to the developments of the contact problem of the theory of elasticity(Hertz,1895;Shtaerman,1949;Muskhelishvili, 1963;Timoshenko and Goodier,1970),the half width of the contact surface,a,is given by

    where v1,v2and E1,E2are the Poisson’s ratios and moduli of elasticity of specimen and loading jaws,respectively;are the second derivatives of the functions describing the surfaces of a compressible bodies at the point of initialcontact.For the case of cylindrical surfaces,this equation takes the following form:

    Consequently,the half loading angle can be written as

    Fig.3.Compression of a cylindrical specimen made of homogeneous,isotropic and elastic material between two elastic jaws.pmaxis the maximum contact stress,z1and z1are the boundary points of the contact surface.

    Eq.(9)relates the case of plane strain that would occur if L>R1. When L<R1,the thin cylindrical specimen will be closer to the“plane stress state”and Eq.(9)will be more correct if v1=v2=0 is used.

    When considering the joint deformation of the contacting bodies,the components of displacements of their surface points may be fully identical(“no slip”)and partially identical(“full slip”) in relation to limiting frictionaland/or cohesion contact stresses.In the fi rst case,there will exist normal and tangential contact stresses,which may be interesting as an example in the rocksupport interaction problems.In the second case,when friction and cohesive forces could not provide fully identical joint deformation, tangential contact stresses may be ignored.

    Regarding the Brazilian test,the in fl uence ofdry friction stresses on disc-jaw contact surfaces is doubtful,because ofseveralreasons, such as smallcontact width and possibility of the relaxation of the surface friction stresses.At last,the use of various types of soft loading pads(ASTM C1144-89,1989),bearing strips(ASTM C496/ C496M-11,2004)and others,practically exclude the appearance of signi fi cant tangential surface stresses.Thus the consideration of tangentialcontact stresses at the disc-jaw interaction for the more exact boundary conditions will cause an unnecessary complication of the analytical study of the Brazilian test.

    If the tangential stresses are neglected(Shtaerman,1949),the elliptic function ofthe normalcontactstresses in polar coordinates is

    Eq.(11)does represent an ellipse with smallsemi-axis as a halfwidth of contact surface(Eq.(9))and large semi-axis 2P/(πaL) presenting the maximum contact stress pmaxat the pointsθ=π/2 andθ=3π/2,respectively.

    Using series expansion,Eq.(11)with satisfactory accuracy for technical purposes can be expressed in the complex formulation as follows:

    The following notations will be used:

    The points z and z1on the planeζ=z/r correspond to the points σ=e iθandσ1=ei(π/2-θ1).Consequently,the boundary conditions can be written as

    Corresponding analytical functions of a complex variable,Φ(ζ) andΨ(ζ),which are holomorphic inside the contourγof the circle for pointsζ=rσ,are given by

    Returning to the previous variable z=ζR1from these equations yields:

    The combination of stress components at any point of the disk can be found by substituting these functions into the well-known equations of Muskhelishvili(1963):

    The equations of the internal stresses at points on the y axis can be written in the analog form as Eqs.(1)and(2):

    where K and C are the normalized concentration factors for tensile and compressive stresses,respectively(Chen et al.,1998),and can be expressed as

    In the particular theoretical case of absolutely rigid platens and disk(E1=E2→+∞),or sharp indenters(R2=0),according to Eqs. (3)-(5),a→0 and Eqs.(24)and(25)converge to the Hertz equations,i.e.Eqs.(1)and(2).

    The components of displacements at any point of the cylindrical specimen may be determined by inserting the integrals of analytical functions(Eqs.(20)and(21))into Eq.(24)and separating the real and imaginary parts of the resulting expression.

    It is also interesting to determine an explicit measure ofthe rock stiffness,e.g.in terms of its Young’s modulus,on the basis of the simplest possible indirect tensile testing(e.g.Chen et al.,1998;Ye et al.,2009).If such a determination could be made reliably and consistently,it would provide an idealtoolto investigate the spatial variability of the rock stiffness,because it requires far less time for sampling,specimen preparation,testing,and data analysis than compressive testing(Daemen et al.,2006).

    The radial and tangential displacement components u and v at any point of the disk can be found using the analytic complex variable functions,Φ(z)andΨ(z)by the well-known equations of Muskhelishvili(1963):

    After simpli fi cations of the bulky functions obtained by the use of boundary condition(Eq.(31)),we can derive an equation for determination of the relative contraction of a specimen radius:

    Consequently,after substitution of the half width of contact surface(Eq.(9))and the experimentally de fi ned value of contraction ofa specimen radius,the modulus ofelasticity of the specimen material can be obtained from Eq.(33):

    Using these equations,it is possible to determine the modulus of elasticity of the material if the half width of the contact surface,a, and the radial contraction of a specimen,ΔR1,are experimentally measured up to 50%-80%of ultimate magnitude of the applied force,P,so as to decrease the possibility of the development of plastic deformations in the specimen.Hence,if the contraction of the specimen radius develops with time,t at constant loading,it is possible to determineΔR1(t)using Eq.(35)and coef fi cientsγandδ, which are the parameters of creep(Rabotnov,1966):

    3.Application of proposed functions to practical problems

    In this section,an analysis of equations derived above will be conducted in order to show how the practically existing elastic and geometrical parameters of the specimen and curved loading platens in fl uence the width of the contact surface,the maximum of the elliptical contact stresses,the contraction of radius and fi nally, the normalized stress function K,which could be used as the correcting factor for tensile strength of materials calculated from the Hertz equations used now for the Brazilian test method.

    Concrete practicalexamples with differentinitialdata willbe used for analysis ofthe proposed functions ofstress factors.For a start,this study considers the case of compression of a cylindrical specimen with the radius R1=2.5 cm andthe thickness L=2.5 cm,between fl at (R2→+∞)and curved(R2=8 cm)steelplatens.The Young’s modulus and Poisson’s ratio ofthe specimen are 20 GPa and 0.25,respectively, and the load P is 50 kN.We will calculate the normalized Hertz stresses using Eqs.(26)and(27)ofthe principalcompression(K)and tension(C)functions along the compressed diametrical line in parallelusing Hondros’solutions(Eqs.(6)and(7))for 2θ=15°.

    The analysis of these functions can be easily made using the computer program MATLAB.Results of calculations are given graphically in Fig.4.

    Fig.4 shows that the magnitudes of tensile and compressive stresses in the internal part of the diameter of high-modulus specimens and fl at loading platens are close to each other, whereas in the external areas the difference between the magnitudes obtained from Hondros’equations and the proposed analytical solution increases signi fi cantly.This difference is much larger in the external areas as well as in the internal part and even in the center ofthe disk,especially when the curved loading platens are used.This con fi rms the comment in the ISRM suggested methods(Brown,1981)that a criticaldimension of the apparatus is the radius of curvature of the jaws.

    To determine the in fl uence of elastic and geometric parameters on the loading angle and the stress concentration factors K and C acting across the loaded diameter,let cylindrical specimens with radius R1=5 cm,length L=2.5 cm,Young’s modulus E1=500 MPa, 1000 MPa,2500 MPa,5000 MPa,15,000 MPa,and Poisson’s ratio v=0.3 be compressed diametrically by force P=40 kN.

    The specimen is compressed between planar(R2→+∞)steel (E2=200 GPa)platens without pads(Fig.1a).Appropriate values of the half width of contact surface,a,loading angle,2θ0,maximum contact stress,pmax,contraction of radius along the y axis,ΔR1are respectively calculated by Eqs.(9)-(11)and(33),and the stress concentration factors(Eqs.(26)and(27))are given in Table 1.

    Fig.4.Comparison of stress concentration factors K and C along the compressed diameter(-R1≤r≤R)from the developed analytical modeling results and Hondros’solutions for(a)fl at(R2→+∞,E1=20 GPa,2θ=15°)and(b)curved(R2=8 cm, E1=20 GPa)bearing platens.

    Ifthe specimen is compressed between curved(R2=8 cm)steel (E2=200 GPa)platens(Fig.1e),appropriate values of half width of contact surface,a,contact angle,2θ0,maximum ofellipticalcontact stresses,pmax,contraction of radius,ΔR1,calculated by Eqs.(9)-(11) and(33),and the stress concentration factors(Eqs.(26)and(27)) are given in Table 2.

    From Table 2,one can see that in the center of the specimen (r=0)there always acts the tensile normalstress.But the deviation

    Table 1 Numericalresults ofa halfwidth ofcontact surface,a,loading angle,2θ0,maximum contact stresses,pmax,contraction of radius along the y axis,ΔR1,and stress concentration factors K and C in the center(r=0)and on the contour(r=R)ofspecimen for the given values of applied load,P,geometric and elastic parameters of a specimen and planar loading platens(Fig.1a)in function of Young’s modulus E1of a specimen(P=40 kN,R1=5 cm,R2→+∞,v=0.3). ofthe stress concentration function K approaching-1 for the given initial conditions and for the low-modulus specimen reaches 21%. However,this deviation decreases according to the increment of its rigidity and for the specimen of R1=5 cm,L=2.5 cm,P=40 kNand E1=15,000 MPa,the deviation equals only 1%.

    ?

    Table 2 Numericalresults ofa halfwidth ofcontactsurface,a,contact angle,2θ0,maximum contact stresses,pmax,contraction of radius,ΔR1,along the y axis,and stress concentration factors K and C in the center(r=0)and on the contour(r=R)ofspecimen for given values of applied load,P,geometric and elastic parameters ofa specimen and curved loading platens(Fig.1e)in function of Young’s modulus E1ofa specimen (P=40 kN,R1=5 cm,R2=8 cm,L=2.5 cm,v=0.3).

    The in fl uences of variation up to the theoretical limits of Poisson’s ratio of the specimen on the loading angle and stress concentration factors are shown in Table 3.

    The behaviors of the stress concentration factors K and C calculated using Eqs.(26)and(27)in function of distance from the center,r,and Young’s modulus,E1,are shown in Figs.5 and 6.

    Fig.5 illustrates that using Eq.(1)is more reasonable for the rigid materialofa specimen at points close to the center,where the stress concentration factor K approaches-1.The factor K deviates from-1 depending on the distance fromthe center,changes sign at some distance r1,and increases rapidly near the boundary.This value of R1-r1is smaller when the modulus of elasticity of the specimen and the curvature of the bearing platens are larger.Both factors have less in fl uence on the characteristics and magnitudes of the compressive stress and stress concentration factor C,as shown in Fig.6.

    The relative distance r1/R1for the initial data is given in Table 4. In the internal diametrical part of the disk(-r1<r<r1),negative stress,i.e.tensile normal stress,acts,and in the external parts r1<r<R1,positive stress,i.e.compressive stress,acts.

    The normalized vector sum F of the stresses acting on all three parts(Fig.7)of a disk diameter(-R1<r<R1)was obtained from integration by parts of Eq.(24): where Ftensand Fcompare the normalized vector sums of the tensile and compressive stresses,respectively.

    The magnitudes of the normalized vector sum F dependent on Young’s modulus and type of loading platen calculated using MATLAB are also listed in Table 4.The results of speci fi c numericalexamples show that the vector sum ofthe normalstresses acting on the whole disk diameter at the elastic stage are positive,i.e. compressive.This is because,on the two relatively small external parts(r1≤r≤R1)of the diameter,the magnitude of the compressive forces 2Fcompis greater than the sum of the tensile stress Ftenson the internal(-r1<r<r1)diametrical part.

    Table 3 In fl uence of Poisson’s ratio of the specimen on the loading angle and the stress concentration factors(E1=1 GPa,P=40 kN,R1=5 cm,R2=8 cm).

    Fig.5.Dependence of the stress concentration factor K on Young’s modulus,E1,and distance from the center,r,ofa specimen on the y axis for(a)planar(R2→+∞)and(b) curved(R2=-8 cm)platens.

    The action of the high intensity compressive stresses in the externalareas of the diameter may somewhat impede the spreading of the cracks from the centralpart ofa disk due to tensile stresses.At the same time,the developmentofthe oncoming cracks due to shear stresses in the peripheral parts can complete the splitting of disk. These cases have been observed in experiments and are described in numerous publications,more recently by Ye et al.(2009),Li and Wong(2013)and others.Such“tensile-shear”kind of the failure mode willcause a decrease of the indirect tensile test accuracy.

    When the fracture deviates from the center too much due to shear stress effects,for example,in most of the more than a hundred experiments,Daemen et al.(2006)considered other modes of failure as invalid for determination of tensile strength.This should be considered to improve the modes of failure of specimens in the Brazilian test.

    Fig.6.Dependence of the stress concentration factor C on Young’s modulus,E1,and distance from the center,r,of a specimen on the y axis for(a)planar(R2→+∞)and(b) curved(R2=8 cm)platens.

    4.Conclusions

    The analyticalsolutions of the plane stress-strain state problem are developed for the elastic,homogeneous,isotropic cylindrical specimen compressed between jaws of any curvature.The contact width,corresponding contact angle,2θ0,elliptical contact stressesobtained from the solution of contact problems from the theory of elasticity are used as boundary conditions for cylindrical specimens.The problem is solved using the method developed by Muskhelishvili(1963)according to which the stresses and displacements are represented in terms of analytic functions of a complex variable.

    Table 4 The relative distance r1/R1from the center to the zero tensile stress point along the loaded diameter and normalized vector sum F in function of Young’s modulus E1and curvature radius of the loading platens.

    Fig.7.Disc with normalized vector sums Ftensand Fcompof tensile and compressive stresses on the external(1)and internal(2)diametricalparts.

    The resulting relations allow estimating the stress state in the specimens and the tensile strength of the cylindrical specimens of rock,concrete and other brittle materials taking into account the shape and rigidity of the specimen,and stamps and indenters of different curvatures in the Brazilian test method.The derived equations can be used also for determination ofthe modulus ofelasticity or total deformation modulus and the creep parameters of specimens based on the experimentaldata ofcontraction ofspecimen diameter.

    The main solutions takes into account the nonlinear interaction between the loading bearing platens and specimen,curvatures of the jaw surfaces,and elastic parameters of the materials.

    Numerical examples solved using computer program MATLAB are presented(a)to determine the in fl uences of Young’s modulus, Poisson’s ratio and radii of curvatures of specimen and jaws on the loading angle 2θ0of the nonuniform normal contact stresses,and stress concentration factors K and C acting across the loaded diameter,and(b)to illustrate the possibilities of using the obtained equations to compare with the existing analog formulae derived on the basis of the concentrated or uniformly distributed normal stresses on the contact surface of given width or loading angle 2θ0.

    The application of models of concentrated loads and corresponding equation of tensile stresses always gives a greater or smaller overestimation ofthe maximum tensile stress in the center of disk where the initial crack is generated.Consequently,this causes the overestimation of the tensile strength of a specimen in the Brazilian test.Greater overestimation occurs for low-modulus material especially at the curved platens,and smaller overestimation occurs for a rigid,brittle specimen atthe sharp indenters.

    The models with more realistically distributed elliptical contact stresses always give somewhat less tensile stress in the center of the disc,and therefore,the overestimation of tensile strength of a specimen is less than that obtained from the models with a concentrated load.But this difference depends on the rigidity and strength of the specimen material.It is greater for soft materials with low modulus and high strength,and smaller for rigid and brittle specimens with low strength.

    These relationships are demonstrated above in tabular and graphical representations and given in the Appendix.Also the ready-made M-fi le for MATLAB is included,with which one can easily calculate the values of stress concentration factors,the loading angle,etc.for real laboratory test and compare with other predictions of the tensile strength.

    Con fl ict of interest

    The author con fi rms that there are no known con fl icts of interest associated with this publication and there has been no signi fi cant fi nancial support for this work that could have in fl uenced its outcome.

    Acknowledgments

    The author thanks Professor Jaak Daemen for help in the acquaintance with experimental and normative materials,and for review of this paper and valuable comments.Also,the author expresses his gratitude to anonymous reviewers for excellent and valuable comments and suggestions that have helped materially in improving this manuscript.

    Appendix

    This appendix includes calculation examples of tensile strength of the specimens by indirect method.Fig.A1 shows the graphical representations of the stress concentration factorKfor Tests 1 and 2.

    Test 1.The specimen of high rigidity in the fl at loading platens. Parameters of Test 1

    ·Radius of cylindrical specimen,R1=3 cm

    ·Radius of loading platens,R2→+∞

    ·Thickness of the specimen,L=1.5 cm

    ·Peak load,P=20 kN

    ·Young’s modulus of the specimen,E1=20 GPa

    ·Young’s modulus of the platens,E2=200 GPa

    ·Poisson’s ratio of the specimen,v1=0.16

    ·Poisson’s ratio of the platens,v2=0.3

    Test 2.The specimen of low rigidity in the curved loading platens. Parameters of Test 2

    ·Radius of cylindrical specimen,R1=3 cm

    ·Radius of curved loading platens,R2=4.5 cm

    ·Thickness of the specimen,L=1.5 cm

    ·Peak load,P=20 kN

    ·Young’s modulus of the specimen,E1=2 GPa

    ·Young’s modulus of the platens,E2=200 GPa

    ·Poisson’s ratio of the specimen,v1=0.16

    ·Poisson’s ratio of the platens,v2=0.3

    MATLAB code for Test 2

    The code is the same as that for Test 1,with the replacement of the value of E1=2*10^4 and R2=4.5.

    Results

    When r=0.01,0.02,0.03,…,2.98,2.99,3 cm,we have:

    k=-0.9164,-0.9163,-0.9163,…,6.2465,6.3843,6.5239; a=0.867 cm;2θ=33.5°;σx(r=0)=KP/(πR1L)=-0.916× 141.47=-129.6 kg/cm2.

    Fig.A1.Graphicalrepresentations ofthe stress concentration factor K for(a)Test1 and (b)Test 2.

    Amadei B,Rogers JD,Goodman RE.Elastic constant and tensile strength of the anisotropic rocks.In:Proceedings of the 5th congress of international society for rock mechanics,Melbourne.Rotterdam,Netherlands:A.A.Balkema;1983. p.189-96.

    Amadei B.Rock anisotropy and the theory of stress measurements.New York,USA: Springer;1983.

    ASTM C1144-89.Standard test method for splitting tensile strength of brittle nuclear waste forms.West Conshohocken,PA,USA:American Society for Testing and Materials(ASTM);1989.

    ASTM C496/C496M-11.Standard test method for splitting tensile strength of cylindrical concrete specimens.West Conshohocken,PA,USA:American Society for Testing and Materials(ASTM);2004.

    ASTM D3967-08.Standard test method for splitting tensile strength of intact rock core specimens.West Conshohocken,PA,USA:ASTM;2008.

    Brown ET.Rock characterization testing and monitoring:ISRM suggested methods. Oxford,UK:Pergamon Press;1981.

    Carneiro F,Barcellos A.Internationalassociation of testing and research laboratories for materials and structures.RILEM Bulletin 1953;13:99-125.

    Chen CS,Pan E,Amadei B.Determination of deformability and tensile strength of anisotropic rock using Brazilian tests.International Journal of Rock Mechanics and Mining Sciences 1998;35(1):43-61.

    Colback PS.An analysis of brittle fracture initiation and propagation in the Brazilian test.In:Proceedings of the 1st congress of nternational society for rock mechanics;1967.p.385-91.

    Daemen JK,Ma LM,Zhao GH.Long-term mechanical behavior of Yucca Mountain Tuff and its variability.Final Technical Report for Task ORD-FY04-021.Reno, USA:Department of Mining Engineering,University of Nevada;2006.http:// digitalscholarship.unlv.edu/yucca_mtn_pubs/17.

    Dan DQ,Konietzky H,Herbst M.Brazilian tensile strength tests on some anisotropic rocks.International Journal of Rock Mechanics and Mining Sciences 2013;58:1-7.

    Dave EV,Braham AF,Buttlar WG,Paulino GH.Development of a fl attened indirect tension test for asphalt concrete.Journal of Testing and Evaluation 2011;39(3). http://dx.doi.org/10.1520/JTE103084.

    EN 12390-6.European standard:testing hardened concrete-Part 6:tensile splitting strength of test specimens.European Committee for Standardization (CEN);2000.

    Fairhurst C.On the validity of the“Brazilian”test for brittle materials.International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1964;1(4):535-46.

    Hertz H.Gesammelete werke(Collected works).Leipzig.1895.

    Hills DA,Nowell D,Sack fi eld A.Mechanics of elastic contacts.Oxford,UK:Butterworth-Heinemann Ltd.;1993.

    Hondros G.The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian(indirect tensile)test with particular reference to concrete.Australian Journal of Applied Science 1959;10:243-64.

    ISRM.Suggested methods for determining tensile strength of rock materials.International Journalof Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1978;15(3):99-103.

    Jaeger JC,Cook NGW,Zimmerman RW.Fundamentals of rock mechanics.Malden, MA,USA:Blackwell Publishing;2007.

    Jaeger JC,Cook NGW.Theory and application of curved jacks for measurement of stresses.In:State of stress in the Earth’s crust.New York,USA:Elsevier;1964. Japaridze LA.Calculation ofstresses in a cylindricalspecimen during the tensile test of the material.Bulletin of the Academy of Sciences of the Georgian SSR 1971;62(3):537-40(in Russian).

    Japaridze LA.To the issue of test of cylindrical samples of material by the splitting method.Journal of Mining Science 1972;3:100-3(in Russian).

    Kourkoulis SK,Markides CF,Bakalis G.Smooth elastic contact of cylinders by caustics:the contact length in the Brazilian disc test.Archives of Mechanics 2013;65(4):313-38.

    Kourkoulis SK,Markides CF,Chatzistergos PE.The Brazilian disc under parabolically varying load:theoretical and experimental study of the displacement fi eld. International Journal of Solids and Structures 2012;49(7-8):959-72.

    Lavrov A,Vervoort A.Theoretical treatment of tangential loading effects on the Brazilian test stress distribution.International Journal of Rock Mechanics and Mining Sciences 2002;39(2):275-83.

    Li DY,Wong LNY.The Brazilian disc test for rock mechanics applications:review and new insights.Rock Mechanics and Rock Engineering 2013;46(2):269-87.

    Marion RH,Johnstone JK.A parametric study of the diametral compression test for ceramics.American Ceramic Society Bulletin 1977;56(11):998-1002.

    Markides CF,Kourkoulis SK.The stress fi eld in a standardized Brazilian disc:the in fl uence of the loading type acting on the actual contact length.Rock Mechanics and Rock Engineering 2012;45(2):145-58.

    Markides CF,Pazis DN,Kourkoulis SK.Closed full-fi eld solutions for stresses and displacements in the Brazilian disk under distributed radial load.International Journal of Rock Mechanics and Mining Sciences 2010;47(2):227-37.

    Markides CF,Pazis DN,Kourkoulis SK.In fl uence of friction on the stress fi eld of the Brazilian tensile test.Rock Mechanics and Rock Engineering 2011;44(1):113-9. Muskhelishvili NI.Some basic problems of the mathematical theory of elasticity. the 4th ed.Groningen,Netherlands:Noordhoff;1963.

    Procopio AT,Zavaliangos A,Cunniangham JC.Analysis of the diametrical compression test and the applicability to plastically deforming materials. Journal of Materials Science 2003;38(17):3629-39.

    Rabotnov YN.Creep problems in structural members.Amsterdam,Netherlands: North Holland Publishing Company;1966.

    Shtaerman II.Contact tasks of the theory of elasticity.Moscow-Leningrad,USSR: Gostechizdat.1949(in Russian).

    Timoshenko SP,Goodier DH.Theory of elasticity.New York,USA:McGraw-Hill; 1970.

    Vardar?,Finnie I.An analysis of the Brazilian disk fracture test using the Weibull probabilistic treatment of brittle strength.International Journal of Fracture 1975;11(3):495-508.

    Wang QZ,Jia XM,Kou SQ,Zhang ZX,Lindqvist PA.The fl attened Brazilian disc specimen used for testing elastic modulus,tensile strength,and fracture toughness of brittle rocks:analytical and numerical results.International Journal of Rock Mechanics and Mining Sciences 2004;41(2):245-53.

    Wijk G.Some new theoretical aspects of indirect measurements of the tensile strength of rocks.International Journalof Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1978;15(4):149-60.

    Ye JH,Wu FQ,Sun JZ.Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads.International Journalof Rock Mechanics and Mining Sciences 2009;46(3):568-76.

    Levan Japaridzereceived his Master of Design and Construction of Underground Structures at St.Petersburg Institute of Mining Geomechanics and Surveying(VNIMI) in 1968 and PhD at Moscow Mining Institute in 1978.He worked as Professor of Mining Engineering atthe Georgian Technical University since 1972 in Rock Mechanics,Theory and Design of Tunnels and Underground Constructions. Prof.Levan Japaridze is now a member of the Georgian National Academy of Sciences,the Georgian Engineering Academy,and the Russian Academy of Mining Sciences.

    *Corresponding author.Tel.:+995 32 2325831.

    E-mail address:levanjaparidze@yahoo.com.

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.06.006

    免费在线观看视频国产中文字幕亚洲| 久久久久久人人人人人| 欧美激情高清一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色免费在线视频| avwww免费| 在线国产一区二区在线| 午夜精品久久久久久毛片777| 老汉色av国产亚洲站长工具| 中文字幕制服av| 久久热在线av| 母亲3免费完整高清在线观看| 中文字幕人妻丝袜一区二区| 亚洲国产欧美日韩在线播放| 中文字幕高清在线视频| 日本vs欧美在线观看视频| 成年人免费黄色播放视频| 嫩草影视91久久| 黄色a级毛片大全视频| 久久久精品国产亚洲av高清涩受| 女性生殖器流出的白浆| 国产xxxxx性猛交| 国产高清视频在线播放一区| 国产精品乱码一区二三区的特点 | 中文字幕制服av| 国产免费男女视频| 91麻豆av在线| 色精品久久人妻99蜜桃| 亚洲精品美女久久久久99蜜臀| 久久国产乱子伦精品免费另类| 亚洲欧美日韩另类电影网站| 两个人看的免费小视频| 99精品久久久久人妻精品| 啪啪无遮挡十八禁网站| 啦啦啦 在线观看视频| 欧美av亚洲av综合av国产av| 国产视频一区二区在线看| 国产成+人综合+亚洲专区| 丰满人妻熟妇乱又伦精品不卡| 视频在线观看一区二区三区| 亚洲精品国产一区二区精华液| 免费在线观看亚洲国产| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区| 看免费av毛片| 国产激情久久老熟女| 两人在一起打扑克的视频| 亚洲一区二区三区欧美精品| 成在线人永久免费视频| 亚洲精品美女久久av网站| 日韩欧美一区视频在线观看| 老熟女久久久| 成年版毛片免费区| 久久国产亚洲av麻豆专区| 丰满迷人的少妇在线观看| 国产单亲对白刺激| 91国产中文字幕| 亚洲一码二码三码区别大吗| 一二三四社区在线视频社区8| 国产又色又爽无遮挡免费看| 99国产极品粉嫩在线观看| 亚洲成人免费电影在线观看| 激情在线观看视频在线高清 | 国产精品香港三级国产av潘金莲| 激情视频va一区二区三区| 亚洲一区二区三区不卡视频| 久久影院123| av片东京热男人的天堂| 国产精品偷伦视频观看了| 女人久久www免费人成看片| tube8黄色片| 黄色 视频免费看| 岛国在线观看网站| 精品卡一卡二卡四卡免费| 午夜91福利影院| 国产99久久九九免费精品| 十分钟在线观看高清视频www| 亚洲国产精品一区二区三区在线| 国产欧美日韩精品亚洲av| 日韩精品免费视频一区二区三区| 亚洲 国产 在线| 麻豆乱淫一区二区| 国产乱人伦免费视频| 无限看片的www在线观看| 精品国产乱子伦一区二区三区| 欧美成人免费av一区二区三区 | tocl精华| 精品免费久久久久久久清纯 | 成人18禁在线播放| 精品国产一区二区久久| 高清黄色对白视频在线免费看| 日本黄色日本黄色录像| 搡老岳熟女国产| 午夜影院日韩av| 国产欧美日韩一区二区三区在线| 亚洲精品中文字幕在线视频| 热99国产精品久久久久久7| 国产在视频线精品| 丰满人妻熟妇乱又伦精品不卡| 欧美在线一区亚洲| a级片在线免费高清观看视频| 国产精品免费视频内射| 中文字幕精品免费在线观看视频| 色综合婷婷激情| 99精品在免费线老司机午夜| av网站在线播放免费| 亚洲欧美激情综合另类| 久久这里只有精品19| 在线观看日韩欧美| 制服诱惑二区| 一级,二级,三级黄色视频| cao死你这个sao货| 亚洲国产精品一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频一区二区在线观看| 亚洲人成77777在线视频| 午夜福利一区二区在线看| 国产精品98久久久久久宅男小说| 99久久综合精品五月天人人| 男人操女人黄网站| 男女下面插进去视频免费观看| 十八禁网站免费在线| 午夜福利一区二区在线看| 精品人妻1区二区| 成人特级黄色片久久久久久久| 老司机亚洲免费影院| 最近最新中文字幕大全电影3 | 一边摸一边做爽爽视频免费| 亚洲av成人一区二区三| 狂野欧美激情性xxxx| 99热国产这里只有精品6| 免费人成视频x8x8入口观看| 美女高潮到喷水免费观看| 国产一区在线观看成人免费| 三上悠亚av全集在线观看| 九色亚洲精品在线播放| 在线十欧美十亚洲十日本专区| 啦啦啦在线免费观看视频4| 久久人妻av系列| av网站在线播放免费| 国产成人av教育| 高清黄色对白视频在线免费看| 大陆偷拍与自拍| 男女床上黄色一级片免费看| 国产精品综合久久久久久久免费 | 久久国产精品人妻蜜桃| 精品国产一区二区久久| 高清黄色对白视频在线免费看| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看日韩欧美| 成在线人永久免费视频| 高清视频免费观看一区二区| 国产又爽黄色视频| 日本五十路高清| 女同久久另类99精品国产91| 天堂俺去俺来也www色官网| 黄色成人免费大全| 日本五十路高清| 人妻一区二区av| a级片在线免费高清观看视频| 国产不卡av网站在线观看| 在线免费观看的www视频| 国产成人系列免费观看| 久久久国产欧美日韩av| avwww免费| 少妇被粗大的猛进出69影院| 国产又爽黄色视频| 无遮挡黄片免费观看| 国产真人三级小视频在线观看| 午夜影院日韩av| 欧美精品高潮呻吟av久久| 波多野结衣av一区二区av| 亚洲全国av大片| 三上悠亚av全集在线观看| 国产精品免费视频内射| 岛国在线观看网站| 午夜激情av网站| 国产精品98久久久久久宅男小说| 久久香蕉精品热| 亚洲欧美精品综合一区二区三区| 老司机深夜福利视频在线观看| 手机成人av网站| 欧美精品亚洲一区二区| 欧美精品亚洲一区二区| 亚洲五月色婷婷综合| 在线观看舔阴道视频| 亚洲自偷自拍图片 自拍| 国产亚洲精品一区二区www | a级片在线免费高清观看视频| 日韩 欧美 亚洲 中文字幕| 91成人精品电影| 久久国产乱子伦精品免费另类| 亚洲国产精品sss在线观看 | 成年女人毛片免费观看观看9 | 国产精品久久电影中文字幕 | 黄色毛片三级朝国网站| 精品久久久久久久久久免费视频 | 国产熟女午夜一区二区三区| 免费观看人在逋| 香蕉丝袜av| 国产亚洲精品久久久久5区| 91成年电影在线观看| 午夜免费观看网址| 久久精品国产清高在天天线| 亚洲美女黄片视频| 侵犯人妻中文字幕一二三四区| 国产精品免费视频内射| 岛国在线观看网站| 欧美激情久久久久久爽电影 | 精品一品国产午夜福利视频| 80岁老熟妇乱子伦牲交| 黄片小视频在线播放| 黄色女人牲交| 欧美午夜高清在线| 欧美午夜高清在线| 亚洲成av片中文字幕在线观看| 国产一卡二卡三卡精品| 一级a爱片免费观看的视频| ponron亚洲| 亚洲精品在线美女| 久久久精品区二区三区| 精品一区二区三区视频在线观看免费 | 午夜成年电影在线免费观看| 色尼玛亚洲综合影院| 无人区码免费观看不卡| a级毛片黄视频| 亚洲成国产人片在线观看| 很黄的视频免费| 精品久久蜜臀av无| 成人影院久久| 人人妻人人添人人爽欧美一区卜| 少妇猛男粗大的猛烈进出视频| 在线观看舔阴道视频| 欧美日韩精品网址| 国产精品亚洲一级av第二区| 天天躁夜夜躁狠狠躁躁| 国产日韩欧美亚洲二区| 日韩 欧美 亚洲 中文字幕| 日韩欧美三级三区| 国产欧美亚洲国产| 国产有黄有色有爽视频| 欧美在线一区亚洲| 亚洲一区二区三区欧美精品| 免费在线观看黄色视频的| 精品欧美一区二区三区在线| √禁漫天堂资源中文www| 热re99久久国产66热| 欧美日韩瑟瑟在线播放| 一级a爱视频在线免费观看| 亚洲精品中文字幕在线视频| 自线自在国产av| 波多野结衣av一区二区av| 黄片小视频在线播放| 色94色欧美一区二区| 一级,二级,三级黄色视频| 欧美人与性动交α欧美精品济南到| 黄色片一级片一级黄色片| 国产激情久久老熟女| 黄色毛片三级朝国网站| 女性被躁到高潮视频| 久久久久久人人人人人| 精品视频人人做人人爽| 国产精品.久久久| 啪啪无遮挡十八禁网站| 亚洲精品自拍成人| 国产精品美女特级片免费视频播放器 | 麻豆成人av在线观看| 日本黄色视频三级网站网址 | 亚洲精品中文字幕一二三四区| cao死你这个sao货| 制服诱惑二区| 一级片'在线观看视频| 亚洲综合色网址| 脱女人内裤的视频| 看黄色毛片网站| 亚洲av成人一区二区三| 久久久久久人人人人人| 搡老岳熟女国产| 亚洲第一青青草原| 精品一区二区三卡| 久久中文看片网| 日韩熟女老妇一区二区性免费视频| 男女免费视频国产| 亚洲熟女精品中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲自偷自拍图片 自拍| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区蜜桃| 80岁老熟妇乱子伦牲交| 成人免费观看视频高清| 男女之事视频高清在线观看| 久久精品亚洲av国产电影网| 久久久国产成人精品二区 | 黄色片一级片一级黄色片| 777米奇影视久久| 免费在线观看日本一区| 亚洲欧美精品综合一区二区三区| 亚洲精品国产区一区二| 国产在线一区二区三区精| 日韩欧美一区二区三区在线观看 | 欧美亚洲 丝袜 人妻 在线| 国产亚洲欧美98| 国产片内射在线| 亚洲av片天天在线观看| 精品一区二区三区视频在线观看免费 | 99国产精品一区二区蜜桃av | 亚洲午夜精品一区,二区,三区| 天天躁夜夜躁狠狠躁躁| 久久亚洲精品不卡| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 色综合欧美亚洲国产小说| 亚洲精品av麻豆狂野| 一边摸一边抽搐一进一出视频| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 亚洲熟妇熟女久久| 亚洲国产欧美一区二区综合| 一进一出抽搐动态| 亚洲avbb在线观看| 亚洲av成人一区二区三| 亚洲欧美激情在线| 亚洲国产精品sss在线观看 | 久久香蕉精品热| 国产主播在线观看一区二区| 天天添夜夜摸| 69精品国产乱码久久久| 国产高清videossex| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 久久精品人人爽人人爽视色| 亚洲色图 男人天堂 中文字幕| 高清av免费在线| 91九色精品人成在线观看| 999久久久国产精品视频| 久久天堂一区二区三区四区| av超薄肉色丝袜交足视频| 人妻久久中文字幕网| 国产亚洲精品一区二区www | 1024视频免费在线观看| 两人在一起打扑克的视频| 国精品久久久久久国模美| 丰满饥渴人妻一区二区三| 两个人免费观看高清视频| 极品教师在线免费播放| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| av线在线观看网站| 一二三四社区在线视频社区8| 午夜福利在线观看吧| 熟女少妇亚洲综合色aaa.| 久久久久国产精品人妻aⅴ院 | 国产精品美女特级片免费视频播放器 | 亚洲人成电影免费在线| 午夜免费鲁丝| 热re99久久精品国产66热6| 深夜精品福利| 国产av又大| 9色porny在线观看| 亚洲中文字幕日韩| 国产一卡二卡三卡精品| 欧美在线一区亚洲| 777米奇影视久久| 欧美 亚洲 国产 日韩一| 国产野战对白在线观看| 精品久久久久久久毛片微露脸| 日韩有码中文字幕| 久久久久久久久免费视频了| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 一区二区日韩欧美中文字幕| videosex国产| 99热国产这里只有精品6| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费 | 电影成人av| www.精华液| 激情在线观看视频在线高清 | 丝袜人妻中文字幕| 老司机福利观看| 欧美精品啪啪一区二区三区| 色在线成人网| а√天堂www在线а√下载 | 热re99久久精品国产66热6| 国产不卡av网站在线观看| 满18在线观看网站| 国产欧美日韩综合在线一区二区| 熟女少妇亚洲综合色aaa.| 亚洲专区国产一区二区| 国产精品av久久久久免费| 免费av中文字幕在线| 国产精品综合久久久久久久免费 | 欧美大码av| 老熟女久久久| 夜夜爽天天搞| 美国免费a级毛片| 精品国产乱码久久久久久男人| 咕卡用的链子| 欧美日韩乱码在线| 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩另类电影网站| 两性夫妻黄色片| 一进一出抽搐gif免费好疼 | 亚洲午夜理论影院| 欧美日韩乱码在线| 老熟妇乱子伦视频在线观看| 麻豆av在线久日| 久久久精品区二区三区| 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 日韩一卡2卡3卡4卡2021年| 国产日韩欧美亚洲二区| 亚洲avbb在线观看| 1024香蕉在线观看| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 国产在视频线精品| 99国产精品一区二区蜜桃av | 女警被强在线播放| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看 | 老司机影院毛片| 久久国产亚洲av麻豆专区| 亚洲av日韩精品久久久久久密| 一区二区三区国产精品乱码| 99精国产麻豆久久婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看人在逋| 久久精品亚洲熟妇少妇任你| 国产精品久久久久久人妻精品电影| 手机成人av网站| 夜夜爽天天搞| 中文亚洲av片在线观看爽 | 午夜福利视频在线观看免费| 777米奇影视久久| 久久精品aⅴ一区二区三区四区| 多毛熟女@视频| 高清视频免费观看一区二区| 日日摸夜夜添夜夜添小说| 欧美激情极品国产一区二区三区| 啦啦啦视频在线资源免费观看| 天天添夜夜摸| a级毛片黄视频| 日韩人妻精品一区2区三区| 国产亚洲av高清不卡| 欧美成狂野欧美在线观看| 好男人电影高清在线观看| 亚洲欧美激情综合另类| 亚洲欧美色中文字幕在线| 亚洲综合色网址| 精品人妻在线不人妻| 午夜成年电影在线免费观看| 国产精品二区激情视频| 啦啦啦视频在线资源免费观看| 免费高清在线观看日韩| 老司机深夜福利视频在线观看| 高清黄色对白视频在线免费看| 亚洲色图av天堂| 一区二区三区精品91| 女人被躁到高潮嗷嗷叫费观| 夜夜夜夜夜久久久久| 久久狼人影院| 久久影院123| 亚洲熟妇中文字幕五十中出 | 999久久久国产精品视频| 精品一区二区三区四区五区乱码| 91成人精品电影| 欧美成人免费av一区二区三区 | 老司机午夜福利在线观看视频| 久热这里只有精品99| 午夜免费鲁丝| 国产av精品麻豆| www日本在线高清视频| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 精品少妇久久久久久888优播| 久久久水蜜桃国产精品网| 黄色丝袜av网址大全| 午夜福利,免费看| 一级毛片精品| 国内毛片毛片毛片毛片毛片| 九色亚洲精品在线播放| 欧美人与性动交α欧美精品济南到| 欧美+亚洲+日韩+国产| 女人精品久久久久毛片| 国产主播在线观看一区二区| 最近最新中文字幕大全电影3 | 国产成人av激情在线播放| 视频区欧美日本亚洲| 欧美国产精品va在线观看不卡| 久久久久国内视频| 好男人电影高清在线观看| 精品久久蜜臀av无| 日本精品一区二区三区蜜桃| 欧美乱色亚洲激情| 最新的欧美精品一区二区| 老司机靠b影院| 国产成人欧美在线观看 | 免费一级毛片在线播放高清视频 | 国产成人精品在线电影| 下体分泌物呈黄色| 两性夫妻黄色片| av中文乱码字幕在线| 法律面前人人平等表现在哪些方面| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区免费| 亚洲aⅴ乱码一区二区在线播放 | 美女高潮到喷水免费观看| 亚洲自偷自拍图片 自拍| 丝袜人妻中文字幕| av线在线观看网站| svipshipincom国产片| 成年人免费黄色播放视频| 老司机亚洲免费影院| 久久性视频一级片| 国产野战对白在线观看| av一本久久久久| 久久久久久久午夜电影 | av在线播放免费不卡| 淫妇啪啪啪对白视频| 国产av精品麻豆| 国产亚洲精品久久久久久毛片 | 国产日韩欧美亚洲二区| av一本久久久久| 国产三级黄色录像| 国产精品98久久久久久宅男小说| 99香蕉大伊视频| 欧美精品高潮呻吟av久久| 黄色a级毛片大全视频| 精品国产乱码久久久久久男人| 亚洲五月色婷婷综合| 日本vs欧美在线观看视频| 久热这里只有精品99| 怎么达到女性高潮| а√天堂www在线а√下载 | 成人三级做爰电影| 99精品欧美一区二区三区四区| 一本综合久久免费| 久久精品亚洲av国产电影网| 人人妻,人人澡人人爽秒播| 少妇的丰满在线观看| 在线免费观看的www视频| 好看av亚洲va欧美ⅴa在| 久久久久久久精品吃奶| 日韩免费av在线播放| 熟女少妇亚洲综合色aaa.| 国产一区二区三区综合在线观看| 高清欧美精品videossex| 亚洲五月婷婷丁香| 精品久久久久久,| 50天的宝宝边吃奶边哭怎么回事| 久久中文字幕一级| 一边摸一边做爽爽视频免费| 操美女的视频在线观看| 男女床上黄色一级片免费看| 欧美性长视频在线观看| 成年人黄色毛片网站| 在线观看一区二区三区激情| 久久青草综合色| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| 捣出白浆h1v1| 国产精品一区二区精品视频观看| 久99久视频精品免费| 国产主播在线观看一区二区| 热re99久久国产66热| 亚洲人成电影观看| av中文乱码字幕在线| www.熟女人妻精品国产| 亚洲性夜色夜夜综合| 日韩中文字幕欧美一区二区| 夜夜夜夜夜久久久久| 1024香蕉在线观看| 亚洲av成人一区二区三| 欧美日韩av久久| 无人区码免费观看不卡| 国产精品免费一区二区三区在线 | 五月开心婷婷网| 欧美激情久久久久久爽电影 | 人成视频在线观看免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看 | 搡老熟女国产l中国老女人| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线 | 人人妻人人澡人人爽人人夜夜| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 99精品欧美一区二区三区四区| 老司机深夜福利视频在线观看| 国产精品成人在线| 美女午夜性视频免费| 亚洲国产欧美网| 日韩大码丰满熟妇| 亚洲国产精品sss在线观看 | 亚洲一区中文字幕在线| 99热国产这里只有精品6| 欧美黑人精品巨大| 9191精品国产免费久久| 国产精品成人在线| 亚洲精品久久成人aⅴ小说| 男男h啪啪无遮挡| 午夜福利在线观看吧| 村上凉子中文字幕在线| 日日摸夜夜添夜夜添小说| 国产精品 国内视频| 国产精品影院久久| 精品一区二区三区av网在线观看|