• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONSENSUS ANALYSIS AND DESIGN OF LINEARINTERCONNECTED MULTI-AGENT SYSTEMS?

    2015-02-10 08:36:57
    關(guān)鍵詞:桂平李偉

    angzhou CHEN(陳陽舟)

    College of Metropolitan TransportationBeijing Laboratory For Urban Mass Transit, Beijing University of Technology,Beijing 100124,China

    E-mail:yzchen@bjut.edu.cn

    Wei LI(李偉)

    College of Metropolitan TransportationBeijing University of Technology,Beijing 100124,China Department of Electromechanical Engineering,Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041,China

    E-mail:mufuli@emails.bjut.edu.cn

    Guiping DAI(代桂平)

    College of Metropolitan TransportationBeijing University of Technology,Beijing 100124,China

    E-mail:daigping@bjut.edu.cn

    A.Yu.ALEKSANDROV

    Faculty of Applied Mathematics and Control Processes,St.Petersburg State University, St.Petersburg,Russia

    E-mail:alex43102006@yandex.ru

    CONSENSUS ANALYSIS AND DESIGN OF LINEAR
    INTERCONNECTED MULTI-AGENT SYSTEMS?

    Y

    angzhou CHEN(陳陽舟)

    College of Metropolitan TransportationBeijing Laboratory For Urban Mass Transit, Beijing University of Technology,Beijing 100124,China

    E-mail:yzchen@bjut.edu.cn

    Wei LI(李偉)

    College of Metropolitan TransportationBeijing University of Technology,Beijing 100124,China Department of Electromechanical Engineering,Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041,China

    E-mail:mufuli@emails.bjut.edu.cn

    Guiping DAI(代桂平)

    College of Metropolitan TransportationBeijing University of Technology,Beijing 100124,China

    E-mail:daigping@bjut.edu.cn

    A.Yu.ALEKSANDROV

    Faculty of Applied Mathematics and Control Processes,St.Petersburg State University, St.Petersburg,Russia

    E-mail:alex43102006@yandex.ru

    We deal with the state consensus problem of a general Linear Interconnected Multi-Agent System(LIMAS)under a time-invariant and directed communication topology. Firstly,we propose a linear consensus protocol in a general form,which consists of state feedback of the agent itself and feedback form of the relative states between the agent and its neighbors.Secondly,a state-linear-transformation is applied to equivalently transform the state consensus problem into a partial stability problem.Based on the partial stability theory, we derive a sufcient and necessary criterion of consensus convergence,which is expressed via the Hurwitz stability of a real matrix constructed from the parameters of the agent models and the protocols,and present an analytical formula of the consensus function.Lastly,we propose a design procedure of the gain matrices in the protocol by solving a bilinear matrix inequality.

    linear interconnected multi-agent system(LIMAS);partial stability;statelinear-transformation;criterion of consensus convergence;consensus design

    2010 MR Subject Classifcation34D06;93C05;90B18

    1 Introduction

    Interconnected multi-agent systems are a kind of multi-agent systems with inherent interconnections between the agents.They have a wide range of applications in various practical felds,for example,large arrays of micro electromechanical sensors and actuators[1],distributed power networks[2],biological networks[3],water distribution networks[4]and transportation networks[5]etc.Lots of studies have been devoted to the stability problem of the interconnected multi-agent systems[6,7],while equally important consensus or synchronization problem receives less attention.Consensus means that a group of agents reach agreement on a common value asymptotically or in a fnite time by negotiating with their neighbors.Existing studies on the consensus problem mainly focus on the multi-agent systems without the inherent interconnections among agents[8]-[11].In this paper,we consider the consensus problem of Linear Interconnected Multi-Agent Systems(LIMASs).Next we frst give an overview on the consensus or synchronization of interconnected multi-agent systems.

    Motivated by cellular networks,Scardovi et al[12]studied a synchronization problem of nonlinear interconnected networks and provided a sufcient synchronization criterion,where the identical network components are made of species represented as input-output operators. Liu et al[13]continued the study of the synchronization problem and also derived a sufcient synchronization criterion by introducing the concept of incremental-dissipativity.Franci [14]further extended the work in[12]by tolerating some heterogeneity among the operators. Fradkov et al[15]considered a leader-follower output feedback synchronization problem for a network of nonlinear interconnected dynamical systems and also established a sufcient criterion of synchronization.Although the above works dealt with nonlinear models,the passivity property was required and only sufcient synchronization criteria were provided.

    For LIMASs,motivated by interconnected power grid,Lee et al[16,17]dealt with the consensus problem and derived a sufcient consensus criterion.They required that the system also satisfes the passivity property and the communication topology is connected and balanced. Under the same assumptions,Russo[18]derived a sufcient consensus criterion of linear and nonlinear interconnected multi-agent systems via contraction theory.Furtat et al[19]considered a robust consensus problem of LIMASs with a leader and provided a sufcient consensus criterion under some strong assumptions.Cheng et al[20]considered a leader-follower consensus problem with undirected topology and linear interconnection subject to integral quadratic constraints and obtained a sufcient consensus criterion.

    As seen above,even for LIMASs,only sufcient consensus criteria were obtained under some strong assumptions,for example,the passivity property and special communication topology. So,in this paper,we focus attention upon the study of the state consensus problem of general LIMASs under the assumption of general directed communication topology.The other complex cases will be dealt with in the future,such as the output consensus,the consensus of nonlinear systems or uncertain systems,and etc.

    Compared with existing literature on LIMASs,the contributions of this paper consist of the following three aspects.The frst contribution is that we design a linear consensus protocol in a general form consisting of two parts.One is a state feedback of the agent itself,and the other is a cooperative protocol with generalized gain matrices,which is in the feedback form of therelative states between the agent and its neighbors.This consensus protocol possesses several advantages.The frst term can be used to change the dynamics of the agents independently. The second term with generalized gain matrices makes one able to choose diferent gain for each of the components in the relative states independently.The second main contribution is that we derive a sufcient and necessary condition for the LIMAS achieving consensus and give an analytical formula of the consensus function.The results are obtained by using a state-lineartransformation to equivalently transform the consensus problem into a stability problem with respect to partial variables(partial stability for short)of an auxiliary system.The state-lineartransformation has been proved to be an efcient tool in our previous study[21,22].Compared with those in[16,17],our obtained results at least have two improvements:

    1)the requirements of the passivity property is discarded and the connected and balanced topology is generalized to any directed topology;

    2)a sufcient and necessary consensus criterion is presented.

    The third contribution is that we propose a design procedure of the gain matrices in the protocol by solving a bilinear matrix inequality.

    The rest of the paper is organized as follows.In Section 2,we describe the consensus problem of LIMASs and apply a state-linear-transformation to set up a bridge between the consensus problem and a partial stability problem.The main results are derived in Section 3. In Section 4,we present a design procedure of the gain matrices via solving a bilinear matrix inequality.In Section 5,some simulation examples are presented to verify our results.Finally, the conclusion is stated in Section 6.

    2 Problem Description and its Relation to Partial Stability

    We consider a LIMAS consisting of N heterogenous agents

    The control input uiwill be designed based on available information.We assume that at any time t the agent i can measure its own state xi(t)and receive the relative state xj(t)-xi(t) between it and its communication neighbor j.The agent j is said to be a communication neighbor of the agent i,if the agent i can receive the information from the agent j via communication.We use Nito denote the index set of all the communication neighbors of the agent i and call the set N={Ni:i=1,···,N}a communication topology of the LIMAS(2.1).As seen in literature,the communication topology can also be described by a digraph.

    Arbitrarily given a time-invariant communication topology N={Ni:i=1,···,N},we construct a consensus protocol of the following structure:

    where Ki,Wij∈Rm×nare the gain matrices required to design of-line.The frst term in(2.2) with the gain matrix Kiis a state feedback of the agent i itself and is applied to independently regulate its own behavior.In fact,later one will see that it may change the fnal consensus dynamics of the agents.The second term with the matrices Wijare relative state feedbacks between the agent i and its neighbors and are applied to cooperate the agents for achieving consensus.The matrix Wijis well-defned for the indices i,j satisfying j∈Niand Wij=0 for any other indices i,j∈{1,···,N},i/=j.

    where the superscript T denotes the transpose of a matrix or vector,and the matrices in(2.3) are defned as follows:

    A={Aij,i=1,···,N,j∈Ωi}is a block matrix with matrix blocks Aijat(i,j)for j∈Ωiand 0 matrices at other places,

    B=diag{B1,···,BN}is a diagonal block matrix with diagonal matrix blocks Bi,

    K=diag{K1,···,KN}is a diagonal block matrix with diagonal matrix blocks Ki,

    For the communication topology N={Ni:i=1,···,N}and the protocol(2.2),we are concerned about three issues:1)to fnd a criterion of consensus convergence,2)to calculate the consensus function of the agents if the LIMAS(2.1)achieves global consensus,and 3)to propose a design procedure of the gain matrices in the protocol(2.2).

    Now we apply a state linear transformation proposed in[21,22]to the system(2.3)and equivalently transform the consensus problem of the LIMAS(2.1)into an asymptotically partial stability problem of a corresponding system.The state linear transformation is as follows:

    where1N∈Rnrepresents a column vector with 1 as its components,Instands for an identity matrix of dimension n,ei,i=1,···,N,are the standard row vectors with 1 in the ith column and 0 in the other columns,and?denotes the Kronecker product of matrices or vectors.

    where the inverse matrix of the matrix P can be exactly calculated as follows:

    The matrices in(2.8)are represented as follows

    Before building a bridge between the consensus problem of the LIMAS(2.1)under the protocol(2.2)and the partial stability problem of the system(2.8),we give the following defnition.

    Now we prove a key lemma to express the relation of the consensus problem to the asymptotic y-stability problem.

    3 Convergence Criterion and Consensus Function

    According to the result in[23],we have that the asymptotic y-stability of(2.6)or(2.8)is equivalent to asymptotic stability of the following auxiliary linear system:

    where ζ=[yTηT]Tand η is an extended state.The matrices L1and L3are derived from the matrix

    through the following steps:

    Step 1Calculate the minimal integer s such that rankVs=rankVs+1,where Vsand Vs+1are of the form in(3.2);

    Step 2Let h=:rankVsand construct h×n matrix L1,the rows of which are linearly independent rows of matrix Vs;

    Step 3Construct h×h matrix L2,which is consisted of the linearly independent columns in L1,say,the columns i1,···,ihin L1;

    The following lemma shows the relation between y-stability of the system(2.8)and the stability of the auxiliary system(3.1).

    Lemma 3.1(see[23])The equilibrium pointˉx=0 of the system(2.8)is asymptotically y-stable if and only if the equilibrium point ζ=0 of the corresponding auxiliary system(3.1) is asymptotically stable.

    Now we state and prove our main results as follows.

    ProofBy Lemma 2.3 and Lemma 3.1,the sufcient and necessary condition can be directly verifed.So we focus the calculation of the consensus function.First,by Lemma 2.3 the consensus function(3.3)can be obtained from ξ(t)=N-1z(t),where z(t)is calculated from the second equation in(2.8)as follows

    From the construction of the auxiliary system(3.1)we know that y(t)is the frst(N-1)n elements of the state ζ(t)in(3.1),and thus we have

    where ζ(t)can be calculated from the system(3.1)as follows:

    Finally,noticing the identities

    we get the consensus function(3.3)by substituting the relations(3.4)-(3.8)into the expression ξ(t)=N-1z(t).The proof is completed.?

    Remark 3.3The authors in[16,17]gave a sufcient condition under the strong assumption of connected and balanced communication topology,which is expressed by the passivity of the LIMAS.However,our results show that the LIMAS can achieve global state consensus even if the passivity condition in[16,17]is not held(see Example 2 in the section 5).Thus,we have improved the result in[16,17]in two aspects:1)the limit on the communication topology is removed,and 2)a sufcient and necessary criterion is derived.

    Theorem 3.2 includes the following two extreme cases.

    Corollary 3.4The following statements are correct:

    1)If rankVn=0,the necessary and sufcient condition for LIMAS(2.1)achieving state consensus is that the matrixˉA in(2.9)is Hurwitz stable.

    2)If rankVn=n,the necessary and sufcient condition for the LIMAS(2.1)achieving state consensus is the matrix M in(2.3)is Hurwitz stable.

    4 Consensus Protocol Design

    In this section,we consider the design problem of the consensus protocol(2.2).

    It is well known that the Hurwitz stability of the matrixˉM in Theorem 3.2 is equivalent to that there exits a positive matrix Q satisfying the following Lyapunov inequality:

    We assume that the gain matrix Kiin the protocol(2.2)has been designed in advance since its role is to change the fnal consensus dynamics of the agents.Thus,(4.1)can be written as:

    where henceforth the asterisk(?)denotes the previous item and

    Δij=[δmn]N×Nis a matrix with entries

    Step 2solve the optimization problem with LMI constrains

    where∈1is a positive small number.

    where τ1,τ2is the perturbation range.

    Step 5if|t(γ+1)-t(γ)|<∈2for a positive small real number∈2>0,which means that the calculation of the gain matrices Wijcan not be improved any further,or the iteration counter reaches the maximum number of iteration,the iteration terminates.

    5 Simulation Examples

    In this section,we consider several numeral examples to explain our results.

    Example 1Consensus analysis of a second-order LIMAS consisting of 3 agents.

    We consider the example in[16]of a second-order LIMAS(2.1)consisting of 3 agents with the following parameter matrices Aii,Aijand Bi:

    and a time-invariant communication topology N1={2,3},N2={1,3},N3={1,2}.We test the consensus for the following gain matrices in protocol(2.2):

    One can verify that rankV2=2,which is the case 2 in Corollary 1.In this case,we show that M is Hurwitz stable by calculating its eigenvalues-5.2498±1.4951i,-1.2412±0.4075i,-5.0181, -3.0000.Thus LIMAS(2.1)achieves global state consensus and all the agents convergence to the zero states.Fig.1(a)(b)show the state trajectories of the agents starting from the initial states[5,2]T,[2,1]T,[-3,-2]T,respectively.

    Example 2Consensus Design of a third-order LIMAS consisting of 4 agents.

    Now we consider the design problem of a third-order LIMAS(2.1)consisting of 4 agents with the following parameter matrices Aii,Aijand Bi:

    and a time-invariant imbalanced communication topology N1={2},N2={3,4},N3={1}, N4={2}.We frst take the gain matrices Ki,i=1,2,3,4,in protocol(2.2)as

    One can verify that rankV2=2,and the matrixˉM in(3.1)is Hurwitz stable by calculating its eigenvalues-5.9302,-19.6374±5.0463i,-5.896144±3.4774i,-1.7182,-0.0055±3.6995i, -0.0779±0.3331i.Thus,LIMAS(2.1)achieves global states consensus.However,the passivity condition ATQ+QA<0,QB=CTrequired in[17]is not satisfed since the matrix A is not Hurwitz stable,where A and B are the matrices defned in(2.3),C=I12in this example.Fig.2 (a)(b)(c)show the state trajectories of the agents starting from the initial states[4.2,5.4,25]T, [6.3,3.5,40]T,[3.4,4.6,50]T,[4.5,6.9,29]T,respectively.

    6 Conclusions

    In this paper,the state consensus problem of LIMASs with time-invariant and directed communication topology is considered by applying a state-linear-transformation approach.A sufcient and necessary criterion of consensus convergence in terms of matrix stability is proposed and an analytical expression of the consensus function is given.A design procedure of the consensus protocol is also presented by solving a bilinear matrix inequality.

    Although we only studied the state consensus of LIMASs with time-invariant communication topology and in absence of communication time-delay,the approach in this paper can be applied to more complex consensus problems,for example,the cases with time-varying communication topology or/and communication time-delays,the output or part-state consensus,and etc.,which will be considered in the future.

    [1]Napoli M,Bamieh B.Modeling and observer design for an array of electrostatically actuated microcantilevers.Proceedings of the 40th IEEE Conference on Decision and Control,2001:4274-4279

    [2]Venkat A N,Hiskens I A,Rawlings J B,et al.Distributed output feedback MPC for power system control. Proceedings of the 45th IEEE Conference on Decision and Control.2006:4038-4045

    [3]Omony J,de GraafL H,van Straten G,et al.Modeling and analysis of the dynamic behavior of the XlnR regulon in Aspergillus niger.BMC systems biology,2011,5(Suppl 1):S14

    [4]Bragalli C,D’Ambrosio C,Lee J,et al.Case Studies in Operations Research.New York:Springer,2015, 212:183-198

    [5]Han X G,Chen Y Z,Shi J J,et al.An extended cell transmission model based on digraph for urban trafc road network.Proceedings of the 15th IEEE Conference on Intelligent Transportation Systems, 2012:558-563

    [6]Yang T C.Networked control system:a brief survey.IEE Proceedings-Control Theory and Applications, 2006,153(4):403-412

    [7]Heemels W,van de Wouw N.Networked Control Systems.London:Springer,2010:203-253

    [8]Shang Y.Consensus formation of two-level opinion dynamics.Acta Mathematica Scientia,2014,34B(4): 1029-1040

    [9]Guo W,Xiao H,Chen S.Consensus of the second-order multi-agent systems with an active leader and coupling time delay.Acta Mathematica Scientia,2014,34B(2):453-465

    [10]Olfati-Saber R,Fax J A,Murray R M.Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE,2007,95(1):215-233

    [11]Ren W,Cao Y.Distributed Coordination of Multi-agent Networks:Emergent Problems,Models,and Issues.London:Springer,2010

    [12]Scardovi L,Arcak M,Sontag E D.Synchronization of interconnected systems with applications to biochemical networks:An input-output approach.IEEE Transactions on Automatic Control,2010,55(6): 1367-1379

    [13]Liu T,Hill D J,Zhao J.Incremental-dissipativity-based synchronization of interconnected systems.Proceedings of the 18th IFAC World Congress,2011:8890-8895

    [14]Franci A,Scardovi L,Chaillet A.An Input-Output approach to the robust synchronization of dynamical systems with an application to the Hindmarsh-Rose neuronal model.Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference,2011:6504-6509

    [15]Fradkov A,Junussov I,Ortega R.Decentralized adaptive synchronization in nonlinear dynamical networks with nonidentical nodes.Proceedings of the 2009 IEEE International Symposium on Control Applications and Intelligent Control,2009:531-536

    [16]Lee S J,Oh K K,Ahn H S.Passivity-based output synchronisation of port-controlled Hamiltonian and general linear interconnected systems.IET Control Theory and Applications,2013,7(2):234-245

    [17]Lee S J,Ahn H.Passivity-based output synchronization of interconnected linear systems.Proceedings of the IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications,2012: 46-51

    [18]Russo G.Analysis,Control and synchronization of nonlinear systems and networks via Contraction Theory: theory and applications.Universita degli studi di Napoli Federico II,2010

    [19]Furtat I,Fradkov A,Tsykunov A.Robust synchronization of linear dynamical networks with compensation of disturbances.International Journal of Robust and Nonlinear Control,2014,24(17):2774-2784

    [20]Cheng Y,Ugrinovskii V A.Guaranteed performance leader-follower control for multi-agent systems with linear IQC coupling.Proceedings of the 2013 IEEE conference on American Control Conference,2013: 2625-2630

    [21]Ge Y R,Chen Y Z,Zhang Y X,et al.State consensus analysis and design for high-order discrete-time linear multiagent systems.Mathematical Problems in Engineering,2013:Art ID192351

    [22]Chen Y Z,Ge Y R,Zhang Y X.Partial stability approach to consensus problem of linear multi-agent systems.Acta Automatica Sinica,2014,40(11):2573-2584

    [23]Vorotnikov V I.Partial Stability and Control.Boston:Springer,1998

    [24]Wang Y G.BMI-based output feedback control design with sector pole assignment.Acta Automatica Sinica, 2008,34(9):1192-1195

    [25]Fukuda M,Kojima M.Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem. Comput Opt Appl,2001,19(1):79-105

    [26]Shimomura T,Fujii T.Multiobjective control via successive over-bounding of quadratic terms.International Journal of Robust and Nonlinear Control,2005,15(8):363-381

    ?Received January 12,2015;revised May 18,2015.This work was supported in part by NSF of China(61273006 and 6141101096),High Technology Research and Development Program of China(863 Program)(2011AA110301),Specialized Research Fund for the Doctoral Program of Higher Education of China(20111103110017),St.Petersburg State University(9.38.674.2013)and the Russian Foundation for Basic Research(13-01-00376-a and 15-58-53017).

    猜你喜歡
    桂平李偉
    “田”野里的樂趣
    “制造”年獸
    廣西桂平:八角林成為群眾脫貧致富“搖錢樹”
    Therapeutic effect of heat-sensitive moxibustion plus medications for senile osteoporosis and its effect on serum BMP-2 and OPG levels
    孟母三遷
    這樣玩多好
    拼拼 讀讀 寫寫
    日香桂二葉苗快速培育技術(shù)
    王桂平國畫作品選
    火花(2018年10期)2018-11-01 10:42:36
    Operation of the main steam inlet and outlet interface pipe of a nuclear power station①
    他把我摸到了高潮在线观看| 91麻豆精品激情在线观看国产| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 午夜精品久久久久久毛片777| 国产成人欧美在线观看| 久久久久久久久中文| 亚洲国产欧美日韩在线播放| 国产精品二区激情视频| 日本 欧美在线| 久久久久国产一级毛片高清牌| 成人精品一区二区免费| 国产成人欧美| 美女高潮喷水抽搐中文字幕| 日韩大码丰满熟妇| 国产精品 欧美亚洲| 日韩国内少妇激情av| 此物有八面人人有两片| 国产精品九九99| 午夜精品在线福利| 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 久久香蕉激情| 黄色a级毛片大全视频| 女同久久另类99精品国产91| 免费在线观看完整版高清| 色播亚洲综合网| 久久草成人影院| 91九色精品人成在线观看| 一级黄色大片毛片| 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| 国产区一区二久久| 欧美日本视频| 欧美av亚洲av综合av国产av| 色播亚洲综合网| 成人三级做爰电影| 757午夜福利合集在线观看| 亚洲成人精品中文字幕电影| 日本免费a在线| 亚洲成a人片在线一区二区| 一级毛片高清免费大全| 久热爱精品视频在线9| 一a级毛片在线观看| 午夜亚洲福利在线播放| 久久久久久亚洲精品国产蜜桃av| 成人永久免费在线观看视频| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 亚洲男人的天堂狠狠| 少妇熟女aⅴ在线视频| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 国产视频内射| 国产精品国产高清国产av| 国产又爽黄色视频| 国产精品影院久久| 国产一区在线观看成人免费| 亚洲精品在线观看二区| 1024香蕉在线观看| 久久久国产精品麻豆| 国产高清有码在线观看视频 | 久久久久久九九精品二区国产 | 欧美日韩乱码在线| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 久久久久亚洲av毛片大全| 视频区欧美日本亚洲| 免费在线观看黄色视频的| 日日夜夜操网爽| 欧美日韩黄片免| 男女床上黄色一级片免费看| 人人妻人人澡人人看| 国产99久久九九免费精品| 久久久久久人人人人人| 淫秽高清视频在线观看| 在线看三级毛片| 女人爽到高潮嗷嗷叫在线视频| 亚洲美女黄片视频| 久久精品国产亚洲av高清一级| 成人亚洲精品av一区二区| 曰老女人黄片| 在线免费观看的www视频| 午夜福利视频1000在线观看| 久久 成人 亚洲| 男人舔女人的私密视频| or卡值多少钱| 久久久久久亚洲精品国产蜜桃av| 欧美精品啪啪一区二区三区| 免费电影在线观看免费观看| 国产色视频综合| 高潮久久久久久久久久久不卡| 不卡一级毛片| 亚洲狠狠婷婷综合久久图片| 色av中文字幕| 日本成人三级电影网站| 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看| 一级毛片精品| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| 在线观看www视频免费| 99热只有精品国产| 中文字幕人妻熟女乱码| 亚洲午夜理论影院| 巨乳人妻的诱惑在线观看| 欧美zozozo另类| 久久伊人香网站| 在线观看免费视频日本深夜| 十八禁网站免费在线| 操出白浆在线播放| 国产伦一二天堂av在线观看| 他把我摸到了高潮在线观看| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 2021天堂中文幕一二区在线观 | 成人特级黄色片久久久久久久| 亚洲成av片中文字幕在线观看| 99在线视频只有这里精品首页| 国产1区2区3区精品| 亚洲精品一区av在线观看| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 欧美三级亚洲精品| 亚洲中文av在线| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| 国产免费av片在线观看野外av| 久久九九热精品免费| 亚洲精品av麻豆狂野| 国产野战对白在线观看| 免费搜索国产男女视频| 欧美久久黑人一区二区| 亚洲全国av大片| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 嫩草影院精品99| 亚洲第一欧美日韩一区二区三区| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀| 久久这里只有精品19| 亚洲av中文字字幕乱码综合 | 男女视频在线观看网站免费 | 日韩一卡2卡3卡4卡2021年| 黑人欧美特级aaaaaa片| 久久久久免费精品人妻一区二区 | 成人国产一区最新在线观看| 亚洲欧美精品综合一区二区三区| 日韩免费av在线播放| 国产精品久久久久久精品电影 | 好看av亚洲va欧美ⅴa在| 不卡一级毛片| 欧美日韩乱码在线| 欧美久久黑人一区二区| 免费看a级黄色片| 欧美在线一区亚洲| 怎么达到女性高潮| 国产野战对白在线观看| 日韩大码丰满熟妇| 久久精品国产综合久久久| 亚洲国产看品久久| 午夜精品在线福利| 一本大道久久a久久精品| 免费av毛片视频| 欧美日韩福利视频一区二区| 欧美日韩精品网址| АⅤ资源中文在线天堂| 性欧美人与动物交配| 国产精品亚洲一级av第二区| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| 午夜视频精品福利| cao死你这个sao货| 可以在线观看毛片的网站| 午夜影院日韩av| 国产精品 国内视频| 亚洲 欧美一区二区三区| 成人三级黄色视频| 一级片免费观看大全| 啦啦啦韩国在线观看视频| 亚洲国产毛片av蜜桃av| tocl精华| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 久久这里只有精品19| 精品福利观看| 亚洲精华国产精华精| 欧美丝袜亚洲另类 | 国产熟女xx| 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3 | 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线 | 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 午夜久久久在线观看| 国产精品综合久久久久久久免费| 国产精品久久视频播放| 热re99久久国产66热| 草草在线视频免费看| 母亲3免费完整高清在线观看| www国产在线视频色| 在线观看舔阴道视频| 国产爱豆传媒在线观看 | av在线天堂中文字幕| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 亚洲精品中文字幕在线视频| 亚洲成av片中文字幕在线观看| 久久久久国内视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区中文字幕在线| 巨乳人妻的诱惑在线观看| 叶爱在线成人免费视频播放| 可以免费在线观看a视频的电影网站| 色综合婷婷激情| 18禁观看日本| 久久人妻福利社区极品人妻图片| 精品欧美一区二区三区在线| 白带黄色成豆腐渣| 中文字幕人成人乱码亚洲影| 老鸭窝网址在线观看| 精品日产1卡2卡| 天天一区二区日本电影三级| 在线永久观看黄色视频| 99riav亚洲国产免费| 成人18禁在线播放| av免费在线观看网站| 久久狼人影院| 亚洲五月天丁香| 国产激情久久老熟女| 超碰成人久久| 日韩精品免费视频一区二区三区| 人人妻人人澡人人看| 精品少妇一区二区三区视频日本电影| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 首页视频小说图片口味搜索| 成人av一区二区三区在线看| 夜夜爽天天搞| 欧美乱色亚洲激情| 国产av不卡久久| 欧美日韩亚洲国产一区二区在线观看| av中文乱码字幕在线| 大香蕉久久成人网| 手机成人av网站| 久久久久久国产a免费观看| 国内久久婷婷六月综合欲色啪| 亚洲真实伦在线观看| 久久久久九九精品影院| 欧美激情久久久久久爽电影| 天天添夜夜摸| 成人精品一区二区免费| 深夜精品福利| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 亚洲欧美激情综合另类| 12—13女人毛片做爰片一| 色播亚洲综合网| 91九色精品人成在线观看| www.999成人在线观看| 欧美一级毛片孕妇| 91字幕亚洲| 日韩大码丰满熟妇| 女性被躁到高潮视频| 淫秽高清视频在线观看| 黄片播放在线免费| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 日韩免费av在线播放| www.www免费av| 搞女人的毛片| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 女人高潮潮喷娇喘18禁视频| 久久香蕉激情| 在线观看www视频免费| 亚洲黑人精品在线| 人人妻人人看人人澡| 91麻豆精品激情在线观看国产| 国产亚洲欧美98| 老司机靠b影院| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| 亚洲成av片中文字幕在线观看| 国产精品久久电影中文字幕| 巨乳人妻的诱惑在线观看| x7x7x7水蜜桃| 成人av一区二区三区在线看| 男人操女人黄网站| 国产亚洲精品久久久久久毛片| 亚洲一码二码三码区别大吗| 搞女人的毛片| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 国产精品二区激情视频| 91大片在线观看| 国产又色又爽无遮挡免费看| 成人三级做爰电影| 一级a爱片免费观看的视频| 午夜激情福利司机影院| 国产成人欧美| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 中亚洲国语对白在线视频| 熟妇人妻久久中文字幕3abv| av在线天堂中文字幕| 久久国产亚洲av麻豆专区| 88av欧美| 黄色a级毛片大全视频| 精品国产美女av久久久久小说| 校园春色视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲成a人片在线一区二区| 日韩免费av在线播放| tocl精华| 黄色 视频免费看| 丝袜人妻中文字幕| 麻豆成人av在线观看| 亚洲av熟女| 中文字幕精品免费在线观看视频| 午夜亚洲福利在线播放| 久久精品亚洲精品国产色婷小说| 香蕉丝袜av| 9191精品国产免费久久| 亚洲人成77777在线视频| 怎么达到女性高潮| 天堂动漫精品| 脱女人内裤的视频| 亚洲熟妇熟女久久| 免费在线观看日本一区| АⅤ资源中文在线天堂| 亚洲 欧美一区二区三区| 日本精品一区二区三区蜜桃| 国内精品久久久久精免费| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 日韩高清综合在线| 精品国产国语对白av| 日韩免费av在线播放| 久久精品国产亚洲av高清一级| avwww免费| 熟女少妇亚洲综合色aaa.| 热re99久久国产66热| 国产成人欧美| 男女做爰动态图高潮gif福利片| 午夜福利免费观看在线| 高清毛片免费观看视频网站| 精品久久久久久成人av| 国产精品亚洲美女久久久| 日韩免费av在线播放| 十八禁网站免费在线| 午夜福利视频1000在线观看| 日本三级黄在线观看| www日本在线高清视频| 无遮挡黄片免费观看| 琪琪午夜伦伦电影理论片6080| 国产日本99.免费观看| 午夜两性在线视频| 免费高清在线观看日韩| 最近最新中文字幕大全电影3 | 中亚洲国语对白在线视频| 午夜激情av网站| 人成视频在线观看免费观看| 老司机在亚洲福利影院| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 国产成人影院久久av| 亚洲人成网站在线播放欧美日韩| 男人操女人黄网站| 久久精品人妻少妇| 夜夜夜夜夜久久久久| 91成人精品电影| 首页视频小说图片口味搜索| 久久狼人影院| 一本精品99久久精品77| 深夜精品福利| 亚洲av中文字字幕乱码综合 | 午夜激情av网站| 日本 欧美在线| 女同久久另类99精品国产91| 男人操女人黄网站| 男人舔奶头视频| 很黄的视频免费| 婷婷精品国产亚洲av在线| 成年免费大片在线观看| 国产又色又爽无遮挡免费看| 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 一区二区三区国产精品乱码| av在线天堂中文字幕| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费 | 国产一卡二卡三卡精品| 国产成人av激情在线播放| 亚洲精品色激情综合| 亚洲欧美日韩高清在线视频| 女性生殖器流出的白浆| 精品国产国语对白av| 99国产综合亚洲精品| 91九色精品人成在线观看| 香蕉丝袜av| 不卡av一区二区三区| 一夜夜www| 又黄又爽又免费观看的视频| 亚洲五月天丁香| 日本成人三级电影网站| 久久午夜亚洲精品久久| 久久久久久人人人人人| av片东京热男人的天堂| 国产在线观看jvid| 午夜久久久在线观看| 日韩欧美一区二区三区在线观看| 久久久久久久久免费视频了| 亚洲熟妇熟女久久| 91在线观看av| 国产亚洲精品久久久久5区| av电影中文网址| 亚洲av第一区精品v没综合| 国产精品国产高清国产av| 亚洲国产欧美一区二区综合| 亚洲三区欧美一区| 成年人黄色毛片网站| 老汉色∧v一级毛片| 在线观看日韩欧美| 2021天堂中文幕一二区在线观 | 深夜精品福利| 99国产精品99久久久久| 叶爱在线成人免费视频播放| 国产精品国产高清国产av| 色精品久久人妻99蜜桃| 国产精品亚洲一级av第二区| 久久九九热精品免费| 欧美亚洲日本最大视频资源| x7x7x7水蜜桃| 丁香欧美五月| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 久久久久精品国产欧美久久久| 黄片小视频在线播放| 精品国内亚洲2022精品成人| 99国产综合亚洲精品| 757午夜福利合集在线观看| av超薄肉色丝袜交足视频| 国产视频一区二区在线看| 好男人在线观看高清免费视频 | 法律面前人人平等表现在哪些方面| 丰满的人妻完整版| 亚洲精品av麻豆狂野| 日韩视频一区二区在线观看| 国产精品国产高清国产av| 桃红色精品国产亚洲av| 久久欧美精品欧美久久欧美| 亚洲成a人片在线一区二区| 在线观看一区二区三区| 精品一区二区三区av网在线观看| 香蕉av资源在线| √禁漫天堂资源中文www| 国产一卡二卡三卡精品| 久久 成人 亚洲| 成在线人永久免费视频| 亚洲国产精品合色在线| 国产成人影院久久av| 亚洲专区中文字幕在线| 久久精品国产99精品国产亚洲性色| av欧美777| 制服人妻中文乱码| 亚洲av日韩精品久久久久久密| 又黄又粗又硬又大视频| a级毛片在线看网站| 国产一级毛片七仙女欲春2 | 一区福利在线观看| 午夜免费鲁丝| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 国产成人精品无人区| 在线观看66精品国产| 真人一进一出gif抽搐免费| 欧美又色又爽又黄视频| 精品日产1卡2卡| 免费电影在线观看免费观看| 热re99久久国产66热| 两个人视频免费观看高清| 国产精品亚洲一级av第二区| 18禁黄网站禁片午夜丰满| 成人三级黄色视频| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 不卡av一区二区三区| 丝袜人妻中文字幕| 大型黄色视频在线免费观看| 老司机福利观看| 久久中文看片网| 久久青草综合色| 久久人妻福利社区极品人妻图片| 中文亚洲av片在线观看爽| 美女 人体艺术 gogo| 男女下面进入的视频免费午夜 | 午夜免费观看网址| 在线国产一区二区在线| 欧美黑人巨大hd| 精品电影一区二区在线| 国产激情久久老熟女| 啦啦啦 在线观看视频| 不卡av一区二区三区| 禁无遮挡网站| 国产三级在线视频| 九色国产91popny在线| av在线天堂中文字幕| 国产视频一区二区在线看| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| www.精华液| 美女免费视频网站| www国产在线视频色| 丁香欧美五月| 欧美成人免费av一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产麻豆成人av免费视频| 伊人久久大香线蕉亚洲五| 中文字幕精品亚洲无线码一区 | 极品教师在线免费播放| 无限看片的www在线观看| 69av精品久久久久久| 午夜激情av网站| 一个人观看的视频www高清免费观看 | 精品久久久久久久久久免费视频| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 两个人免费观看高清视频| 制服人妻中文乱码| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 男女之事视频高清在线观看| 999久久久精品免费观看国产| 成年女人毛片免费观看观看9| 免费在线观看完整版高清| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 精华霜和精华液先用哪个| 亚洲欧美日韩高清在线视频| 国产成人精品久久二区二区91| 一进一出抽搐gif免费好疼| 国产激情久久老熟女| 国产精品日韩av在线免费观看| 激情在线观看视频在线高清| 欧美日韩一级在线毛片| 日韩精品免费视频一区二区三区| 成人精品一区二区免费| 又大又爽又粗| 人人妻人人澡欧美一区二区| 最新美女视频免费是黄的| 俄罗斯特黄特色一大片| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费电影在线观看| 免费看日本二区| 日韩三级视频一区二区三区| 激情在线观看视频在线高清| 午夜老司机福利片| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 后天国语完整版免费观看| 一a级毛片在线观看| 男男h啪啪无遮挡| 99riav亚洲国产免费| 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 1024视频免费在线观看| 午夜福利18| 免费在线观看日本一区| 一级片免费观看大全| 免费看a级黄色片| 亚洲欧美日韩高清在线视频| 免费搜索国产男女视频| 亚洲真实伦在线观看| 我的亚洲天堂| 啪啪无遮挡十八禁网站| 日本五十路高清| 午夜免费鲁丝| 亚洲国产欧美一区二区综合| 2021天堂中文幕一二区在线观 | 制服丝袜大香蕉在线| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 日韩视频一区二区在线观看| 亚洲精品国产区一区二| 国产精品 欧美亚洲| 久久人妻福利社区极品人妻图片| 成人av一区二区三区在线看| 亚洲第一电影网av| 午夜亚洲福利在线播放| 天天躁夜夜躁狠狠躁躁| 久久国产精品人妻蜜桃| 欧美zozozo另类| 亚洲精品在线观看二区| 欧美一级a爱片免费观看看 | 欧美大码av| 成人午夜高清在线视频 | 成人18禁在线播放| 制服丝袜大香蕉在线| 18禁观看日本| 欧美久久黑人一区二区| 亚洲黑人精品在线|