• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Describing failure in geomaterials using second-order work approach

    2015-12-31 09:05:37
    Water Science and Engineering 2015年2期

    * Corresponding author.

    ?

    Describing failure in geomaterials using second-order work approach

    Fran?ois Nicota,*,Felix Darveba

    aInstitut de Recherche en Sciences et Technologies de l'Environnement et de l'Agriculture (IRSTEA),Erosion Torrentielle Neige et Avalanches (ETNA)-Geomechanics Group,Grenoble 38402,France

    bUniversite Joseph Fourier (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS),Laboratoire Sols,Solides,Structures et Risques,Grenoble 38041,France

    Received 13 March 2015; accepted 30 March 2015 Available online 12 May 2015

    * Corresponding author.

    Abstract

    Geomaterials are known to be non-associated materials.Granular soils therefore exhibit a variety of failure modes,with diffuse or localized kinematical patterns.In fact,the notion of failure itself can be confusing with regard to granular soils,because it is not associated with an obvious phenomenology.In this study,we built a proper framework,using the second-order work theory,to describe some failure modes in geomaterials based on energy conservation.The occurrence of failure is defined by an abrupt increase in kinetic energy.The increase in kinetic energy from an equilibrium state,under incremental loading,is shown to be equal to the difference between the external second-order work,involving the external loading parameters,and the internal second-order work,involving the constitutive properties of the material.When a stress limit state is reached,a certain stress component passes through a maximum value and then may decrease.Under such a condition,if a certain additional external loading is applied,the system fails,sharply increasing the strain rate.The internal stress is no longer able to balance the external stress,leading to a dynamic response of the specimen.As an illustration,the theoretical framework was applied to the well-known undrained triaxial test for loose soils.The influence of the loading control mode was clearly highlighted.It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory.When the plastic limit condition is met,the internal second-order work is nil.A class of incremental external loadings causes the kinetic energy to increase dramatically,leading to the sudden collapse of the specimen,as observed in laboratory.?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Failure in geomaterials; Undrained triaxial loading path; Second-order work; Kinetic energy; Plastic limit condition; Control parameter

    E-mail address: francois.nicot@irstea.fr (Fran?ois Nicot).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.05.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The notion of failure can be encountered in many fields,irrespective of the scale considered.This notion is essential in material sciences where the failure can be investigated on the specimen scale (the material point).It is also meaningful in civil engineering with regard to preventing or to predicting the occurrence of failure on a large scale.

    Ifthedefinitionoffailureseemsmeaningfulinsomecases,at least from a phenomenological point of view,this is not always true,particularly,when considering heterogeneous materials.With regard to a granular assembly on a microscopic scale,failure might be related to the contact opening between initially contacting grains.However,the kinematic investigation of granular materials,along any given loading path,reveals that a large fraction of the contacts open without any visible failure patternobservedonthemacroscopicscale.Thus,theusualview of failure as the breakage of a given material body into two piecescannot beappliedtocomplex,dividedmaterialsmadeup ofanassemblyofelementaryparticlesorsub-systemsdescribed as approximately non-breakable.

    For this reason,a mathematical definition of failure has emerged for solid materials.This definition was progressively built upon the plasticity theory,and developed early in the20th century in the field of metallic materials.Failure means that the external stress applied cannot be increased,and that finite strains may develop and progress in a constant stress state.

    For rate-independent materials,before failure occurrence along a given loading path,a unique strain state exists under a given external stress applied to the materials.This mathematical definition,applied to the case of a material point,leads to the following equations:

    where s is the Cauchy stress tensor,D is the strain rate tensor,and N0is the tangent stiffness operator.The constitutive behavior for this material point is defined by the incremental constitutive relationbetween the strain rate and a suitable objective time derivative of the Cauchy stress expressed with two six-component vectors D and s (Darve,1990; Wan et al.,2011),which requires that

    Eq.(2)is the failure criterion,and the equationcorresponds to the associated failure rule.The failure rule gives the strain rate in different directions once failure has occurred.It should be emphasized that the magnitude of the strain rate remains unknown,and only the direction is determined,in accordance with the kernel of the tangent stiffness operator N′.

    Basically,the plastic surface splits the stress space into two parts: the inner part and outer part.The inner part (plastic domain)includes the stress states that can be reached by the materials.The stress states located on the plastic surface are therefore referred to as the stress limit states.The classical theory states that failure occurs in a given stress state which is located on the plastic surface.According to this theory,no failure mode is expected to occur in a mechanical state inside the plastic surface.

    One famous counter-example is the liquefaction of loose sands along axisymmetric isochoric triaxial paths (Castro,1969; Lade,1992; Darve,1990).During this test,the volume of the specimen is kept constant (isochoric conditions),and a constant axial displacement rate is imposed.This experiment shows that the curve giving the changes in the deviatoric stress q,defined as the difference between the axial stress s1and the lateral stress s3,against the mean effective pressure p0passes through a maximum value,as shown in Fig.1.If the test is strain-controlled by an imposed constant axial strain rate,the test can be pursued beyond the deviatoric stress peak until the collapse of the specimen: both the deviatoric stress q and the mean effective pressure p0decrease and tend toward zero.This is the well-known liquefaction phenomenon.Otherwise,when the deviatoric stress peak is reached,if an infinitesimal axial load is added,i.e.,the strain control is replaced with a stress control,then a sudden failure occurs.Clearly,such experimental evidence evokes the notion of failure.According to the classical theory,the fact that the deviatoric stress peak (point P in Fig.1)remains strictly inside the plastic domain means that no failure is supposed to occur at this point.However,the experiment shows that a proper loading control (namely,a stress control)can cause a sudden failure,leading to the collapse of the specimen.

    Fig.1.Typical undrained triaxial behavior of loose sands.

    As a consequence,the classic theory is not general enough,and a variety of failure modes may finally occur strictly within the plastic surface.Plastic failure,detected by Eq.(2),is a particular failure mode.Other failure modes may be encountered as well before the plastic limit is reached (such as the failure mode occurring at point P in Fig.1).The detection of these failure modes requires a novel framework,which should lead to a different criterion from that given in Eq.(2).

    Before proceeding with a description of the novel framework's construction,we have to propose a clear definition of failure based on phenomenological arguments.The weakness of the classical theory lies in the fact that it is not based on a physical definition of failure,but rather on a mathematical concept of the stress limit state.The approach presented in this paper allows the recovery of the notion of a limit state in a broader way,as a consequence of the theory,but not as a basic definition.

    As far as non-viscous materials are concerned,we conceive that failure is related to a transition from a quasistatic regime toward a dynamic regime,giving rise to a sudden acceleration of the material points: the kinetic energy of the system evolves from a nil value to a strictly positive one.Thus,the failure is not a state,but a transition (bifurcation)from a quasistatic regime with a nil value of kinetic energy toward a dynamic regime with a non-zero value of kinetic energy.The failure occurs in a given mechanical state,which will be described as being potentially unstable: an increase in kinetic energy may take place under the loading conditions (Nicot et al.,2009,2012).

    In conclusion,the following definition around the notion of failure can be proposed: a material point in a given mechanical (stressestrain)state after a given loading history is described as being mechanically unstable as loading conditions lead to a bifurcation from a quasistatic regime toward a dynamic regime.This transition corresponds to a failure mode of the material.

    2.Second-order work theory

    2.1.Formulation on a large scale

    An attempt at definition of failure was made in the previous section,asitrelatedtoatransition(bifurcation)fromaquasistatic regimetowardadynamicregime.Inwhatfollows,weinvestigate the conditions in which the kinetic energy of a non-viscous material system,in equilibrium at a given time,may increase.

    For this purpose,a system made up of a given material,with a volume V0and a surface boundary S0,initially in a configuration C0(reference configuration),is considered.With a loading history,the system is in a strained configuration C,with a volume V and a surface boundary S,in equilibrium under a prescribed external load.Each material point in the volume V0is transformed into a material point in the volume V (Fig.2).All the material points in the volume V0are displaced,along with the deformation of their geometrical properties,including the surface vector,area,and volume.During this transformation,the material is likely to undergo rigid body motion,along with pure strain induced by stretching and spinning deformations.If large amounts of strain take place,both the initial configuration C0and current configuration C cannot be confused.

    We introduce the transformation c relating each material point x of the current configuration C to the corresponding material point X of the initial configurationThe continuity of the material ensures that c is bijective.By means of the transformation,any field ~geXT of the initial position X can be transformed into the field g(x)of the current position,with

    As c is bijective,the Jacobian determinant J of the tangent lineartransformation~F,withisstrictlypositive.~F isafunctionofthepositionX.Thedisplacementfields~ueXTatthe materialpoint in the initialconfiguration and u(x)at the material point in the current configuration are defined by the relationThus,is the Kronecher symbol.

    The kinetic energy of the system of configuration C,in equilibrium at time t,is given by the energy conservation equation expressed in the rate form: where _Ecrepresents the kinetic energy rate of the system.It is convenient to express the integrals in Eq.(3)with respect to the initial configuration by using the transformation c.Recalling thatand using Nanson's formula,which relates the current surface vector ndS to the corresponding surface vector n0dS0in the initial configuration,Eq.(3)is written as follows: which yields,after some transformations (Nicot and Darve,2007),the following:

    S0V0 where P denotes the Piola-Kirchoff stress tensor of the first kind,and

    The advantage of the formulation given in Eq.(5)is that all integrals are written with respect to a fixed domain.Thus,differentiation of Eq.(5)gives,after simplification (Nicot and Darve,2007; Nicot et al.,2007),the following: where s?P,n0denotes the stress distribution applied to the initial (reference)configuration.Furthermore,for any time increment Dt,the second-order Taylor expansion of the kinetic energy reads

    Combining Eqs.(6)and (8),and ignoring the o(Dt)term,finally yieldEq.(9)introduces explicitly the so-called internal secondorder work that is expressed through a semi-Lagrangian formalism as follows (Hill,1958):

    Fig.2.Transformation of a material system and surface vectors of initial and current configurations.

    The terminology of the internal second-order work is justified by the fact that Eq.(10)introduces the internal stress and strain variables P and~F.The first termon the right-hand side of Eq.(9)involves both stresses and displacements acting on the boundary of volume V0.This secondorder boundary term is therefore an external second-order work,and will be denoted hereafter as

    Thus,for the system in an equilibrium configuration at time t,Eq.(9)indicates that the increase in the kinetic energy of the system,over a small time range from t to ttDt,can be obtained by

    In particular,when the internal second-order work is nil,any loading condition,such thatensures thatan outburst in kinetic energy is expected.As an illustration,examples will be given in sections 3 and 4.2.2.Formulation on a small scale

    The particularization of this theoretical framework to the case of homogeneous material specimens is worth mentioning,because it corresponds to the laboratory specimen scale.Parallelepiped-like specimens subjected to a prescribed force or displacement on each side surface,directing both stress and strain fields,are examined.Investigating this elementary scale can be useful in the interpretation of the derived experimental results.Material specimens are considered homogeneous when both strain and stress fields are macro-homogeneous,in the sense given by Hill (1967): the external forces applied to the boundary of the specimen are derived from the average stress tensor,and the displacements of each point on the boundary are derived from the average strain tensor.When such conditions are met,the homogenous specimen is also referred to as a representative element volume (REV).

    Strictly speaking,a homogeneous specimen is not a material point,but actually a structural system with boundary conditions.As an illustration regarding granular materials,we can mention the fluctuating motion of grains that may exist even though the boundary conditions are kept constant.On average,over the whole specimen,the mechanical imbalance of grains is nil,but locally it is not nil.However,thanks to the macro-homogeneity,both strain and stress states are fully characterized by forces and displacements measured on the boundary.

    Let a parallelepiped specimen be considered.Each side face i (i?1,2,3)admits a normal vector Nithat coincides with the direction of velocity viof a fixed reference frame.The initial area of face i is denoted by Ai,and the initial length of the corresponding side is denoted by Li,as shown in Fig.3.The subscript 1 refers to the axial direction,whereas the subscripts 2 and 3 refer to the two lateral directions perpendicular to the axial direction (Fig.3).When a static condition is assigned to face i,it is convenient to introduce a resultant external force fiacting on this face,which is set to be normal to the face considered.The uniform external Lagrangian stress vector distributionacting on face i related to fiis also introducedThe displacement of each side face i,along the direction xi,is denoted by Ui.No tangential displacement is assumed to take place.When a kinematic condition is assigned to face i,the resultant external force fi(orthe stress distribution s0i)acting on this side corresponds to the external loading that must be applied to produce the prescribed displacement Ui.

    In these conditions,the displacement ~u of any point (x1,x2,x3)is

    Fig.3.Parallelepiped specimen and definition of axes.

    Then,we have,under homogeneous conditions,Finally,combining Eqs.(11),(14),and (15)leads to

    Eq.(16)indicates that the increase in kinetic energy,from an equilibrium state,is basically related to the imbalance between the external force rate and the internal stress rate.The side face i of the specimen is subjected to the force rateon the external side,and to the force ratedirected by the internal stress,on its internal side.When a mechanical state is reached,in the continuum mechanics sense,imbalances may exist locally,but on average,the equilibrium state is reached; the external force rate equals the internal stress rate,i.e.,on face i.In this case,we verify,according to Eq.(16),that the kinetic energy of the system does not evolve.

    It is essential to distinguish displacements and forces acting on the boundary of the specimen,with strain and stress acting within the specimen.During a quasistatic evolution of the specimen,along successive equilibrium states,the internal stress tensors within the specimen derived from internal forces applied to the sides are balanced with the external forces.This is sound until the specimen fails: if inertial effects take place,and the external stress is not balanced by the internal stress,a heterogeneous strain field may develop within the specimen.

    3.Interpretation of diffuse failure along undrained triaxial loading paths

    A homogeneous,parallelepiped specimen is considered throughout this section (Fig.3).The loading applied to the side face i of this specimen is supposed to occur in the normal direction.Each face i is subjected to a displacement Uialong the normal vector Ni,and the resultant force fiis also oriented along Ni.Neither tangential force nor shear strain is directed on the face.The Piola-Kirchoff stress tensor P is therefore diagonal.The same holds for the tensor_~F,which contains only diagonal terms,i.e.,Thus,it is convenient to replace the componentsandof diagonal tensorsandwith components,respectively,such that?,and

    In the axisymmetric undrained triaxial test,both the axial displacement rate (_U1>0)and the volume of the specimen are keptconstant.Thecurrentvolumerate_V isgivenbytheintegralUsing the relationtogether with the second Green formula,finally yields the following:

    where S0is the surface boundary of the parallelepiped specimen.Axisymmetric conditions with respect to axial direction mean that U2/L2?U3/L3and P2?P3(or f2/A2?f3/A3).Noting that A2?L1L3and A3?L1L2,the relation U2/L2? U3/L3is equivalent to U2A2?U3A3,so that

    Thus,the isochoric condition reads as follows:

    The experimental curve from the undrained triaxial test,as shown in Fig.4,giving the evolution of the internal deviatoric stress (qP?P1P3)versus the axial displacement,passes through a peak for sufficiently loose specimens,where point P shows the peak qP,and point M is in the softening regime.This is reported in abundant literature (Castro,1969; Lade and Pradel,1990; Lade,1992; Biarez and Hicher,1994; Chu et al.,2003).With a strain loading control (_U1>0 and _V?0),the response of the specimen follows a quasistatic evolution,passing through a succession of equilibrium states: Pi?fi/Ai.The curve in Fig.4 can be given in terms of the external deviatoric force qf?f1/A1f3/A3.

    Let us focus on the deviatoric stress peak (point P).At this equilibrium point,the internal stress leads to axial stressbP1and lateral stressbP3on the boundary of the specimen,where the superscript ^ represents the peak value.Now,let us imagine that an additional small amount of deviatoric loading Dqfis applied to the specimen at time t,over a time range Dt: _qf?Dqf=Dt.This loading causes the system to evolve in such a way that _U1>0.Under such a condition,the internal deviatoric stress qPcannot exceed the peak valuePrecisely at the peak,

    As _V?0,then 2A3_U3?A1_U1.Eq.(16)becomes

    which yields,as _qP?0,the following:

    Fig.4.Internal deviatoric stress versus axial displacement obtained from undrained triaxial test.

    At time t,the system is at rest,with Ec(t)?0.Thus,Ec(ttDt)is strictly positive.At the peak of qP,under the effect of an additional deviatoric loading Dqf,the specimen's kinetic energy increases from zero to a strictly positive value DqfA1_U1Dt=2 over the time interval [t,ttDt].The failure mechanism of the specimen is initiated at the same time that the internal second-order work vanishes.In fact,the internal deviatoric stress qPwithin the specimen no longer balances the external deviatoric force qf: qfincreases fromto t Dqf,whereas qPfollows a constitutive path and decreases from the peak valuealong the descending branch.The unbalanced stress causes the dynamic response of the specimen,characterized by a strictly positive value of Ec(ttDt)in Eq.(21).This is exactly what is observed experimentally (Castro,1969; Lade and Pradel,1990; Lade,1992; Chu et al.,2003; Darve et al.,2004)and numerically when using a discrete element method (Sibille et al.,2008; Darve et al.,2007).

    4.Plastic limit state and second-order work theory

    The plastic surface corresponds to a set of limit states within the stress space.Whatever loading path is considered,the stress state cannot overpass the plastic surface.Let us consider a drained triaxial loading path.A constant axial displacement rate _U1is prescribed,along with a constant lateral force (f2?f3).For dense specimens,the curve from drained triaxial test,as shown in Fig.5,giving the evolution of f1(or P1?f1/A1)versus U1,passes through a peak,and then tends toward a plateau.Using this loading mode,the response of the specimen follows a quasistatic evolution.Thus,the external forces applied to each face are balanced by the internal stresses: fi?PiAi.Using this loading mode,the axial response of the specimen can be analyzed either in terms of the external force f1or in terms of the internal stress P1.Before the peak,along the ascending branch,the internal second-order work can be expressed as and is therefore strictly positive.

    Fig.5.Axial stress versus axial displacement obtained from drained triaxial test.

    Let us focus on the axial stress peak (point P).At this point,an external axial forcebf1is applied to the specimen,while the lateral force (f2?f3)is kept constant.Now,let us imagine that an additionalsmall amount of axial loading Df1is applied to the

    specimen at time t,over a time range Dt:_ f1?Df1=Dt.This loading causes the system to evolve,in a way such that _U1>0.Under such a condition,the internal axial stress P1cannot exceed the peak valuebP1?bf1=A1.Precisely at the peak,_P1?0.As a consequence,Eq.(16)yields the following:

    Finally,

    At time t,the system is at rest,with Ec(t)?0.Thus,Ec(ttDt)is strictly positive.The specimen's kinetic energy increases from zero to a positive value Df1_U1Dt=2 over the time interval [t,ttDt].The internal axial stress P1within the specimen no longer balances the external axial force f1: with the increase of f1,P1follows a constitutive path and decreases frombP1along the descending branch.The unbalanced axial stress is responsible for the dynamic response of the specimen,characterized by a strictly positive value of Ec(ttDt)in Eq.(23).

    Moreover,the failure mechanism of the specimen is initiated when the plastic limit state is reached,withthe internal second-order work is therefore nil.

    Thus,the plastic limit theory appears to be a special situation of a more general second-order work theory.Failure can occur when the plastic limit condition is met.This situation is properly described by the second-order work theory (Darve et al.,2004; Nicot et al.,2009).However,this theory states that failure modes also exist and can be encountered before the plastic limit is reached.The test along the undrained triaxial loading path illustrates this situation perfectly well.Recalling that

    5.Closing remarks

    This paper has investigated the issue of failure in rateindependent materials.Basically,the occurrence of failure is defined by an abrupt increase in kinetic energy.Starting from this physical evidence,the approach developed in this paper is based on energy conservation,leading to a basic equation that introduces both external and internal second-order works.The increase in kinetic energy from an equilibrium state,under incremental loading,is shown to be equal to the difference between the external second-order work,involving the external loading parameters,and the internal second-order work,involving the constitutive properties of the material.The purpose of this study was to investigate how the externalsecond-order work can be greater than the internal secondorder work,leading to an increase in kinetic energy.The mechanical reason for this involves a distinction between the internal stress within the material and forces or stresses applied to the boundary of the system.When a stress limit state is reached,a certain stress component passes through a maximum value and then may decrease.This feature corresponds to a vanishing or a negative value of the internal second-order work.At this point,or along the descending branch,if a certain additional external loading is applied,the system fails,sharply increasing the strain rates.The internal stress no longer balances the external stress,leading to a dynamic response of the specimen.

    This theoretical framework was applied to the well-known undrained triaxial test for loose soils.Although the sudden collapse observed after the deviatoric stress peak remains unclarified by the classic theory for the plastic limit state,the second-order work theory is able to describe such an event perfectly.In addition,the plastic limit theory appears to be a particular case of this more general second-order work theory.When the plastic limit condition is met,the internal secondorder work is nil.Thus,a class of incremental external loadings exists that causes the kinetic energy to increase dramatically.

    Acknowledgements

    The authors would like to express their sincere thanks to the French Research Network MeGe (Multiscale and Multiphysics Couplings in Geo-environmental Mechanics GDR CNRS 3176/2340,2008e2015)for having supported this work.

    References

    Biarez,J.,Hicher,P.Y.,1994.Elementary Mechanics of Soil Behaviour,Saturated Remoulded Soils.A.A.Balkema,Rotterdam.

    Castro,G.,1969.Liquefaction of sands.In: Harvard Soil Mechanics Series,81.Harvard University Press,Cambridge.

    Chu,J.,Leroueil,S.,Leong,W.K.,2003.Unstable behavior of sand and its implication for slope instability.Can.Geotech.J.40(5),873e885.

    Darve,F.,1990.The expression of rheological laws in incremental form and the main classes of constitutive equations.In: Darve,F.,ed.,Geomaterials Constitutive Equations and Modelling.Elsevier,Amsterdam,pp.123e148.

    Darve,F.,Servant,G.,Laouafa,F.,Khoa,H.D.V.,2004.Failure in geomaterials,continuous and discrete analyses.Comput.Fail.Mech.Geomater.193(27e29),3057e3085.http://dx.doi.org/10.1016/j.cma.2003.11.011.

    Darve,F.,Sibille,L.,Daouadji,A.,Nicot,F.,2007.Bifurcations in granular media: macro- and micro-mechanics approaches.Comptes Rendus Mecanique 335(9e10),496e515.http://dx.doi.org/10.1016/j.crme.2007.08.005.

    Hill,R.,1958.A general theory of uniqueness and stability in elastic-plastic solids.J.Mech.Phys.Solids 6(3),236e249.http://dx.doi.org/10.1016/0022-5096(58)90029-2.

    Hill,R.,1967.The essential structure of constitutive laws for metal composites and polycrystals.J.Mech.Phys.Solids 15(2),79e95.http://dx.doi.org/10.1016/0022-5096(67)90018-X.

    Lade,P.V.,Pradel,D.,1990.Instability and flow of granular materials,I: Experimental observations.J.Eng.Mech.116(11),2532e2550.

    Lade,P.V.,1992.Static instability and liquefaction of loose fine sandy slopes.J.Geotech.Eng.118(1),51e71.http://dx.doi.org/10.1061/(ASCE)0733-9410(1992)118:1(51).

    Nicot,F.,Darve,F.,2007.A micro-mechanical investigation of bifurcation in granular materials.Int.J.Solids Struct.44(20),6630e6652.http://dx.doi.org/10.1016/j.ijsolstr.2007.03.002.

    Nicot,F.,Darve,F.,Khoa,H.D.V.,2007.Bifurcation and second-order work in geomaterials.Int.J.Numer.Anal.Methods Geomech.31(8),1007e1032.http://dx.doi.org/10.1002/nag.573.

    Nicot,F.,Sibille,L.,Darve,F.,2009.Bifurcation in granular materials: an attempt at a unified framework.Int.J.Solids Struct.46(22e23),3938e3947.http://dx.doi.org/10.1016/j.ijsolstr.2009.07.008.

    Nicot,F.,Sibille,L.,Darve,F.,2012.Failure in rate-independent granular materials as a bifurcation toward a dynamic regime.Int.J.Plasticity 29,136e154.http://dx.doi.org/10.1016/j.ijplas.2011.08.002.

    Sibille,L.,Donze,F.,Nicot,F.,Chareyre,B.,Darve,F.,2008.Bifurcation detection and catastrophic failure.Acta Geotecnica 3(1),14e24.

    Wan,R.G.,Pinheiro,M.,Guo,P.J.,2011.Elastoplastic modelling of diffuse instability response of geomaterials.Int.J.Numer.Anal.Methods Geomech.35(2),140e160.http://dx.doi.org/10.1002/nag.921.

    精品一区二区三卡| 亚洲精品成人av观看孕妇| 满18在线观看网站| 成人综合一区亚洲| 亚洲国产欧美日韩在线播放| 国产片特级美女逼逼视频| 中文字幕最新亚洲高清| 黄色怎么调成土黄色| 亚洲国产精品一区三区| 国产成人免费观看mmmm| 免费观看a级毛片全部| 最黄视频免费看| 中国国产av一级| 9热在线视频观看99| 国产色爽女视频免费观看| 性高湖久久久久久久久免费观看| 亚洲美女视频黄频| videossex国产| 午夜精品国产一区二区电影| 国产免费现黄频在线看| 久久这里只有精品19| 天天躁夜夜躁狠狠躁躁| 在线亚洲精品国产二区图片欧美| 日韩熟女老妇一区二区性免费视频| 中文欧美无线码| 欧美另类一区| 99热全是精品| 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 大片电影免费在线观看免费| 9热在线视频观看99| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 大码成人一级视频| 国产 精品1| 在线观看一区二区三区激情| 最近最新中文字幕大全免费视频 | 婷婷色av中文字幕| 久久久久久久久久成人| av福利片在线| 最后的刺客免费高清国语| 中文字幕制服av| 亚洲成av片中文字幕在线观看 | 男女边摸边吃奶| 国产精品人妻久久久影院| 18禁在线无遮挡免费观看视频| 18禁观看日本| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| 久久精品国产亚洲av涩爱| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 国产成人欧美| www.av在线官网国产| 国产精品久久久久久久电影| 99国产综合亚洲精品| 亚洲第一区二区三区不卡| 九草在线视频观看| 在线精品无人区一区二区三| 久久人妻熟女aⅴ| 亚洲精品久久成人aⅴ小说| 国产精品不卡视频一区二区| 亚洲伊人色综图| 狂野欧美激情性bbbbbb| 亚洲人与动物交配视频| 婷婷成人精品国产| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| 免费观看a级毛片全部| 久久久久久伊人网av| 欧美日韩成人在线一区二区| 69精品国产乱码久久久| 免费不卡的大黄色大毛片视频在线观看| 日本wwww免费看| 欧美性感艳星| 韩国精品一区二区三区 | 国产无遮挡羞羞视频在线观看| 精品少妇黑人巨大在线播放| 天天影视国产精品| 另类亚洲欧美激情| 伦精品一区二区三区| 久久精品人人爽人人爽视色| 欧美人与善性xxx| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 久久久久久人妻| 女性生殖器流出的白浆| 777米奇影视久久| 99久国产av精品国产电影| 久久久久久久亚洲中文字幕| 亚洲精品日韩在线中文字幕| 黄色毛片三级朝国网站| 天天影视国产精品| av在线观看视频网站免费| 久久午夜综合久久蜜桃| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 亚洲综合色网址| 免费日韩欧美在线观看| a级毛色黄片| 麻豆精品久久久久久蜜桃| 国产毛片在线视频| 97超碰精品成人国产| 亚洲第一av免费看| 午夜视频国产福利| 深夜精品福利| 岛国毛片在线播放| 大香蕉久久网| 亚洲综合色惰| 在线免费观看不下载黄p国产| 亚洲人成网站在线观看播放| 69精品国产乱码久久久| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 午夜av观看不卡| 国产1区2区3区精品| 男人舔女人的私密视频| 国产精品一区二区在线观看99| 国产麻豆69| 高清欧美精品videossex| 久久狼人影院| 国产精品无大码| 国产成人免费无遮挡视频| 十八禁高潮呻吟视频| 插逼视频在线观看| 国产黄色免费在线视频| 国产一区二区在线观看日韩| 十分钟在线观看高清视频www| 国产一区二区在线观看av| 精品一区在线观看国产| 午夜91福利影院| 秋霞在线观看毛片| 九九爱精品视频在线观看| 免费人成在线观看视频色| 国产成人精品福利久久| 日本黄大片高清| 日韩伦理黄色片| 欧美日韩综合久久久久久| 国产精品国产三级国产av玫瑰| 欧美日韩视频高清一区二区三区二| 国产精品久久久久成人av| 51国产日韩欧美| 性色av一级| 老女人水多毛片| 国产探花极品一区二区| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲欧美精品永久| 一边摸一边做爽爽视频免费| 999精品在线视频| 精品人妻偷拍中文字幕| av.在线天堂| 精品熟女少妇av免费看| 永久网站在线| 一边亲一边摸免费视频| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 激情五月婷婷亚洲| 老熟女久久久| 这个男人来自地球电影免费观看 | 久久精品人人爽人人爽视色| av免费在线看不卡| 热re99久久国产66热| 精品99又大又爽又粗少妇毛片| 午夜免费观看性视频| 免费高清在线观看日韩| av福利片在线| 欧美性感艳星| 午夜福利视频在线观看免费| freevideosex欧美| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 免费高清在线观看视频在线观看| 性色avwww在线观看| 国产日韩欧美在线精品| 国产精品国产三级专区第一集| av国产精品久久久久影院| 久久久国产欧美日韩av| 亚洲天堂av无毛| 亚洲欧美清纯卡通| 热99久久久久精品小说推荐| 一级毛片 在线播放| 国产精品一区www在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美在线一区| 久热久热在线精品观看| 欧美精品一区二区大全| 99久久综合免费| 成年女人在线观看亚洲视频| av免费观看日本| 欧美人与性动交α欧美软件 | 日本爱情动作片www.在线观看| 精品人妻一区二区三区麻豆| 汤姆久久久久久久影院中文字幕| 亚洲高清免费不卡视频| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 曰老女人黄片| av有码第一页| 国产日韩一区二区三区精品不卡| 亚洲第一av免费看| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 国产 精品1| 亚洲国产精品国产精品| 伦理电影大哥的女人| 男的添女的下面高潮视频| 精品久久蜜臀av无| 嫩草影院入口| 自线自在国产av| 久久久久精品人妻al黑| 18在线观看网站| 国产成人免费观看mmmm| 看免费av毛片| 18禁动态无遮挡网站| 国产精品不卡视频一区二区| 蜜臀久久99精品久久宅男| videossex国产| 另类亚洲欧美激情| 亚洲国产av影院在线观看| 最近的中文字幕免费完整| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 精品人妻一区二区三区麻豆| 91国产中文字幕| 高清欧美精品videossex| 亚洲性久久影院| 亚洲精品乱久久久久久| 国产精品久久久久久精品古装| 免费观看av网站的网址| 男男h啪啪无遮挡| 国产av一区二区精品久久| 国产麻豆69| 人妻系列 视频| 99视频精品全部免费 在线| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 街头女战士在线观看网站| 日本欧美国产在线视频| 国产高清不卡午夜福利| 亚洲,一卡二卡三卡| 亚洲精品久久成人aⅴ小说| 视频区图区小说| 亚洲欧美日韩另类电影网站| 国产成人精品久久久久久| 亚洲 欧美一区二区三区| 久久精品aⅴ一区二区三区四区 | 国产国拍精品亚洲av在线观看| 久久精品aⅴ一区二区三区四区 | 99久久人妻综合| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费| 亚洲久久久国产精品| 久久婷婷青草| 精品人妻一区二区三区麻豆| 又黄又爽又刺激的免费视频.| 欧美精品高潮呻吟av久久| 精品人妻熟女毛片av久久网站| 久久久精品免费免费高清| 久久精品国产亚洲av天美| 九色亚洲精品在线播放| 在线 av 中文字幕| 国产亚洲精品久久久com| 看免费av毛片| 免费大片18禁| 18禁在线无遮挡免费观看视频| 夜夜骑夜夜射夜夜干| 一二三四中文在线观看免费高清| 观看美女的网站| 春色校园在线视频观看| 秋霞在线观看毛片| 另类精品久久| 麻豆精品久久久久久蜜桃| 亚洲伊人色综图| 国产精品不卡视频一区二区| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 欧美人与性动交α欧美精品济南到 | 97在线人人人人妻| 天天影视国产精品| 少妇高潮的动态图| 亚洲成色77777| 亚洲欧美精品自产自拍| 日韩人妻精品一区2区三区| 最新中文字幕久久久久| 亚洲综合色网址| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| 男女午夜视频在线观看 | 极品人妻少妇av视频| 中国国产av一级| av电影中文网址| 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 国产熟女欧美一区二区| 免费在线观看黄色视频的| 免费播放大片免费观看视频在线观看| 精品午夜福利在线看| 国产精品国产三级国产av玫瑰| 各种免费的搞黄视频| 亚洲精品国产色婷婷电影| 制服人妻中文乱码| 99久久精品国产国产毛片| 老司机亚洲免费影院| 9热在线视频观看99| 热re99久久精品国产66热6| 亚洲av在线观看美女高潮| 亚洲国产精品国产精品| 18+在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 久久免费观看电影| 国产激情久久老熟女| 一本大道久久a久久精品| 乱人伦中国视频| 91精品三级在线观看| 欧美日韩成人在线一区二区| 免费久久久久久久精品成人欧美视频 | 国产免费一级a男人的天堂| 久久精品国产自在天天线| 哪个播放器可以免费观看大片| 国产永久视频网站| 久久精品久久久久久噜噜老黄| 亚洲av成人精品一二三区| 精品久久蜜臀av无| av天堂久久9| 咕卡用的链子| 男女边吃奶边做爰视频| 国产精品三级大全| 卡戴珊不雅视频在线播放| 啦啦啦视频在线资源免费观看| 国产综合精华液| 观看美女的网站| 丰满迷人的少妇在线观看| 久久热在线av| 两个人看的免费小视频| 日本欧美国产在线视频| 日韩一区二区三区影片| 国产色爽女视频免费观看| 午夜福利乱码中文字幕| 久久国产精品大桥未久av| 国产精品成人在线| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 免费不卡的大黄色大毛片视频在线观看| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 精品卡一卡二卡四卡免费| 丝袜喷水一区| 男女下面插进去视频免费观看 | 人人澡人人妻人| 国产片特级美女逼逼视频| 韩国精品一区二区三区 | 精品一区在线观看国产| 少妇人妻精品综合一区二区| 国产精品国产av在线观看| 精品酒店卫生间| 国产精品无大码| 91精品国产国语对白视频| 亚洲图色成人| 精品国产一区二区三区久久久樱花| 又粗又硬又长又爽又黄的视频| 国产老妇伦熟女老妇高清| 青春草视频在线免费观看| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| 久久精品国产鲁丝片午夜精品| 国产有黄有色有爽视频| 精品久久国产蜜桃| 黄网站色视频无遮挡免费观看| 免费av不卡在线播放| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 最后的刺客免费高清国语| 成年动漫av网址| 亚洲av国产av综合av卡| 色吧在线观看| 免费日韩欧美在线观看| 亚洲图色成人| 国产成人精品福利久久| 久久99精品国语久久久| 日本猛色少妇xxxxx猛交久久| 一本久久精品| 国产欧美日韩一区二区三区在线| 久久婷婷青草| 亚洲欧美精品自产自拍| 日本wwww免费看| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 亚洲精品日韩在线中文字幕| 免费大片18禁| 丝袜喷水一区| 国产黄色免费在线视频| 热re99久久国产66热| 亚洲精品一区蜜桃| 国产成人精品无人区| 9色porny在线观看| 中文字幕免费在线视频6| 女人久久www免费人成看片| 五月玫瑰六月丁香| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 三上悠亚av全集在线观看| 欧美激情国产日韩精品一区| 日本av免费视频播放| av在线播放精品| 久久久久久人妻| 色94色欧美一区二区| av片东京热男人的天堂| 男男h啪啪无遮挡| 在线观看人妻少妇| 国产免费福利视频在线观看| 国产成人精品婷婷| 最近的中文字幕免费完整| 高清视频免费观看一区二区| 欧美日韩精品成人综合77777| 热re99久久国产66热| 国产又爽黄色视频| 男女啪啪激烈高潮av片| 日韩成人av中文字幕在线观看| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| 久久久国产一区二区| 少妇人妻精品综合一区二区| 亚洲精品美女久久av网站| 一区二区av电影网| a 毛片基地| 日本黄色日本黄色录像| 成人国语在线视频| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| 久久ye,这里只有精品| 免费黄频网站在线观看国产| 国产 一区精品| 热99国产精品久久久久久7| 精品少妇黑人巨大在线播放| 最近最新中文字幕免费大全7| 久久99热6这里只有精品| 永久网站在线| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 精品一区二区免费观看| 热re99久久精品国产66热6| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 精品亚洲成a人片在线观看| 国产精品一国产av| 日韩一区二区三区影片| 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频 | 免费不卡的大黄色大毛片视频在线观看| 男人舔女人的私密视频| 午夜福利在线观看免费完整高清在| 一区二区三区精品91| 最近手机中文字幕大全| 欧美人与善性xxx| 五月玫瑰六月丁香| 天天躁夜夜躁狠狠躁躁| 国产永久视频网站| 亚洲高清免费不卡视频| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 在线亚洲精品国产二区图片欧美| 成人毛片a级毛片在线播放| 日韩成人av中文字幕在线观看| 老女人水多毛片| 婷婷色综合大香蕉| 欧美成人午夜精品| 纵有疾风起免费观看全集完整版| av卡一久久| 伦精品一区二区三区| 国产男女内射视频| 亚洲美女搞黄在线观看| 97在线人人人人妻| 精品人妻偷拍中文字幕| 中国国产av一级| 国产精品久久久av美女十八| 最近最新中文字幕大全免费视频 | 亚洲伊人久久精品综合| 国产亚洲精品久久久com| 另类亚洲欧美激情| 国产精品一国产av| 国产成人免费无遮挡视频| 久久久a久久爽久久v久久| 制服丝袜香蕉在线| 国产1区2区3区精品| 欧美97在线视频| 日韩中字成人| 一二三四在线观看免费中文在 | 男人操女人黄网站| 色婷婷久久久亚洲欧美| 黄色配什么色好看| 国产精品一区二区在线不卡| 国产色爽女视频免费观看| 国产一区二区三区av在线| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 欧美精品高潮呻吟av久久| 美女主播在线视频| 国产 精品1| 99视频精品全部免费 在线| 中文字幕av电影在线播放| 赤兔流量卡办理| 国产男人的电影天堂91| 婷婷成人精品国产| 国产av精品麻豆| 毛片一级片免费看久久久久| 国产探花极品一区二区| 日韩中文字幕视频在线看片| 欧美丝袜亚洲另类| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| av在线app专区| 波多野结衣一区麻豆| 久久青草综合色| 欧美97在线视频| 免费高清在线观看视频在线观看| 伦理电影免费视频| 97在线人人人人妻| av免费观看日本| 国产精品一区www在线观看| 久久久久久久久久久免费av| 伦理电影免费视频| 天天影视国产精品| 国产欧美日韩综合在线一区二区| 少妇熟女欧美另类| 国产精品久久久久久久电影| 久久97久久精品| 赤兔流量卡办理| 国产精品国产三级国产av玫瑰| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕av电影在线播放| 国产午夜精品一二区理论片| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 精品一区二区三卡| 美女主播在线视频| av女优亚洲男人天堂| 天堂中文最新版在线下载| 精品国产国语对白av| 欧美激情极品国产一区二区三区 | 国产深夜福利视频在线观看| 久久99蜜桃精品久久| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| av电影中文网址| 国产精品.久久久| 免费观看性生交大片5| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 国产又爽黄色视频| 亚洲精品乱久久久久久| 熟妇人妻不卡中文字幕| 日本与韩国留学比较| 下体分泌物呈黄色| 日本免费在线观看一区| 91精品伊人久久大香线蕉| 看免费成人av毛片| 综合色丁香网| 高清视频免费观看一区二区| 美女xxoo啪啪120秒动态图| 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 中文字幕免费在线视频6| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 国产 一区精品| 中文字幕免费在线视频6| 99香蕉大伊视频| 纯流量卡能插随身wifi吗| 一区在线观看完整版| 如何舔出高潮| 26uuu在线亚洲综合色| 美女视频免费永久观看网站| 国产一区二区三区av在线| 韩国高清视频一区二区三区| 一区二区三区精品91| 欧美成人午夜精品| av播播在线观看一区| 青春草国产在线视频| 国产极品天堂在线| 韩国av在线不卡| av在线观看视频网站免费| 性色av一级| 香蕉国产在线看| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 下体分泌物呈黄色| 久久鲁丝午夜福利片| 99热网站在线观看| 水蜜桃什么品种好| 高清视频免费观看一区二区| 日本wwww免费看| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院 | 国产女主播在线喷水免费视频网站| 久久久精品94久久精品| 久热久热在线精品观看| 久久国产精品大桥未久av| 一边亲一边摸免费视频| 婷婷成人精品国产| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 伊人久久国产一区二区| 男女边摸边吃奶| 亚洲欧美清纯卡通| 国产在线视频一区二区|