• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Search Space Pruning Based on Image Tools for Preliminary Inrerplanerary Trajecrory Design

    2015-02-09 06:08:53YangDalin楊大林XuBo徐波GaoYoutao高有濤
    關(guān)鍵詞:徐波大林

    Yang Dalin(楊大林),Xu Bo(徐波),Gao Youtao(高有濤)*

    1.College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;2.School of Astronomy&Space Science,Nanjing University,Nanjing 210093,P.R.China

    (Received 13 October 2014;revised 10 March 2015;accepted 20 April 2015)

    Search Space Pruning Based on Image Tools for Preliminary Inrerplanerary Trajecrory Design

    Yang Dalin(楊大林)1,Xu Bo(徐波)2,Gao Youtao(高有濤)1*

    1.College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;2.School of Astronomy&Space Science,Nanjing University,Nanjing 210093,P.R.China

    (Received 13 October 2014;revised 10 March 2015;accepted 20 April 2015)

    Absrracr:A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.

    trajectory optimization;global optimization;local minima;gravity assist space pruning(GASP)algorithm;image tool

    0 Inrroducrion

    Interplanetary trajectory design problem can be formalized as global optimization problem[1-2]. Multiple gravity assist(MGA)problem and multiple gravity assist with one deep space maneuver(MGA-1DSM)problem are essentially two optimization problems which describe a spacecraft equipped with a chemical propulsion system travelling in the solar system.The spacecraft is constrained to thrust only at planetary encounters in MGA problem.However,this limitation is removed in MGA-1DSM problem,and its engine is allowed to thrust once at any time during each trajectory leg.The objective of the trajectory optimization is to search trajectories for spacecraft that are optimal with respect to propellant consumption or transfer time.Consequently,more complex mission can be completed under the existing engineering constraints.

    According to the type of the thruster considered for the spacecraft,the trajectory design and optimization problems can be divided into two main typologies.The first one is connected with spacecraft equipped with the chemical thruster,where the thrust duration is much shorter than the total flight time.Besides,the chemical thruster can achieve a high thrust.Therefore,it may be modeled as instantaneous velocity increment.The trajectory leg,as a reasonable first approximation,can be considered as the solution of two body problem.With the time nodes and the ephemeris for planets,the total magnitude of velocity increment can be determined.In mathematical,the trajectory optimization problem of spacecraft with chemical thruster is a finite di-mension global optimization problem with nonlinear constraints[3-6].The second one appears with spacecraft equipped with a low but continuous thruster,which is applied to modify the trajectory of spacecraft over an extended period of time. The low thrust trajectory optimization problem is qualitatively different from the conventional chemical thruster situation,as the probe motion arc is not integral anymore.Moreover,magnitude and direction of the low thruster are constantly changing with time.The objective of low thrust trajectory optimization problem is to model and determine the optimal thrust vector so that the given performance index is optimized.Traditionally,low-thrust trajectory optimization problem are solved by the application of numerical optimal control theory.These methods are not the global optimal methods,and it is to find″a solution″not″the best solution″.The convergence behavior of these methods depends on a given initial guess,which is often hard to find[7-11].

    Because of the large time scale and the complicated relative motion between the planets,the landscape of the objective function presents a large number of clustered minima[12-13],and it is easy to converge to one of local minima when using traditional optimizers.In addition,in order to avoid missing feasible solution,the initial scope of the search space is general relatively large[14].Effective global optimization algorithms are encouraged and the research work is mainly divided into the following two classes.The first one is a problem of what appears to be a″blackbox″problem,some standard global optimization solvers,such as differential evolution(DE),particle swarm optimization(PSO),genetic algorithm(GA)and simulated annealing(SA),are introduced to solve the above problem.These solvers are not effective when used alone.However,the cooperative version can find a better solution in space trajectory optimization problem[1,15].Besides the stochastic or heuristic methods list above,some deterministic methods like branching,branch and bound and the hybridization of stochastic and deterministic are proposed[16-18].Some of them perform well in the specific problem and can identify the known best solutions in the corresponding problem.The second one appears with the structure of the search space and the nature of the problem are analyzed and may therefore be used to define the global optimization strategies.The efficiency has been demonstrated by the gravity-assist space pruning(GASP)algorithm,which is proposed by Myatt et al[19].However,it was only used to preprocess the search space and some stochastic solvers are still used to search the reduced domains. Although the performance is better than the situation that the entire search space is managed by the stochastic solver directly,some isolated interesting solutions may still be left off.Thanks to the image tools,the boundary coordinates of the reduced domain distributed over the initial search space can be identified easily by the matlab toolbox.A novel method which blends the characteristics of GASP algorithm with the image identification,now called GASP-II algorithm,is proposed in this paper.

    Besides,a method which blends the grid sampling with the image identification,now called GS-II algorithm,is also presented.GS-II is a method to substitute the stochastic solvers for searching the reduced domains.Grid sampling is an effective optimizer for low dimensionalities,but in high dimensionalities it is usually inefficient for large computational burden.In classical grid sampling process,the interval must be sufficiently fine to avoid loosing interesting domains. In this paper,grid sampling process will be divided into several steps until the global optimum is located.Firstly,the large interval with the large Lipschitzian tolerances are applied to avoid loosing interesting domains with little function evaluations.Then the grid sampling with appropriate interval is employed in the reduced domains obtained in the previous step.With the help of image identification,the boundary coordinates of the reduced domain can be identified easily.Repeat the previous step until the reduced domain is small enough to locate the global optimum effi-ciently.The Lipschitzian tolerances used to determine the reduced domain are always difficult to give,because the feasible domain may be left off with the inaccurate estimations.In this paper,the optimal solution in the previous grip sampling process is used as the Lipschitzian tolerance in next step which is demonstrated to be effective in next section.

    1 Marhemarical Formalizarion

    The interplanetary trajectories will be modeled by using the patched conic method.The fundamental assumption underneath this method is that the trajectory outside the scope of influence(SOI)of planets is the Kepler orbit around the sun.When the spacecraft is inside SOI of planets,the trajectories are the Keper orbit around the planet.Because of the large spatial scale of the solar system,the size of SOI can be ignored and simplified into a point in space for interplanetary trajectory.Each conic leg for interplanetary trajectories is the solution of Newton's law of universal gravitation

    where r is the position of spacecraft andμthe gravitational constant of center body.Based on the above assumptions,the solution of the MGA problem represents an interplanetary trajectory of the spacecraft equipped with chemical rocket engines,and the engines are constrained to thrust only at planetary encounters[20].In this paper,one considers the spacecraft launching from the Earth and finally reaching the target planet with the help of the gravitational pull of the planets the spacecraft flyby.The departure time from the Earth is t0,and the duration needed for each conic leg connecting two consecutive planets are Ti(i= 1,…,N+1),where N is the number of planets in the gravity assist sequence.Depending on the patched conic approximation,the heliocentric position vector of planetment and the heliocentric position vector of planetTjmoment can be given by the ephemeris,then the corresponding″Lambert problem″can be solved to give the departure velocity and the arrive velocity of each trajectory leg[21].In order to simplify the description of the MGA problem,multiple revolution cases and retrograde cases are not considered in this paper. After that,the powered flyby trajectories are determined by the entrance velocityand the exit velocitywhich are given by the above″Lambert problem″[22].The details are shown in Fig.1.

    Fig.1 Illustration of geometric definition of MGA problem

    In general,a problem statement for interplanetary trajectory optimization can be stated as follows

    Performance index

    whereΔv0is the velocity increment corresponding to the Earth departure phase,Δvi(i=1,…,n)the velocity increment corresponding to the powered flyby phase,andΔvn+1the braking maneuver in the final rendezvous phase.

    Boundary condition

    whereτ=[t0,T1,…,TN+1]and I?RN+2.

    Phase matching conditions

    where Ri(i=1,…,N+1)and r are the heliocentric position of planets and spacecraft andstarting epoch and the final epoch corresponding to the phase i,respectively.

    Nonlinear constraints

    2 Preliminary Analysis

    This section analyzes the difficulty of solving the interplanetary trajectory design problem from a global optimization standpoint.The objective function is the total velocity increment the spacecraft required to reach the target planet,and the decision variables include the departure time t0and the transfer time Ticorresponding to each leg.In order to present the structure of the search space completely,several synodic periods will be required in the bounds of the decision variables. Here,the structure of the search space is given by a simple problem,for example the Earth-Mars transfer.The underlying geometry of the objective function corresponding to the Earth-Mars transfer in the 2D search space is shown in Fig.2.

    Fig.2 Objective function landscape of Earth-Mars transfer in 2D search space

    In Fig.2,it indicates that several local minima are present in search space,and the objective function is quasi-periodic in nature due to the synodic period of planets.Once considering gravity assist maneuver,which is an effective way to reduce the fuel consumption at the cost of increasing mission duration for an intended mission,it will result in a high dimensional optimization problem,which cannot be solved by deterministic methods efficiently.Myatt et al.[19]proposed a pruning strategy named gravity assist space pruning(GASP)algorithm.The main idea of the GASP algorithm is that high dimensionalities in the MGA problem can be spitted into a series of two dimensional optimization problems where deterministic methods like grid sampling are computationally efficient.After that,the back-ward and forward pruning criteria based on physical and technological constraints of an interplanetary trajectory are applied to reduce the search space. The output of the GASP algorithm is a series of hyperrectangles where the optimal solutions are contained.The GASP algorithm improves the performances of optimization tools compared with the traditional optimization phase where the optimization tools are used to search the original search space directly.

    3 Search Space Pruning Based on Image Tools

    As mentioned above,there are a large number of clustered minima exist in the interplanetary trajectory optimization problem.In order to find interesting solutions,extensive work has been devoted to the global interplanetary trajectory optimization problem.Inspired by the basic idea of the GASP algorithm that a high dimensional trajectory optimization problem can be reduced into a series of two dimensional optimization problems,we find that the objective function in the MGA problem is constituted of several orbit maneuver corresponding to different mission phases.Different from the GASP algorithm,the orbit maneuver at the Earth departure segment and target planet arrival segment are determined by the two dimensional optimization problems and the orbit maneuver at mid-planetary encounters are determined by the three dimensional optimization problem instead of double two dimensional optimization problem.With the help of image tools,the structure of solution obtained in three dimensional optimization problem can be projected into each 2D search space.Utilization the basic idea mentioned above with the motivation that interesting solutions of interplanetary trajectory optimization problem are often clustered in a smallportion of the search space rather than being evenly distributed all over it,the GASP-II algorithm and the GS-II algorithm are proposed in this paper.

    Consider once again the objective function in the MGA problem,and introduce the map

    Fig.3 Feasible region corresponding to the first two components of decision vector

    Considering the powered gravity assist process in the MGA problem,the velocity increment required during the powered gravity process can be determined by the entrance and exit excess velocities of the spacecraft relative to the flyby planet.With reference to Fig.1,we consider the first powered gravity assist maneuver.The entrance excess velocityare known from(t0,t1),the exit excess velocityare known from(t1, t2),which meansΔv1=f(t0,t1,t2).Once t0,t1,t2are given,the velocity increment and the pericenter radius of the planetocentric trajectory are determined.Applying the maximum gravity assist thrust constraint and minimum pericenter radius constraint(the periapse of gravity assist trajectory under the minimum safe distance)can prune out the infeasible regions from the cube search space(t0,t1,t2).In order to get the boundary coordinates of the smallest cube containing the feasible regions,the cube feasible regions are projected to(t0,t1)plane and(t1,t2)plane,respectively.Then the image tools are used to identify the boundary coordinates,which are shown in Figs.4,5.The regions pruned out based on the maximum allowingΔv at departure turn out to be the unfeasible regions for the first powered gravity assist,similar criterions for the following processing;Then constraints in the MGA problems can be propagated forward and backward and the search space can be pruned step by step.Consequently,it can significantly reduce the burden of computer to locate the optimum solutions.

    As well as the maximum allowingΔv at departure,it is ordinary to consider the constraint on the maximum allowed braking maneuver the spacecraft can perform.When the spacecraft arrives at the target planet,the hyperbolic excess velocity relative to the target planetΔvn+1only depends on the last segment of interplanetary trajectory,which means the last two components in decision vector(tN×tN+1).Applying the maximum allowableΔvn+1constraint can prune out the infeasible regions from(tN×tN+1)search space,which is shown in Fig.6.After that,the boundary of feasible region can be further narrowed according to the forward and backward constraints.Final-ly,the reduced search space,consisted of the feasible regions according to the physical and technological constraints in the interplanetary mission,is described clearly with the help of image tools. There are usually several feasible regions distributed in the search space,and parallel computer is introduced to search the feasible regions at the same time,which can greatly shorten the time required to locate the optimum solutions.

    Fig.4 Cube feasible region pruned by venus flyby constraints

    Fig.5 Projection of cube feasible region into plane

    Fig.6 Feasible region corresponding to the last two components of decision vector

    Traditionally,the reduced search space is searched by optimization tools such as DE algorithm,GA,SA algorithm,and PSO algorithm. However,the solution cannot still be guaranteed to a global optimum.In this paper,the GS-II algorithm is proposed to locate the optimum solutions in reduced search space,which will be described in detail in the Earth-Mars example. Therefore,the input of the GASP-II algorithm is the initial bounds of decision vector and planets sequence.The output is the hyperrectangles feasible regions containing the optimal solution.The input of the GS-II algorithm is the hyperrectangles feasible regions given by the GASP-II algorithm,and the output is the optimal solution.

    Fig.7 Objective function landscape of Earth-Mars transfer

    Fig.8 Feasible region given by image processing version of GASP algorithm

    Fig.9 Process of image processing version of grid sampling algorithm

    Table 1 Search space for Earrh-Mars rransfer

    In order to demonstrate the effectiveness of the proposed method in this paper,the Earth-Mars transfer is addressed.This is because the search space is intuitive and the location of the global optimum is certain(Fig.7).The initial bounds of search space are given in Table 1.The GASP-II algorithmstated above is carried out,and the reduced search space is shown in Fig.8. Then the GS-II algorithm is applied to handle the reduced search space.Grid sampling algorithm is an effective optimizer for low dimensionalities. The interval must keep sufficiently fine to avoid loosing interesting solutions,while the small interval will make the number of function evaluations increase steeply.For the interesting solutions are often clustered in a small portion of the search space,the large interval with the large Lipschitzian tolerances are applied at the beginningto avoid loosing interesting solutions with little number of function evaluations.Then the grid sampling with appropriate interval is employed in the reduced domains,which are obtained in previous step.Thanks to the image tools,the boundary coordinates of the reduced domain can be identified easily.Repeat the previous step until the reduced domains is small enough to make the grid sampling algorithm to locate the global optimum efficiently.The whole process of the application of the GS-II algorithm is shown in Fig.9 and Table 2.The computational time in each step are also given in Table 2 to represent a proof of theefficiency and the time is relative to a PC,1.9 GHzCPU,512 MB RAM.Numerical simulation results show that the objective functions of the solutions contains in the feasible region in last step are better than that of the global optimum solution given in existing literature,and the visualization of best solution of Earth-Mars transfer is shown in Fig.10.

    Table 2 Reduced search space and besr idenrified solurion for Earrh-Mars rransfer

    Fig.10 Projection into ecliptic plane of Earth-Mars transfer

    4 Simularion Resulrs

    In order to demonstrate the effectiveness of the proposed algorithm in high dimensionalities,some relevant simulation studies are addressed and some results given by the methodology proposed in this paper are compared with existing literature.

    4.1 Earrh Venus Mars

    Considering the spacecraft departing from Earth,and flying to Mars with the help of the gravitational pull of Venus.Deep space maneuver(DSM)is constrained only at Venus encounters. This situation can formalized as MGA trajectory optimization problem,whereas the decision vector isτ=[t0,t1,t2],and the objective function evaluated in the process of the methodology proposed in this paper is shown as follows

    whereΔv0is the velocity increment corresponding to the Earth departure phase,Δv1the velocity increment corresponding to DSM at Venus encounters,andΔv2the velocity increment at the Mars arrival.The initial bounds of search space are given in Table 3.

    Table 3 Search space for rransfer

    The threshold values of space pruning are given 5 km/s at the Earth departure,5 km/s at the Mars arrival,and 2 km/s at the Venus powered flyby.The feasible regions are automatically saved and identified by using the image processing version of the GASP algorithm.The associated parameters are given Table 4.After that,image processing version of grid sampling algorithm is applied to locate the interesting solutions iteratively.The performances with respect to transfer time and total velocity increment are given in Table 4,including comparisons to that obtained by Armellin et al[23].The projection into the ecliptic plane of Earth Venus Mars(EVM)transfer corresponding to the best solution is visualized in Fig.11.

    Table 4 Reduced search space and besr idenrified solurion for EVM rransfer

    Fig.11 Projection into ecliptic plane of EVM transfer

    4.2 Earh Venus Venus Earrh Jupirer Sarurn

    This is a particular instance of the MGA problem[24],which is related to the Cassini spacecraft transfer trajectory optimization problem. The spacecraft depart from the Earth and fly to Saturn via multiple gravity assist.Finally,the spacecraft will be captured by the gravity field of Saturn.The pericenter radius is 108 950 km,the eccentricity is 0.98.The sequence considered here is Earth Venus Venus Earth Jupiter Saturn(EVVEJS),which is similar to that used by Cassini spacecraft.The initial bounds of the six dimensional decision vector are given in Table 5. The objective function used is the total velocity increment

    whereΔv0is the velocity increment corresponding to the Earth departure phase,Δvithe velocity in-crement the required at the planets powered flyby,andΔv5the velocity increment at Saturn arrival.

    Table 5 Search space for EVVEJS rransfer

    The threshold values of space pruning are 5 km/s at the Earth departure,2 km/s at the Saturn arrival and 2 km/s at Planets powered flyby.With the increase of dimension,the complexity of solving the MGA problem increases rapidly.There are a lot of feasible regions reserved in the 1st step.Due to the limit space,partial feasible region are listed in Table 6.The performances with respect to transfer time and total velocity increment are also given in Table 6.Finally,a comparison with the solutions given by existing literature is given in Table 7[25].The projection into the ecliptic plane of EVVEJS transfer corresponding to the best solution is visualized in Fig.12,where Fig.12(b)is large from the central part in Fig.12(a).

    Fig.12 Projection into ecliptic plane of EVVEJS transfer

    Table 6 Reduced search space and besr idenrified solurion for EVVEJS rransfer

    Table 7 Trajecrory design resulrs

    5 Conclusions

    From the view of global optimization,interplanetary trajectory optimization problem can be formalized as the MGA problem.Numerous local minimum values exist in the interplanetary trajectory optimization problem due to the complicated relative motion between the planets.With the help of image tools,the structure of search space become intuitive,and the infeasible regions can be pruned effectively according to the forward and backward constraints.Grid sampling is usually inefficient in high dimensionalities,but for the clustered interesting solutions in reduced search space,the large interval with the large Lipschitzian tolerances can locate the feasible regions with the appropriate number of function evaluations. After that,the Lipschitzian tolerances are reduced step by step.The effectiveness of the methodology proposed in this paper is demonstrated by the Earth-Mars transfer and the test problems with the characteristic of high dimensionalities.

    Acknowledgemenrs

    This work was supported by the National High Technology Research and Development Program(863)of China(2012AA121602),the National Natural Science Foundation of China(11078001),the Specialized Research Fund for the Doctoral Program of Higher Education of China(20133218120037),and the Fundamental Research Funds for the Central Universities under Grant(NS2014091).

    [1] Vinko T,Izzo D.Global optimisation heuristics and test problems for preliminary spacecraft trajectory design[R].ESA 231-238.European Space Agency:Advanced Concepts Team,2008.

    [2] Vasile M,Pascale P D.Preliminary design of multiple gravity assist trajectories[J].Journal of Spacecraft and Rockets,2006,43(4):794-805.

    [3] Battin R H.An introduction to the mathematics and methods of astrodynamics[M].Washington:AIAA,1999:47-58.

    [4] Addis B,Cassioli C,Locatelli M,et al.A global optimization for the design of space trajectories[J]. Computational Optimization and Applications,2011,48(3):635-652.

    [5] Bessette C R,Spencer D B.Identifying optimal interplanetary trajectories through a genetic approach[C]//Astrodynamics Specialist Conference and Exhibit.Keystone:AIAA,2006:437-448.

    [6] Bessette C R,Spencer D B.Optimal space trajectory design:A heuristic-based approach[J].Advances in the Astronautical Sciences,2006,124:1611-1628.

    [7] Betts T.Practical methods for optimal control and estimation using nonlinear programming[M].Washington:The Boeing Company,2001:191-204.

    [8] Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control and Dynamics,1998,21(2):193-207.

    [9] Petropoulos A E,Longuski J M.Shape based algorithm for the automated design of low thrust,gravity assist trajectories[J].Journal of Spacecraft and Rockets,2004,41(5):787-796.

    [10]Schütze O,Vasile M,Junge O,et al.Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach[J]. Engineering Optimization,2009,41(2):155-181.

    [11]Shen H X,Zhou J P,Peng Q B,et al.Multi-objective interplanetary trajectory optimization combining low thrust propulsion and gravity assist maneuvers[J].Science China Technological Sciences,2012,55(3):841-847.

    [12]Vasile M.A systematic-heuristic approach for space trajectory design[J].Annals of the New York Academy of Sciences,2004,1017(1):234-254.

    [13]VinkóT,Izzo D,Bombardelli C.Benchmarking different global optimisation techniques for preliminary space trajectory design[C]//58th International Astronautical Congress.Hyderabad:IAF,2007:189-199.

    [14]Yang D L,Xu B,Lei H L.Multi-objective detection trajectory optimization design in solar system[C]// 64th International Astronautical Congress.Beijing:IAF,2013:635-652.

    [15]Vasile M,Locatelli M.A hybrid multiagent approach for global trajectory optimization[J].Journal of Global Optimization,2009,44(4):461-479.

    [16]Jones D R,Perttunen C D,Stuckman B E.Lipschitzian optimization without the Lipschitz constant[J]. Journal of Optimization Theory and Applications,1993,79(1):157-181.

    [17]Horn M.Optimal algorithms for global optimization in case of unknown Lipschitz constant[J].Journal of Complexity,2006,22(1):50-70.

    [18]Vasile M,Summerer L,de Pascale P.design of Earth-Mars transfer trajectories using evolutionarybranching technique[J].Acta Astronautica,2005,56(8):705-720.

    [19]Izzo V M,Myatt D,Nasuto D R.Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories[J].Journal of Global Optimization,2007,38(2):283-296.

    [20]Bruce A.Spacecraft trajectory optimization[M]. Cambridge,UK:Cambridge University,2010:756-797.

    [21]Arnett D,Meakin C,Young P A.The lambert problem[C]//Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis.Barnes:ASP,2005:336-235.

    [22]Labunskij A V,Papkov O V,Sukhanov K G.Multiple gravity assist interplanetary trajectories[M]. Florida:CRC Press,1998:1147-1152.

    [23]Armellin R,Di Lizia P,Topputo F,et al.Gravity assist space pruning based on differential algebra[J]. Celestial Mechanics and Dynamical Astronomy,2010,106(1):1-24.

    [24]Peralta F,F(xiàn)lanagan S.Cassini interplanetary trajectory mission[J].Control Engineering Practice,1995,11(3):1603-1610.

    [25]Izzo D.GTOP database-MGA problem-″Cassini″[P/ OL](2005-12-08)[2014-08-12].http://www.esa. int/gsp/ACT/inf/op/globopt/evvejs.htm.

    (Executive Editor:Xu Chengting)

    V412Documenr code:AArricle ID:1005-1120(2015)05-0530-11

    *Corresponding aurhor:Gao Youtao,Lecturer,E-mail:ytgao@nuaa.edu.cn.

    How ro cire rhis arricle:Yang Dalin,Xu Bo,Gao Youtao.Search space pruning based on image tools for preliminary interplanetary trajectory design[J].Trans.Nanjing U.Aero.Astro.,2015,32(5):530-540.

    http://dx.doi.org/10.16356/j.1005-1120.2015.05.530

    猜你喜歡
    徐波大林
    Configurational entropy-induced phase transition in spinel LiMn2O4
    江蘇蘇派教育集團(tuán) 徐波
    我想跟小林一樣——讀《大林和小林》有感
    生生不息,固本造新:“生生的智慧與轉(zhuǎn)向”學(xué)術(shù)研討會(huì)綜述
    大林媽擺攤兒
    讀《大林和小林》
    迷失在權(quán)力的漩渦里
    清風(fēng)(2016年7期)2016-11-27 12:25:59
    民主與法制(2016年23期)2016-11-03 10:41:02
    霸道書(shū)記權(quán)、錢、色的多面人生
    新傳奇(2016年32期)2016-07-09 21:36:08
    從根本上治療
    精品久久久久久久久久免费视频| 国产国语露脸激情在线看| 国产亚洲欧美98| 午夜久久久久精精品| 亚洲色图综合在线观看| 一边摸一边做爽爽视频免费| 国产又爽黄色视频| 亚洲熟妇中文字幕五十中出| 中国美女看黄片| 午夜福利成人在线免费观看| 国产激情欧美一区二区| 亚洲精品在线美女| 欧美黑人精品巨大| 欧美成人一区二区免费高清观看 | 日韩精品中文字幕看吧| 美女午夜性视频免费| 久久久国产精品麻豆| 在线观看午夜福利视频| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av香蕉五月| 性色av乱码一区二区三区2| x7x7x7水蜜桃| 丁香六月欧美| 国产精品影院久久| 香蕉丝袜av| 国产欧美日韩一区二区精品| 久久青草综合色| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 国产欧美日韩一区二区三| 日日干狠狠操夜夜爽| 在线观看免费午夜福利视频| 亚洲av成人一区二区三| 国产在线观看jvid| 黄色视频不卡| 高清黄色对白视频在线免费看| 两性夫妻黄色片| 日日干狠狠操夜夜爽| 免费看a级黄色片| 亚洲一码二码三码区别大吗| 99久久国产精品久久久| 18禁美女被吸乳视频| 美女高潮到喷水免费观看| 成在线人永久免费视频| a级毛片在线看网站| 99在线视频只有这里精品首页| 免费在线观看亚洲国产| 女人被狂操c到高潮| 99久久精品国产亚洲精品| 亚洲av第一区精品v没综合| 亚洲精华国产精华精| 99久久国产精品久久久| 久久影院123| 日韩国内少妇激情av| 丝袜在线中文字幕| 最好的美女福利视频网| 亚洲男人天堂网一区| 色播亚洲综合网| 欧美色欧美亚洲另类二区 | 午夜影院日韩av| 欧美激情极品国产一区二区三区| 午夜福利视频1000在线观看 | 亚洲国产毛片av蜜桃av| 精品电影一区二区在线| 免费av毛片视频| АⅤ资源中文在线天堂| 国产又色又爽无遮挡免费看| 亚洲av成人不卡在线观看播放网| 一a级毛片在线观看| 99在线人妻在线中文字幕| 最近最新中文字幕大全免费视频| 日韩有码中文字幕| 欧美国产日韩亚洲一区| 亚洲激情在线av| 亚洲狠狠婷婷综合久久图片| 1024视频免费在线观看| 久99久视频精品免费| 无人区码免费观看不卡| 国产激情久久老熟女| 午夜久久久在线观看| 一本综合久久免费| 欧美黑人精品巨大| 69精品国产乱码久久久| 精品国产国语对白av| 91成人精品电影| 国产一区二区三区在线臀色熟女| 一区二区三区精品91| 两个人视频免费观看高清| 99久久久亚洲精品蜜臀av| 一级黄色大片毛片| 一本综合久久免费| 久久精品亚洲精品国产色婷小说| 亚洲av五月六月丁香网| 999精品在线视频| 国产成人系列免费观看| 在线免费观看的www视频| 欧美日本中文国产一区发布| а√天堂www在线а√下载| 在线观看日韩欧美| 亚洲精品国产一区二区精华液| 午夜福利成人在线免费观看| 长腿黑丝高跟| 亚洲无线在线观看| av网站免费在线观看视频| 岛国视频午夜一区免费看| 久久亚洲真实| av片东京热男人的天堂| 久久久久精品国产欧美久久久| 久久精品亚洲熟妇少妇任你| 亚洲 欧美 日韩 在线 免费| 国产在线观看jvid| 免费高清在线观看日韩| bbb黄色大片| 窝窝影院91人妻| 曰老女人黄片| 美女免费视频网站| 亚洲av日韩精品久久久久久密| 一本久久中文字幕| 午夜福利成人在线免费观看| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃| 在线永久观看黄色视频| 国产高清有码在线观看视频 | 国产日韩一区二区三区精品不卡| 亚洲午夜理论影院| 国产午夜福利久久久久久| 国产欧美日韩一区二区三| 俄罗斯特黄特色一大片| 制服诱惑二区| 少妇的丰满在线观看| 九色国产91popny在线| netflix在线观看网站| 自线自在国产av| 中文字幕人妻丝袜一区二区| 亚洲一区二区三区色噜噜| cao死你这个sao货| 欧美日韩福利视频一区二区| 91大片在线观看| 岛国在线观看网站| 精品国产超薄肉色丝袜足j| 无遮挡黄片免费观看| 18禁国产床啪视频网站| 成在线人永久免费视频| av网站免费在线观看视频| 老鸭窝网址在线观看| 国产麻豆69| 久久久久久久久免费视频了| 身体一侧抽搐| 成人国产一区最新在线观看| 国产又色又爽无遮挡免费看| 大陆偷拍与自拍| 操出白浆在线播放| 色av中文字幕| 好看av亚洲va欧美ⅴa在| 精品一区二区三区视频在线观看免费| 色综合亚洲欧美另类图片| 亚洲av第一区精品v没综合| 免费在线观看亚洲国产| 在线播放国产精品三级| 天天一区二区日本电影三级 | 亚洲无线在线观看| 俄罗斯特黄特色一大片| 热99re8久久精品国产| 黑人欧美特级aaaaaa片| 色综合婷婷激情| 国产熟女xx| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美三级三区| 日本 欧美在线| 91麻豆av在线| 成人18禁高潮啪啪吃奶动态图| 国产aⅴ精品一区二区三区波| 黄色成人免费大全| 亚洲国产精品sss在线观看| 大陆偷拍与自拍| 这个男人来自地球电影免费观看| 国产成人av教育| 亚洲精品国产色婷婷电影| 国产成+人综合+亚洲专区| 欧美不卡视频在线免费观看 | 美女 人体艺术 gogo| 欧美乱妇无乱码| 日本在线视频免费播放| 免费久久久久久久精品成人欧美视频| 亚洲av电影在线进入| 久久久久国内视频| 69精品国产乱码久久久| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费| 一区福利在线观看| 免费高清在线观看日韩| 人人妻人人澡人人看| 在线av久久热| 国产成人av教育| 亚洲一卡2卡3卡4卡5卡精品中文| 色尼玛亚洲综合影院| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 午夜福利免费观看在线| 两性夫妻黄色片| 中文字幕色久视频| 在线观看舔阴道视频| 国产一级毛片七仙女欲春2 | 午夜两性在线视频| 国产精品香港三级国产av潘金莲| 大陆偷拍与自拍| 亚洲色图 男人天堂 中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲欧美98| 成人18禁高潮啪啪吃奶动态图| 欧美激情久久久久久爽电影 | 成年人黄色毛片网站| 色综合欧美亚洲国产小说| 国产亚洲精品一区二区www| 亚洲国产高清在线一区二区三 | 欧洲精品卡2卡3卡4卡5卡区| a在线观看视频网站| 午夜成年电影在线免费观看| 在线十欧美十亚洲十日本专区| 国产在线观看jvid| 一夜夜www| 狂野欧美激情性xxxx| 手机成人av网站| 国产野战对白在线观看| 久久久久久国产a免费观看| 一本久久中文字幕| 国产人伦9x9x在线观看| 亚洲 欧美 日韩 在线 免费| 欧美黑人欧美精品刺激| 午夜福利视频1000在线观看 | 亚洲成人精品中文字幕电影| 啦啦啦 在线观看视频| 中文字幕人妻熟女乱码| 啦啦啦观看免费观看视频高清 | 满18在线观看网站| 久久精品国产99精品国产亚洲性色 | 国产精品美女特级片免费视频播放器 | 欧美丝袜亚洲另类 | 国产亚洲精品一区二区www| 国产高清激情床上av| 真人一进一出gif抽搐免费| 美国免费a级毛片| 日韩欧美一区二区三区在线观看| 91国产中文字幕| 久久久久久久久中文| 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| av天堂久久9| 每晚都被弄得嗷嗷叫到高潮| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 国产精品免费一区二区三区在线| 久久久久九九精品影院| 精品久久久久久久久久免费视频| 女人被躁到高潮嗷嗷叫费观| 一进一出好大好爽视频| 18美女黄网站色大片免费观看| 中文字幕最新亚洲高清| 国产单亲对白刺激| 黄色女人牲交| 俄罗斯特黄特色一大片| 亚洲人成电影免费在线| 一级毛片高清免费大全| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站 | 亚洲专区中文字幕在线| 国产精品久久久久久精品电影 | 国产一区在线观看成人免费| 宅男免费午夜| 国产精品自产拍在线观看55亚洲| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 亚洲自拍偷在线| 在线观看免费视频网站a站| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 99精品在免费线老司机午夜| 侵犯人妻中文字幕一二三四区| 在线观看免费视频网站a站| 亚洲七黄色美女视频| 桃色一区二区三区在线观看| 超碰成人久久| 九色亚洲精品在线播放| 九色亚洲精品在线播放| 天天躁夜夜躁狠狠躁躁| 久久中文字幕一级| 中出人妻视频一区二区| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 男女之事视频高清在线观看| 午夜亚洲福利在线播放| 99精品欧美一区二区三区四区| 欧美在线一区亚洲| 国产成人欧美在线观看| 中文字幕高清在线视频| 日韩欧美国产一区二区入口| 嫩草影院精品99| 黄色片一级片一级黄色片| 黄片播放在线免费| 老熟妇乱子伦视频在线观看| 精品国产一区二区三区四区第35| 黄频高清免费视频| 热99re8久久精品国产| 精品国产乱子伦一区二区三区| 欧美成人午夜精品| 在线视频色国产色| 日韩三级视频一区二区三区| 久久久久久久久久久久大奶| 亚洲男人的天堂狠狠| 国产精品99久久99久久久不卡| 男人舔女人下体高潮全视频| 午夜福利免费观看在线| 男人操女人黄网站| 久久久久久久久免费视频了| 9热在线视频观看99| 免费少妇av软件| 亚洲欧美一区二区三区黑人| 日本在线视频免费播放| 亚洲精品在线美女| 国产精品日韩av在线免费观看 | 国产成人免费无遮挡视频| 日本五十路高清| 久久天躁狠狠躁夜夜2o2o| 国产精品电影一区二区三区| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 一级毛片高清免费大全| 午夜a级毛片| 男人操女人黄网站| 不卡av一区二区三区| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 国产亚洲av高清不卡| 久久久久久久午夜电影| √禁漫天堂资源中文www| 免费在线观看影片大全网站| 日本免费a在线| 亚洲在线自拍视频| 村上凉子中文字幕在线| 黄片大片在线免费观看| 国产免费男女视频| 99在线人妻在线中文字幕| 国产激情久久老熟女| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 午夜福利18| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 国产免费男女视频| 婷婷精品国产亚洲av在线| 欧美日本中文国产一区发布| 久久精品成人免费网站| 在线av久久热| 精品久久久精品久久久| 亚洲伊人色综图| 91av网站免费观看| 成人国语在线视频| 最新美女视频免费是黄的| 丝袜在线中文字幕| 欧美日本中文国产一区发布| 午夜精品在线福利| 麻豆一二三区av精品| 天天躁夜夜躁狠狠躁躁| 91成年电影在线观看| 国产成人av教育| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| av视频在线观看入口| 亚洲免费av在线视频| 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 女性生殖器流出的白浆| 高清毛片免费观看视频网站| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久av美女十八| a级毛片在线看网站| 黄片播放在线免费| 老汉色∧v一级毛片| 国产精品一区二区三区四区久久 | 变态另类成人亚洲欧美熟女 | 亚洲精品国产一区二区精华液| 成人国产综合亚洲| 国产精品,欧美在线| 在线av久久热| 国产精品一区二区精品视频观看| 视频区欧美日本亚洲| 99久久综合精品五月天人人| 国产一区二区三区视频了| 日本a在线网址| 黄片播放在线免费| 国产在线观看jvid| 免费在线观看黄色视频的| 黄色成人免费大全| 国产亚洲精品久久久久5区| 免费在线观看日本一区| 一进一出好大好爽视频| 少妇的丰满在线观看| 久久久久久人人人人人| 亚洲国产欧美一区二区综合| 欧美乱码精品一区二区三区| 亚洲成人国产一区在线观看| 精品欧美一区二区三区在线| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av香蕉五月| x7x7x7水蜜桃| 国产亚洲av高清不卡| 最近最新中文字幕大全免费视频| 看黄色毛片网站| 99热只有精品国产| 亚洲男人的天堂狠狠| 午夜影院日韩av| 国产国语露脸激情在线看| 久久香蕉精品热| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 亚洲第一av免费看| 欧美成狂野欧美在线观看| 超碰成人久久| 国产免费av片在线观看野外av| 久久香蕉激情| 欧美绝顶高潮抽搐喷水| 亚洲国产毛片av蜜桃av| 久久久久久久精品吃奶| 天堂影院成人在线观看| 久久久久久免费高清国产稀缺| 日韩欧美三级三区| 99精品久久久久人妻精品| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 91字幕亚洲| 男女下面插进去视频免费观看| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区mp4| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 亚洲国产高清在线一区二区三 | 激情在线观看视频在线高清| 88av欧美| aaaaa片日本免费| 在线观看免费视频日本深夜| av在线天堂中文字幕| 91精品国产国语对白视频| 亚洲第一青青草原| 国产97色在线日韩免费| 999久久久国产精品视频| 后天国语完整版免费观看| 亚洲专区国产一区二区| 极品教师在线免费播放| 精品国产乱子伦一区二区三区| 两个人免费观看高清视频| 一卡2卡三卡四卡精品乱码亚洲| 成人国产一区最新在线观看| 两性夫妻黄色片| 国产亚洲精品久久久久久毛片| 母亲3免费完整高清在线观看| 黑人操中国人逼视频| 国产精品日韩av在线免费观看 | 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| 亚洲 国产 在线| 麻豆国产av国片精品| 亚洲伊人色综图| 成年女人毛片免费观看观看9| 欧美av亚洲av综合av国产av| 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网| 一级作爱视频免费观看| 久久香蕉精品热| a级毛片在线看网站| 国产伦一二天堂av在线观看| 日韩三级视频一区二区三区| 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| av中文乱码字幕在线| 一边摸一边抽搐一进一小说| 亚洲情色 制服丝袜| 日本欧美视频一区| 在线观看日韩欧美| 免费无遮挡裸体视频| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区免费欧美| 99热只有精品国产| 黄片播放在线免费| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| 最好的美女福利视频网| 国产成人一区二区三区免费视频网站| 精品少妇一区二区三区视频日本电影| 日韩免费av在线播放| 麻豆国产av国片精品| 侵犯人妻中文字幕一二三四区| 国产精品久久视频播放| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 亚洲 欧美 日韩 在线 免费| av福利片在线| 精品国产亚洲在线| 久99久视频精品免费| 成人国产一区最新在线观看| 欧美色欧美亚洲另类二区 | 又大又爽又粗| 午夜两性在线视频| 99精品久久久久人妻精品| 亚洲成人久久性| 99久久精品国产亚洲精品| 国产xxxxx性猛交| 在线播放国产精品三级| 午夜福利一区二区在线看| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 国产99久久九九免费精品| 欧美午夜高清在线| 国产精品久久电影中文字幕| 精品一品国产午夜福利视频| 正在播放国产对白刺激| 黄片小视频在线播放| 精品国产乱子伦一区二区三区| 美女高潮到喷水免费观看| 在线国产一区二区在线| 91av网站免费观看| 岛国在线观看网站| 国产精品久久视频播放| 精品国产超薄肉色丝袜足j| 久99久视频精品免费| ponron亚洲| 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美中文综合在线视频| 国产精品久久久久久精品电影 | 欧美久久黑人一区二区| 久久久水蜜桃国产精品网| 色综合婷婷激情| 最近最新中文字幕大全免费视频| 国产精品乱码一区二三区的特点 | 国语自产精品视频在线第100页| 亚洲人成电影观看| 午夜精品国产一区二区电影| 成人国语在线视频| 亚洲片人在线观看| 99久久综合精品五月天人人| 一区二区日韩欧美中文字幕| 九色国产91popny在线| 欧美日本中文国产一区发布| 色av中文字幕| 日韩成人在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 久久中文看片网| 最近最新中文字幕大全电影3 | 男女下面进入的视频免费午夜 | 可以在线观看的亚洲视频| 又紧又爽又黄一区二区| 电影成人av| 欧美亚洲日本最大视频资源| 精品一区二区三区四区五区乱码| 国产野战对白在线观看| 日本在线视频免费播放| 亚洲成人国产一区在线观看| 国产成人免费无遮挡视频| 久久中文看片网| 中文字幕高清在线视频| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 如日韩欧美国产精品一区二区三区| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 国产精品二区激情视频| 精品国产国语对白av| 日本 欧美在线| 久久久久久免费高清国产稀缺| 99久久精品国产亚洲精品| av视频免费观看在线观看| 色尼玛亚洲综合影院| 在线天堂中文资源库| 少妇熟女aⅴ在线视频| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 国产精品亚洲美女久久久| a级毛片在线看网站| 久久久久久人人人人人| 婷婷丁香在线五月| 美女高潮喷水抽搐中文字幕| 久久国产亚洲av麻豆专区| 男女之事视频高清在线观看| 亚洲熟女毛片儿| 欧美色欧美亚洲另类二区 | 精品一区二区三区四区五区乱码| 国产一区在线观看成人免费| 日韩欧美国产在线观看| 亚洲精品粉嫩美女一区| 国产伦一二天堂av在线观看| 99riav亚洲国产免费| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区|