• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Search Space Pruning Based on Image Tools for Preliminary Inrerplanerary Trajecrory Design

    2015-02-09 06:08:53YangDalin楊大林XuBo徐波GaoYoutao高有濤
    關(guān)鍵詞:徐波大林

    Yang Dalin(楊大林),Xu Bo(徐波),Gao Youtao(高有濤)*

    1.College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;2.School of Astronomy&Space Science,Nanjing University,Nanjing 210093,P.R.China

    (Received 13 October 2014;revised 10 March 2015;accepted 20 April 2015)

    Search Space Pruning Based on Image Tools for Preliminary Inrerplanerary Trajecrory Design

    Yang Dalin(楊大林)1,Xu Bo(徐波)2,Gao Youtao(高有濤)1*

    1.College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;2.School of Astronomy&Space Science,Nanjing University,Nanjing 210093,P.R.China

    (Received 13 October 2014;revised 10 March 2015;accepted 20 April 2015)

    Absrracr:A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.

    trajectory optimization;global optimization;local minima;gravity assist space pruning(GASP)algorithm;image tool

    0 Inrroducrion

    Interplanetary trajectory design problem can be formalized as global optimization problem[1-2]. Multiple gravity assist(MGA)problem and multiple gravity assist with one deep space maneuver(MGA-1DSM)problem are essentially two optimization problems which describe a spacecraft equipped with a chemical propulsion system travelling in the solar system.The spacecraft is constrained to thrust only at planetary encounters in MGA problem.However,this limitation is removed in MGA-1DSM problem,and its engine is allowed to thrust once at any time during each trajectory leg.The objective of the trajectory optimization is to search trajectories for spacecraft that are optimal with respect to propellant consumption or transfer time.Consequently,more complex mission can be completed under the existing engineering constraints.

    According to the type of the thruster considered for the spacecraft,the trajectory design and optimization problems can be divided into two main typologies.The first one is connected with spacecraft equipped with the chemical thruster,where the thrust duration is much shorter than the total flight time.Besides,the chemical thruster can achieve a high thrust.Therefore,it may be modeled as instantaneous velocity increment.The trajectory leg,as a reasonable first approximation,can be considered as the solution of two body problem.With the time nodes and the ephemeris for planets,the total magnitude of velocity increment can be determined.In mathematical,the trajectory optimization problem of spacecraft with chemical thruster is a finite di-mension global optimization problem with nonlinear constraints[3-6].The second one appears with spacecraft equipped with a low but continuous thruster,which is applied to modify the trajectory of spacecraft over an extended period of time. The low thrust trajectory optimization problem is qualitatively different from the conventional chemical thruster situation,as the probe motion arc is not integral anymore.Moreover,magnitude and direction of the low thruster are constantly changing with time.The objective of low thrust trajectory optimization problem is to model and determine the optimal thrust vector so that the given performance index is optimized.Traditionally,low-thrust trajectory optimization problem are solved by the application of numerical optimal control theory.These methods are not the global optimal methods,and it is to find″a solution″not″the best solution″.The convergence behavior of these methods depends on a given initial guess,which is often hard to find[7-11].

    Because of the large time scale and the complicated relative motion between the planets,the landscape of the objective function presents a large number of clustered minima[12-13],and it is easy to converge to one of local minima when using traditional optimizers.In addition,in order to avoid missing feasible solution,the initial scope of the search space is general relatively large[14].Effective global optimization algorithms are encouraged and the research work is mainly divided into the following two classes.The first one is a problem of what appears to be a″blackbox″problem,some standard global optimization solvers,such as differential evolution(DE),particle swarm optimization(PSO),genetic algorithm(GA)and simulated annealing(SA),are introduced to solve the above problem.These solvers are not effective when used alone.However,the cooperative version can find a better solution in space trajectory optimization problem[1,15].Besides the stochastic or heuristic methods list above,some deterministic methods like branching,branch and bound and the hybridization of stochastic and deterministic are proposed[16-18].Some of them perform well in the specific problem and can identify the known best solutions in the corresponding problem.The second one appears with the structure of the search space and the nature of the problem are analyzed and may therefore be used to define the global optimization strategies.The efficiency has been demonstrated by the gravity-assist space pruning(GASP)algorithm,which is proposed by Myatt et al[19].However,it was only used to preprocess the search space and some stochastic solvers are still used to search the reduced domains. Although the performance is better than the situation that the entire search space is managed by the stochastic solver directly,some isolated interesting solutions may still be left off.Thanks to the image tools,the boundary coordinates of the reduced domain distributed over the initial search space can be identified easily by the matlab toolbox.A novel method which blends the characteristics of GASP algorithm with the image identification,now called GASP-II algorithm,is proposed in this paper.

    Besides,a method which blends the grid sampling with the image identification,now called GS-II algorithm,is also presented.GS-II is a method to substitute the stochastic solvers for searching the reduced domains.Grid sampling is an effective optimizer for low dimensionalities,but in high dimensionalities it is usually inefficient for large computational burden.In classical grid sampling process,the interval must be sufficiently fine to avoid loosing interesting domains. In this paper,grid sampling process will be divided into several steps until the global optimum is located.Firstly,the large interval with the large Lipschitzian tolerances are applied to avoid loosing interesting domains with little function evaluations.Then the grid sampling with appropriate interval is employed in the reduced domains obtained in the previous step.With the help of image identification,the boundary coordinates of the reduced domain can be identified easily.Repeat the previous step until the reduced domain is small enough to locate the global optimum effi-ciently.The Lipschitzian tolerances used to determine the reduced domain are always difficult to give,because the feasible domain may be left off with the inaccurate estimations.In this paper,the optimal solution in the previous grip sampling process is used as the Lipschitzian tolerance in next step which is demonstrated to be effective in next section.

    1 Marhemarical Formalizarion

    The interplanetary trajectories will be modeled by using the patched conic method.The fundamental assumption underneath this method is that the trajectory outside the scope of influence(SOI)of planets is the Kepler orbit around the sun.When the spacecraft is inside SOI of planets,the trajectories are the Keper orbit around the planet.Because of the large spatial scale of the solar system,the size of SOI can be ignored and simplified into a point in space for interplanetary trajectory.Each conic leg for interplanetary trajectories is the solution of Newton's law of universal gravitation

    where r is the position of spacecraft andμthe gravitational constant of center body.Based on the above assumptions,the solution of the MGA problem represents an interplanetary trajectory of the spacecraft equipped with chemical rocket engines,and the engines are constrained to thrust only at planetary encounters[20].In this paper,one considers the spacecraft launching from the Earth and finally reaching the target planet with the help of the gravitational pull of the planets the spacecraft flyby.The departure time from the Earth is t0,and the duration needed for each conic leg connecting two consecutive planets are Ti(i= 1,…,N+1),where N is the number of planets in the gravity assist sequence.Depending on the patched conic approximation,the heliocentric position vector of planetment and the heliocentric position vector of planetTjmoment can be given by the ephemeris,then the corresponding″Lambert problem″can be solved to give the departure velocity and the arrive velocity of each trajectory leg[21].In order to simplify the description of the MGA problem,multiple revolution cases and retrograde cases are not considered in this paper. After that,the powered flyby trajectories are determined by the entrance velocityand the exit velocitywhich are given by the above″Lambert problem″[22].The details are shown in Fig.1.

    Fig.1 Illustration of geometric definition of MGA problem

    In general,a problem statement for interplanetary trajectory optimization can be stated as follows

    Performance index

    whereΔv0is the velocity increment corresponding to the Earth departure phase,Δvi(i=1,…,n)the velocity increment corresponding to the powered flyby phase,andΔvn+1the braking maneuver in the final rendezvous phase.

    Boundary condition

    whereτ=[t0,T1,…,TN+1]and I?RN+2.

    Phase matching conditions

    where Ri(i=1,…,N+1)and r are the heliocentric position of planets and spacecraft andstarting epoch and the final epoch corresponding to the phase i,respectively.

    Nonlinear constraints

    2 Preliminary Analysis

    This section analyzes the difficulty of solving the interplanetary trajectory design problem from a global optimization standpoint.The objective function is the total velocity increment the spacecraft required to reach the target planet,and the decision variables include the departure time t0and the transfer time Ticorresponding to each leg.In order to present the structure of the search space completely,several synodic periods will be required in the bounds of the decision variables. Here,the structure of the search space is given by a simple problem,for example the Earth-Mars transfer.The underlying geometry of the objective function corresponding to the Earth-Mars transfer in the 2D search space is shown in Fig.2.

    Fig.2 Objective function landscape of Earth-Mars transfer in 2D search space

    In Fig.2,it indicates that several local minima are present in search space,and the objective function is quasi-periodic in nature due to the synodic period of planets.Once considering gravity assist maneuver,which is an effective way to reduce the fuel consumption at the cost of increasing mission duration for an intended mission,it will result in a high dimensional optimization problem,which cannot be solved by deterministic methods efficiently.Myatt et al.[19]proposed a pruning strategy named gravity assist space pruning(GASP)algorithm.The main idea of the GASP algorithm is that high dimensionalities in the MGA problem can be spitted into a series of two dimensional optimization problems where deterministic methods like grid sampling are computationally efficient.After that,the back-ward and forward pruning criteria based on physical and technological constraints of an interplanetary trajectory are applied to reduce the search space. The output of the GASP algorithm is a series of hyperrectangles where the optimal solutions are contained.The GASP algorithm improves the performances of optimization tools compared with the traditional optimization phase where the optimization tools are used to search the original search space directly.

    3 Search Space Pruning Based on Image Tools

    As mentioned above,there are a large number of clustered minima exist in the interplanetary trajectory optimization problem.In order to find interesting solutions,extensive work has been devoted to the global interplanetary trajectory optimization problem.Inspired by the basic idea of the GASP algorithm that a high dimensional trajectory optimization problem can be reduced into a series of two dimensional optimization problems,we find that the objective function in the MGA problem is constituted of several orbit maneuver corresponding to different mission phases.Different from the GASP algorithm,the orbit maneuver at the Earth departure segment and target planet arrival segment are determined by the two dimensional optimization problems and the orbit maneuver at mid-planetary encounters are determined by the three dimensional optimization problem instead of double two dimensional optimization problem.With the help of image tools,the structure of solution obtained in three dimensional optimization problem can be projected into each 2D search space.Utilization the basic idea mentioned above with the motivation that interesting solutions of interplanetary trajectory optimization problem are often clustered in a smallportion of the search space rather than being evenly distributed all over it,the GASP-II algorithm and the GS-II algorithm are proposed in this paper.

    Consider once again the objective function in the MGA problem,and introduce the map

    Fig.3 Feasible region corresponding to the first two components of decision vector

    Considering the powered gravity assist process in the MGA problem,the velocity increment required during the powered gravity process can be determined by the entrance and exit excess velocities of the spacecraft relative to the flyby planet.With reference to Fig.1,we consider the first powered gravity assist maneuver.The entrance excess velocityare known from(t0,t1),the exit excess velocityare known from(t1, t2),which meansΔv1=f(t0,t1,t2).Once t0,t1,t2are given,the velocity increment and the pericenter radius of the planetocentric trajectory are determined.Applying the maximum gravity assist thrust constraint and minimum pericenter radius constraint(the periapse of gravity assist trajectory under the minimum safe distance)can prune out the infeasible regions from the cube search space(t0,t1,t2).In order to get the boundary coordinates of the smallest cube containing the feasible regions,the cube feasible regions are projected to(t0,t1)plane and(t1,t2)plane,respectively.Then the image tools are used to identify the boundary coordinates,which are shown in Figs.4,5.The regions pruned out based on the maximum allowingΔv at departure turn out to be the unfeasible regions for the first powered gravity assist,similar criterions for the following processing;Then constraints in the MGA problems can be propagated forward and backward and the search space can be pruned step by step.Consequently,it can significantly reduce the burden of computer to locate the optimum solutions.

    As well as the maximum allowingΔv at departure,it is ordinary to consider the constraint on the maximum allowed braking maneuver the spacecraft can perform.When the spacecraft arrives at the target planet,the hyperbolic excess velocity relative to the target planetΔvn+1only depends on the last segment of interplanetary trajectory,which means the last two components in decision vector(tN×tN+1).Applying the maximum allowableΔvn+1constraint can prune out the infeasible regions from(tN×tN+1)search space,which is shown in Fig.6.After that,the boundary of feasible region can be further narrowed according to the forward and backward constraints.Final-ly,the reduced search space,consisted of the feasible regions according to the physical and technological constraints in the interplanetary mission,is described clearly with the help of image tools. There are usually several feasible regions distributed in the search space,and parallel computer is introduced to search the feasible regions at the same time,which can greatly shorten the time required to locate the optimum solutions.

    Fig.4 Cube feasible region pruned by venus flyby constraints

    Fig.5 Projection of cube feasible region into plane

    Fig.6 Feasible region corresponding to the last two components of decision vector

    Traditionally,the reduced search space is searched by optimization tools such as DE algorithm,GA,SA algorithm,and PSO algorithm. However,the solution cannot still be guaranteed to a global optimum.In this paper,the GS-II algorithm is proposed to locate the optimum solutions in reduced search space,which will be described in detail in the Earth-Mars example. Therefore,the input of the GASP-II algorithm is the initial bounds of decision vector and planets sequence.The output is the hyperrectangles feasible regions containing the optimal solution.The input of the GS-II algorithm is the hyperrectangles feasible regions given by the GASP-II algorithm,and the output is the optimal solution.

    Fig.7 Objective function landscape of Earth-Mars transfer

    Fig.8 Feasible region given by image processing version of GASP algorithm

    Fig.9 Process of image processing version of grid sampling algorithm

    Table 1 Search space for Earrh-Mars rransfer

    In order to demonstrate the effectiveness of the proposed method in this paper,the Earth-Mars transfer is addressed.This is because the search space is intuitive and the location of the global optimum is certain(Fig.7).The initial bounds of search space are given in Table 1.The GASP-II algorithmstated above is carried out,and the reduced search space is shown in Fig.8. Then the GS-II algorithm is applied to handle the reduced search space.Grid sampling algorithm is an effective optimizer for low dimensionalities. The interval must keep sufficiently fine to avoid loosing interesting solutions,while the small interval will make the number of function evaluations increase steeply.For the interesting solutions are often clustered in a small portion of the search space,the large interval with the large Lipschitzian tolerances are applied at the beginningto avoid loosing interesting solutions with little number of function evaluations.Then the grid sampling with appropriate interval is employed in the reduced domains,which are obtained in previous step.Thanks to the image tools,the boundary coordinates of the reduced domain can be identified easily.Repeat the previous step until the reduced domains is small enough to make the grid sampling algorithm to locate the global optimum efficiently.The whole process of the application of the GS-II algorithm is shown in Fig.9 and Table 2.The computational time in each step are also given in Table 2 to represent a proof of theefficiency and the time is relative to a PC,1.9 GHzCPU,512 MB RAM.Numerical simulation results show that the objective functions of the solutions contains in the feasible region in last step are better than that of the global optimum solution given in existing literature,and the visualization of best solution of Earth-Mars transfer is shown in Fig.10.

    Table 2 Reduced search space and besr idenrified solurion for Earrh-Mars rransfer

    Fig.10 Projection into ecliptic plane of Earth-Mars transfer

    4 Simularion Resulrs

    In order to demonstrate the effectiveness of the proposed algorithm in high dimensionalities,some relevant simulation studies are addressed and some results given by the methodology proposed in this paper are compared with existing literature.

    4.1 Earrh Venus Mars

    Considering the spacecraft departing from Earth,and flying to Mars with the help of the gravitational pull of Venus.Deep space maneuver(DSM)is constrained only at Venus encounters. This situation can formalized as MGA trajectory optimization problem,whereas the decision vector isτ=[t0,t1,t2],and the objective function evaluated in the process of the methodology proposed in this paper is shown as follows

    whereΔv0is the velocity increment corresponding to the Earth departure phase,Δv1the velocity increment corresponding to DSM at Venus encounters,andΔv2the velocity increment at the Mars arrival.The initial bounds of search space are given in Table 3.

    Table 3 Search space for rransfer

    The threshold values of space pruning are given 5 km/s at the Earth departure,5 km/s at the Mars arrival,and 2 km/s at the Venus powered flyby.The feasible regions are automatically saved and identified by using the image processing version of the GASP algorithm.The associated parameters are given Table 4.After that,image processing version of grid sampling algorithm is applied to locate the interesting solutions iteratively.The performances with respect to transfer time and total velocity increment are given in Table 4,including comparisons to that obtained by Armellin et al[23].The projection into the ecliptic plane of Earth Venus Mars(EVM)transfer corresponding to the best solution is visualized in Fig.11.

    Table 4 Reduced search space and besr idenrified solurion for EVM rransfer

    Fig.11 Projection into ecliptic plane of EVM transfer

    4.2 Earh Venus Venus Earrh Jupirer Sarurn

    This is a particular instance of the MGA problem[24],which is related to the Cassini spacecraft transfer trajectory optimization problem. The spacecraft depart from the Earth and fly to Saturn via multiple gravity assist.Finally,the spacecraft will be captured by the gravity field of Saturn.The pericenter radius is 108 950 km,the eccentricity is 0.98.The sequence considered here is Earth Venus Venus Earth Jupiter Saturn(EVVEJS),which is similar to that used by Cassini spacecraft.The initial bounds of the six dimensional decision vector are given in Table 5. The objective function used is the total velocity increment

    whereΔv0is the velocity increment corresponding to the Earth departure phase,Δvithe velocity in-crement the required at the planets powered flyby,andΔv5the velocity increment at Saturn arrival.

    Table 5 Search space for EVVEJS rransfer

    The threshold values of space pruning are 5 km/s at the Earth departure,2 km/s at the Saturn arrival and 2 km/s at Planets powered flyby.With the increase of dimension,the complexity of solving the MGA problem increases rapidly.There are a lot of feasible regions reserved in the 1st step.Due to the limit space,partial feasible region are listed in Table 6.The performances with respect to transfer time and total velocity increment are also given in Table 6.Finally,a comparison with the solutions given by existing literature is given in Table 7[25].The projection into the ecliptic plane of EVVEJS transfer corresponding to the best solution is visualized in Fig.12,where Fig.12(b)is large from the central part in Fig.12(a).

    Fig.12 Projection into ecliptic plane of EVVEJS transfer

    Table 6 Reduced search space and besr idenrified solurion for EVVEJS rransfer

    Table 7 Trajecrory design resulrs

    5 Conclusions

    From the view of global optimization,interplanetary trajectory optimization problem can be formalized as the MGA problem.Numerous local minimum values exist in the interplanetary trajectory optimization problem due to the complicated relative motion between the planets.With the help of image tools,the structure of search space become intuitive,and the infeasible regions can be pruned effectively according to the forward and backward constraints.Grid sampling is usually inefficient in high dimensionalities,but for the clustered interesting solutions in reduced search space,the large interval with the large Lipschitzian tolerances can locate the feasible regions with the appropriate number of function evaluations. After that,the Lipschitzian tolerances are reduced step by step.The effectiveness of the methodology proposed in this paper is demonstrated by the Earth-Mars transfer and the test problems with the characteristic of high dimensionalities.

    Acknowledgemenrs

    This work was supported by the National High Technology Research and Development Program(863)of China(2012AA121602),the National Natural Science Foundation of China(11078001),the Specialized Research Fund for the Doctoral Program of Higher Education of China(20133218120037),and the Fundamental Research Funds for the Central Universities under Grant(NS2014091).

    [1] Vinko T,Izzo D.Global optimisation heuristics and test problems for preliminary spacecraft trajectory design[R].ESA 231-238.European Space Agency:Advanced Concepts Team,2008.

    [2] Vasile M,Pascale P D.Preliminary design of multiple gravity assist trajectories[J].Journal of Spacecraft and Rockets,2006,43(4):794-805.

    [3] Battin R H.An introduction to the mathematics and methods of astrodynamics[M].Washington:AIAA,1999:47-58.

    [4] Addis B,Cassioli C,Locatelli M,et al.A global optimization for the design of space trajectories[J]. Computational Optimization and Applications,2011,48(3):635-652.

    [5] Bessette C R,Spencer D B.Identifying optimal interplanetary trajectories through a genetic approach[C]//Astrodynamics Specialist Conference and Exhibit.Keystone:AIAA,2006:437-448.

    [6] Bessette C R,Spencer D B.Optimal space trajectory design:A heuristic-based approach[J].Advances in the Astronautical Sciences,2006,124:1611-1628.

    [7] Betts T.Practical methods for optimal control and estimation using nonlinear programming[M].Washington:The Boeing Company,2001:191-204.

    [8] Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control and Dynamics,1998,21(2):193-207.

    [9] Petropoulos A E,Longuski J M.Shape based algorithm for the automated design of low thrust,gravity assist trajectories[J].Journal of Spacecraft and Rockets,2004,41(5):787-796.

    [10]Schütze O,Vasile M,Junge O,et al.Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach[J]. Engineering Optimization,2009,41(2):155-181.

    [11]Shen H X,Zhou J P,Peng Q B,et al.Multi-objective interplanetary trajectory optimization combining low thrust propulsion and gravity assist maneuvers[J].Science China Technological Sciences,2012,55(3):841-847.

    [12]Vasile M.A systematic-heuristic approach for space trajectory design[J].Annals of the New York Academy of Sciences,2004,1017(1):234-254.

    [13]VinkóT,Izzo D,Bombardelli C.Benchmarking different global optimisation techniques for preliminary space trajectory design[C]//58th International Astronautical Congress.Hyderabad:IAF,2007:189-199.

    [14]Yang D L,Xu B,Lei H L.Multi-objective detection trajectory optimization design in solar system[C]// 64th International Astronautical Congress.Beijing:IAF,2013:635-652.

    [15]Vasile M,Locatelli M.A hybrid multiagent approach for global trajectory optimization[J].Journal of Global Optimization,2009,44(4):461-479.

    [16]Jones D R,Perttunen C D,Stuckman B E.Lipschitzian optimization without the Lipschitz constant[J]. Journal of Optimization Theory and Applications,1993,79(1):157-181.

    [17]Horn M.Optimal algorithms for global optimization in case of unknown Lipschitz constant[J].Journal of Complexity,2006,22(1):50-70.

    [18]Vasile M,Summerer L,de Pascale P.design of Earth-Mars transfer trajectories using evolutionarybranching technique[J].Acta Astronautica,2005,56(8):705-720.

    [19]Izzo V M,Myatt D,Nasuto D R.Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories[J].Journal of Global Optimization,2007,38(2):283-296.

    [20]Bruce A.Spacecraft trajectory optimization[M]. Cambridge,UK:Cambridge University,2010:756-797.

    [21]Arnett D,Meakin C,Young P A.The lambert problem[C]//Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis.Barnes:ASP,2005:336-235.

    [22]Labunskij A V,Papkov O V,Sukhanov K G.Multiple gravity assist interplanetary trajectories[M]. Florida:CRC Press,1998:1147-1152.

    [23]Armellin R,Di Lizia P,Topputo F,et al.Gravity assist space pruning based on differential algebra[J]. Celestial Mechanics and Dynamical Astronomy,2010,106(1):1-24.

    [24]Peralta F,F(xiàn)lanagan S.Cassini interplanetary trajectory mission[J].Control Engineering Practice,1995,11(3):1603-1610.

    [25]Izzo D.GTOP database-MGA problem-″Cassini″[P/ OL](2005-12-08)[2014-08-12].http://www.esa. int/gsp/ACT/inf/op/globopt/evvejs.htm.

    (Executive Editor:Xu Chengting)

    V412Documenr code:AArricle ID:1005-1120(2015)05-0530-11

    *Corresponding aurhor:Gao Youtao,Lecturer,E-mail:ytgao@nuaa.edu.cn.

    How ro cire rhis arricle:Yang Dalin,Xu Bo,Gao Youtao.Search space pruning based on image tools for preliminary interplanetary trajectory design[J].Trans.Nanjing U.Aero.Astro.,2015,32(5):530-540.

    http://dx.doi.org/10.16356/j.1005-1120.2015.05.530

    猜你喜歡
    徐波大林
    Configurational entropy-induced phase transition in spinel LiMn2O4
    江蘇蘇派教育集團(tuán) 徐波
    我想跟小林一樣——讀《大林和小林》有感
    生生不息,固本造新:“生生的智慧與轉(zhuǎn)向”學(xué)術(shù)研討會(huì)綜述
    大林媽擺攤兒
    讀《大林和小林》
    迷失在權(quán)力的漩渦里
    清風(fēng)(2016年7期)2016-11-27 12:25:59
    民主與法制(2016年23期)2016-11-03 10:41:02
    霸道書(shū)記權(quán)、錢、色的多面人生
    新傳奇(2016年32期)2016-07-09 21:36:08
    從根本上治療
    蜜桃在线观看..| 亚洲国产精品成人久久小说| 成人国产av品久久久| 成年女人毛片免费观看观看9 | av天堂久久9| 大香蕉久久网| 国产日韩欧美亚洲二区| 天堂俺去俺来也www色官网| 超碰97精品在线观看| 久久热在线av| 国产成人影院久久av| 老司机亚洲免费影院| 久久九九热精品免费| 亚洲精品一区蜜桃| 秋霞在线观看毛片| 亚洲av片天天在线观看| 久久久久久亚洲精品国产蜜桃av| 男的添女的下面高潮视频| 亚洲国产毛片av蜜桃av| 国产精品99久久99久久久不卡| 无限看片的www在线观看| 日日摸夜夜添夜夜爱| 亚洲 欧美一区二区三区| 日本vs欧美在线观看视频| 一二三四社区在线视频社区8| 国产精品久久久久久精品电影小说| av网站在线播放免费| 一区二区三区精品91| 国产欧美日韩一区二区三 | 欧美中文综合在线视频| 国产男女内射视频| √禁漫天堂资源中文www| 美女扒开内裤让男人捅视频| 18禁裸乳无遮挡动漫免费视频| 菩萨蛮人人尽说江南好唐韦庄| 各种免费的搞黄视频| 亚洲欧洲精品一区二区精品久久久| 亚洲七黄色美女视频| 五月开心婷婷网| 国产一卡二卡三卡精品| 新久久久久国产一级毛片| 悠悠久久av| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人精品在线电影| 午夜福利乱码中文字幕| 日韩 亚洲 欧美在线| 免费在线观看日本一区| xxx大片免费视频| av又黄又爽大尺度在线免费看| 久久精品人人爽人人爽视色| 成年动漫av网址| 无限看片的www在线观看| 精品一区二区三区av网在线观看 | 少妇人妻久久综合中文| 国产成人精品久久二区二区91| 亚洲成人国产一区在线观看 | 电影成人av| 精品久久久久久久毛片微露脸 | 欧美中文综合在线视频| 波多野结衣一区麻豆| 久久中文字幕一级| 日本91视频免费播放| www.熟女人妻精品国产| 国产精品秋霞免费鲁丝片| 香蕉国产在线看| 免费在线观看完整版高清| 97在线人人人人妻| 久久人人爽人人片av| 脱女人内裤的视频| 久久久久国产一级毛片高清牌| 最黄视频免费看| 精品国产一区二区三区久久久樱花| av在线老鸭窝| 久久国产精品影院| 天天躁日日躁夜夜躁夜夜| 黑人欧美特级aaaaaa片| 亚洲欧美成人综合另类久久久| 老鸭窝网址在线观看| 19禁男女啪啪无遮挡网站| 亚洲第一青青草原| 中文字幕精品免费在线观看视频| 国产一区二区 视频在线| 国产97色在线日韩免费| 久久99精品国语久久久| 国产成人精品久久二区二区91| 国产欧美亚洲国产| av在线老鸭窝| 新久久久久国产一级毛片| 黄色a级毛片大全视频| 一级毛片 在线播放| 这个男人来自地球电影免费观看| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 99国产综合亚洲精品| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久小说| 免费观看a级毛片全部| 久久久久精品人妻al黑| 欧美日韩黄片免| 超碰成人久久| 国产精品三级大全| 老鸭窝网址在线观看| 黄色视频不卡| 一区福利在线观看| 免费少妇av软件| 丝袜喷水一区| 嫩草影视91久久| 亚洲中文字幕日韩| 色婷婷久久久亚洲欧美| 99久久综合免费| 真人做人爱边吃奶动态| 日日夜夜操网爽| 亚洲av电影在线观看一区二区三区| 国产男女内射视频| www.精华液| 欧美另类一区| 成人影院久久| 亚洲精品国产色婷婷电影| 99热网站在线观看| 最近最新中文字幕大全免费视频 | 欧美xxⅹ黑人| 亚洲欧美一区二区三区黑人| 亚洲国产精品一区二区三区在线| 免费观看人在逋| 亚洲av电影在线进入| 看十八女毛片水多多多| 性高湖久久久久久久久免费观看| 五月开心婷婷网| 亚洲欧美一区二区三区久久| 高清不卡的av网站| 国产伦理片在线播放av一区| 久久久久久久大尺度免费视频| 精品国产超薄肉色丝袜足j| 亚洲精品一卡2卡三卡4卡5卡 | 老鸭窝网址在线观看| 国产成人精品在线电影| 国产一区二区三区综合在线观看| 成年动漫av网址| 在线观看一区二区三区激情| 自线自在国产av| 999久久久国产精品视频| 一本大道久久a久久精品| 亚洲精品国产av成人精品| 色婷婷久久久亚洲欧美| 亚洲午夜精品一区,二区,三区| 免费一级毛片在线播放高清视频 | 丝袜脚勾引网站| 免费日韩欧美在线观看| 操出白浆在线播放| 中国美女看黄片| 大型av网站在线播放| 欧美激情高清一区二区三区| 精品国产乱码久久久久久男人| 亚洲人成77777在线视频| 黄频高清免费视频| 国产伦人伦偷精品视频| 一区二区日韩欧美中文字幕| 欧美97在线视频| 国产在线观看jvid| av欧美777| 免费看不卡的av| 欧美日本中文国产一区发布| 亚洲av美国av| 国产精品九九99| 国产三级黄色录像| 亚洲人成网站在线观看播放| 搡老岳熟女国产| av天堂在线播放| 美女午夜性视频免费| 在线观看一区二区三区激情| 久久久精品免费免费高清| 少妇被粗大的猛进出69影院| av在线老鸭窝| 午夜福利视频在线观看免费| 精品视频人人做人人爽| 午夜免费男女啪啪视频观看| 在线精品无人区一区二区三| 国产男女超爽视频在线观看| 国产av精品麻豆| 日韩熟女老妇一区二区性免费视频| 在线观看免费视频网站a站| 亚洲伊人色综图| 男女午夜视频在线观看| 久久精品aⅴ一区二区三区四区| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 叶爱在线成人免费视频播放| 你懂的网址亚洲精品在线观看| 亚洲激情五月婷婷啪啪| 18禁黄网站禁片午夜丰满| 亚洲综合色网址| 日本猛色少妇xxxxx猛交久久| 两个人看的免费小视频| av网站在线播放免费| 久久综合国产亚洲精品| 国产成人av激情在线播放| 亚洲欧洲日产国产| 熟女少妇亚洲综合色aaa.| 啦啦啦在线观看免费高清www| 国产成人欧美在线观看 | 人人妻人人添人人爽欧美一区卜| 国产人伦9x9x在线观看| 精品少妇内射三级| 国产精品久久久久成人av| 亚洲欧美一区二区三区国产| 蜜桃国产av成人99| 国产成人系列免费观看| 人妻一区二区av| 99精国产麻豆久久婷婷| 亚洲av日韩精品久久久久久密 | 大片电影免费在线观看免费| 久久久久精品国产欧美久久久 | a级片在线免费高清观看视频| 日韩视频在线欧美| 91成人精品电影| 精品久久久久久电影网| 国产一区二区在线观看av| 国产成人啪精品午夜网站| 国产亚洲午夜精品一区二区久久| xxxhd国产人妻xxx| 国产片特级美女逼逼视频| 婷婷成人精品国产| 亚洲欧美色中文字幕在线| 亚洲国产精品999| 久久久国产精品麻豆| 精品免费久久久久久久清纯 | 国产精品国产av在线观看| 亚洲欧美中文字幕日韩二区| 婷婷色综合www| 女性被躁到高潮视频| 久久久精品区二区三区| av在线app专区| 亚洲成av片中文字幕在线观看| 国产免费福利视频在线观看| 18在线观看网站| 91麻豆av在线| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 亚洲成人国产一区在线观看 | 老司机影院成人| 精品亚洲成a人片在线观看| 岛国毛片在线播放| 中文欧美无线码| 国产精品 欧美亚洲| 不卡av一区二区三区| 国产成人欧美| 国产欧美日韩一区二区三 | 国产精品久久久人人做人人爽| 久久鲁丝午夜福利片| 国产精品一国产av| 国产精品三级大全| 手机成人av网站| 人人妻,人人澡人人爽秒播 | 亚洲美女黄色视频免费看| 国产一区二区 视频在线| 亚洲成人免费电影在线观看 | 99久久精品国产亚洲精品| 国产成人a∨麻豆精品| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 黑人猛操日本美女一级片| 在现免费观看毛片| av在线app专区| 黄色一级大片看看| 永久免费av网站大全| 桃花免费在线播放| 免费在线观看日本一区| 妹子高潮喷水视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品成人av观看孕妇| 久久毛片免费看一区二区三区| 久久免费观看电影| 免费久久久久久久精品成人欧美视频| 美女国产高潮福利片在线看| 国产在线观看jvid| 大话2 男鬼变身卡| 色婷婷av一区二区三区视频| 国产1区2区3区精品| 亚洲欧美激情在线| 精品一区二区三卡| 中文字幕人妻丝袜制服| 青草久久国产| 久久这里只有精品19| 亚洲国产精品一区三区| 激情视频va一区二区三区| kizo精华| 亚洲激情五月婷婷啪啪| 国产成人啪精品午夜网站| 亚洲欧美精品综合一区二区三区| 国产精品麻豆人妻色哟哟久久| 大陆偷拍与自拍| 色网站视频免费| 制服诱惑二区| 免费在线观看日本一区| 欧美日韩亚洲高清精品| 欧美变态另类bdsm刘玥| 国产亚洲精品久久久久5区| 七月丁香在线播放| 在现免费观看毛片| 国产午夜精品一二区理论片| 纵有疾风起免费观看全集完整版| 国产成人免费观看mmmm| 欧美人与性动交α欧美软件| av在线app专区| 久久人妻熟女aⅴ| 中文字幕色久视频| 亚洲精品一卡2卡三卡4卡5卡 | 午夜视频精品福利| 国产男女超爽视频在线观看| 亚洲av男天堂| 高清欧美精品videossex| 天天影视国产精品| 天天躁夜夜躁狠狠久久av| 搡老乐熟女国产| 悠悠久久av| videosex国产| 国产97色在线日韩免费| 超碰成人久久| 少妇被粗大的猛进出69影院| 欧美精品一区二区免费开放| 色视频在线一区二区三区| 丝袜在线中文字幕| 夫妻性生交免费视频一级片| 亚洲伊人久久精品综合| 又黄又粗又硬又大视频| 国产主播在线观看一区二区 | 亚洲午夜精品一区,二区,三区| 热99久久久久精品小说推荐| 久久精品国产亚洲av涩爱| 国产成人精品久久久久久| 国产亚洲精品久久久久5区| 视频区图区小说| 18禁裸乳无遮挡动漫免费视频| 丝袜脚勾引网站| 国产av一区二区精品久久| 日本a在线网址| 国产片内射在线| 久久久久网色| 一边摸一边抽搐一进一出视频| 欧美97在线视频| 高清视频免费观看一区二区| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| av有码第一页| 一级毛片 在线播放| 国产一区二区 视频在线| 亚洲熟女毛片儿| 亚洲国产精品999| 亚洲av国产av综合av卡| 我的亚洲天堂| 晚上一个人看的免费电影| 精品人妻熟女毛片av久久网站| 亚洲精品美女久久av网站| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 精品久久久精品久久久| 日韩制服丝袜自拍偷拍| 欧美日韩亚洲综合一区二区三区_| 十分钟在线观看高清视频www| 日本欧美国产在线视频| 欧美黑人精品巨大| 欧美精品人与动牲交sv欧美| 大片电影免费在线观看免费| 麻豆av在线久日| 中文字幕最新亚洲高清| 亚洲欧美清纯卡通| 国产精品一区二区精品视频观看| 欧美97在线视频| 中国美女看黄片| 夫妻午夜视频| 热re99久久精品国产66热6| 久久av网站| 这个男人来自地球电影免费观看| 久久久久精品国产欧美久久久 | 黄色一级大片看看| 又大又黄又爽视频免费| 午夜福利影视在线免费观看| 日韩 欧美 亚洲 中文字幕| 日韩一本色道免费dvd| 欧美大码av| 777久久人妻少妇嫩草av网站| 美女视频免费永久观看网站| www.自偷自拍.com| 国产成人一区二区在线| 十八禁人妻一区二区| 又粗又硬又长又爽又黄的视频| 丰满饥渴人妻一区二区三| 亚洲国产日韩一区二区| 波多野结衣一区麻豆| 91精品国产国语对白视频| 国产在线观看jvid| 1024视频免费在线观看| 国产精品一区二区在线不卡| 亚洲精品在线美女| 免费看不卡的av| 18禁黄网站禁片午夜丰满| 91九色精品人成在线观看| 久久国产精品男人的天堂亚洲| av网站免费在线观看视频| 精品熟女少妇八av免费久了| 99国产精品99久久久久| 亚洲精品第二区| 另类亚洲欧美激情| 久久精品亚洲av国产电影网| 久久青草综合色| 国产又爽黄色视频| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩高清在线视频 | 精品熟女少妇八av免费久了| 热re99久久国产66热| 日本91视频免费播放| 欧美日本中文国产一区发布| 欧美黄色淫秽网站| 真人做人爱边吃奶动态| 三上悠亚av全集在线观看| 久久鲁丝午夜福利片| 亚洲人成电影免费在线| 真人做人爱边吃奶动态| 热99久久久久精品小说推荐| 只有这里有精品99| 一区二区三区四区激情视频| 在线观看人妻少妇| 中文欧美无线码| 亚洲成人手机| 国产日韩欧美亚洲二区| 亚洲,欧美精品.| 久久中文字幕一级| 制服诱惑二区| 亚洲免费av在线视频| 桃花免费在线播放| 人人妻人人添人人爽欧美一区卜| 午夜免费成人在线视频| 男女下面插进去视频免费观看| 国产精品 欧美亚洲| 日韩熟女老妇一区二区性免费视频| 国产99久久九九免费精品| 亚洲伊人色综图| 色网站视频免费| 狂野欧美激情性xxxx| 久久精品人人爽人人爽视色| 黄色片一级片一级黄色片| 中文字幕精品免费在线观看视频| 日韩 欧美 亚洲 中文字幕| netflix在线观看网站| 777久久人妻少妇嫩草av网站| 日本猛色少妇xxxxx猛交久久| 亚洲av成人不卡在线观看播放网 | 欧美黑人精品巨大| 香蕉丝袜av| 高清不卡的av网站| 纯流量卡能插随身wifi吗| 狠狠精品人妻久久久久久综合| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| 国产成人精品久久久久久| 国产午夜精品一二区理论片| 国产伦理片在线播放av一区| 中文欧美无线码| 亚洲,欧美精品.| 欧美亚洲日本最大视频资源| 中文字幕最新亚洲高清| 两个人看的免费小视频| 五月天丁香电影| 99re6热这里在线精品视频| 国产国语露脸激情在线看| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 精品人妻1区二区| 亚洲成av片中文字幕在线观看| 国产成人一区二区三区免费视频网站 | 精品一品国产午夜福利视频| 精品第一国产精品| 美女主播在线视频| 丰满少妇做爰视频| 国产日韩欧美亚洲二区| 色网站视频免费| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 大话2 男鬼变身卡| 啦啦啦在线免费观看视频4| 熟女av电影| 高清av免费在线| 女人被躁到高潮嗷嗷叫费观| 国产精品一国产av| 夜夜骑夜夜射夜夜干| 18禁国产床啪视频网站| 一级毛片电影观看| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 国产国语露脸激情在线看| 悠悠久久av| 欧美日韩综合久久久久久| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 最近中文字幕2019免费版| 自拍欧美九色日韩亚洲蝌蚪91| 2021少妇久久久久久久久久久| 啦啦啦 在线观看视频| 女人精品久久久久毛片| 国产成人91sexporn| 亚洲成人免费电影在线观看 | 一区二区三区精品91| av电影中文网址| 亚洲人成网站在线观看播放| 成年女人毛片免费观看观看9 | 精品国产一区二区三区四区第35| 亚洲欧美精品自产自拍| 久久国产精品人妻蜜桃| 在线看a的网站| 黄色片一级片一级黄色片| 亚洲国产中文字幕在线视频| 国产精品熟女久久久久浪| 各种免费的搞黄视频| 男女高潮啪啪啪动态图| 如日韩欧美国产精品一区二区三区| 欧美在线一区亚洲| 91国产中文字幕| 国产三级黄色录像| 欧美黑人精品巨大| cao死你这个sao货| 啦啦啦在线观看免费高清www| 亚洲精品国产区一区二| 男女午夜视频在线观看| 欧美变态另类bdsm刘玥| 亚洲一区二区三区欧美精品| 男女国产视频网站| 老熟女久久久| 最近最新中文字幕大全免费视频 | 极品人妻少妇av视频| av不卡在线播放| 中文字幕亚洲精品专区| 中文字幕人妻熟女乱码| 精品福利观看| av有码第一页| 在线观看免费高清a一片| 一个人免费看片子| 日韩av在线免费看完整版不卡| 男人爽女人下面视频在线观看| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人| 熟女av电影| av又黄又爽大尺度在线免费看| 黄色 视频免费看| 日本av免费视频播放| 国产免费视频播放在线视频| 免费看不卡的av| 多毛熟女@视频| 亚洲伊人色综图| 免费高清在线观看视频在线观看| 中文乱码字字幕精品一区二区三区| 亚洲第一青青草原| 中文字幕色久视频| 老熟女久久久| 成人国语在线视频| av线在线观看网站| 桃花免费在线播放| 韩国高清视频一区二区三区| 久久99一区二区三区| 国产片内射在线| 国产免费视频播放在线视频| 国产精品一区二区在线不卡| 晚上一个人看的免费电影| 亚洲七黄色美女视频| www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 亚洲成av片中文字幕在线观看| 啦啦啦在线免费观看视频4| 深夜精品福利| 亚洲综合色网址| 亚洲专区国产一区二区| 久久人妻福利社区极品人妻图片 | 亚洲精品一二三| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| 伦理电影免费视频| 国产在线视频一区二区| 男男h啪啪无遮挡| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 欧美精品高潮呻吟av久久| 一区二区av电影网| 嫩草影视91久久| 最黄视频免费看| 在线观看www视频免费| 成在线人永久免费视频| 久久久国产一区二区| 国产又色又爽无遮挡免| 激情五月婷婷亚洲| 亚洲男人天堂网一区| 男女国产视频网站| 人人妻,人人澡人人爽秒播 | 亚洲专区国产一区二区| 久久精品成人免费网站| 日韩 亚洲 欧美在线| 这个男人来自地球电影免费观看| 妹子高潮喷水视频| 久久av网站| 亚洲精品av麻豆狂野| 色网站视频免费| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂| 大香蕉久久网| 亚洲第一av免费看| 亚洲美女黄色视频免费看| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 成年人午夜在线观看视频|