談胤求(綜述),陳謙學(審校)
(武漢大學人民醫(yī)院神經(jīng)外科,武漢430060)
長鏈非編碼RNA在人腦膠質(zhì)瘤中的研究進展
談胤求△(綜述),陳謙學※(審校)
(武漢大學人民醫(yī)院神經(jīng)外科,武漢430060)
摘要:近些年,一類轉(zhuǎn)錄副本較長的非編碼RNA——長鏈非編碼RNA(LncRNA)被發(fā)現(xiàn)參與了遺傳信息的表達調(diào)控,尤其在腫瘤細胞中。LncRNA在膠質(zhì)瘤中的作用已成為神經(jīng)外科研究的新熱點。該文通過檢索近期發(fā)表的有關(guān)LncRNA在膠質(zhì)瘤中作用的文獻,重點總結(jié)了部分LncRNA的新特點;通過探究LncRNA在膠質(zhì)瘤中的作用機制,了解膠質(zhì)瘤的起源、生長、進展、轉(zhuǎn)移、侵襲,并判斷其等級、分期及預后,為膠質(zhì)瘤的臨床治療提供了理論基礎。
關(guān)鍵詞:膠質(zhì)瘤;長鏈非編碼RNA;機制
長鏈非編碼RNA(long non-coding RNA,LncRNA)是一類轉(zhuǎn)錄副本長度超過200個核苷酸,且不編碼蛋白的RNA[1]。研究表明,LncRNA在許多人類腫瘤性疾病中起著關(guān)鍵作用[2]。而人腦膠質(zhì)瘤作為成人原發(fā)性腦腫瘤中惡性程度最高、預后最差的一類[3],其發(fā)病機制、侵襲性、轉(zhuǎn)移及預后等多個方面與LncRNA的關(guān)系也成為了近來研究的熱點。利用LncRNA芯片技術(shù),通過與正常腦組織對比來篩選出膠質(zhì)瘤中差異性表達的LncRNA,已成為目前篩選膠質(zhì)瘤相關(guān)LncRNA 較成熟的方法。目前觀察到的LncRNA對腫瘤的調(diào)節(jié)方式較多,如表觀遺傳學調(diào)控、轉(zhuǎn)錄前及轉(zhuǎn)錄后調(diào)控、選擇性剪切調(diào)控、競爭結(jié)合位點[4]等,但具體機制仍需進一步研究?,F(xiàn)就LncRNA的調(diào)節(jié)機制、在膠質(zhì)瘤中的作用及應用前景進行綜述。
1LncRNA的調(diào)節(jié)機制
LncRNA的調(diào)節(jié)機制目前仍未完全闡明,現(xiàn)在公認的調(diào)節(jié)機制包括轉(zhuǎn)錄水平調(diào)控、表觀遺傳學調(diào)控和轉(zhuǎn)錄后調(diào)控[5],這3種方式既可單獨發(fā)揮作用,也能彼此聯(lián)合發(fā)揮作用。選擇性剪切調(diào)控、競爭結(jié)合位點的研究較少,僅在少數(shù)LncRNA可觀察到相關(guān)現(xiàn)象。更完善的機制研究仍在不斷進行中。
1.1轉(zhuǎn)錄水平調(diào)控轉(zhuǎn)錄水平調(diào)控是人類細胞基因表達中最常見的一種調(diào)控方式,在膠質(zhì)瘤細胞中,特殊的轉(zhuǎn)錄因子可以調(diào)控LncRNA的表達。例如,c-myc(cellular-myelocytomatosis oncogene)轉(zhuǎn)錄因子能夠直接結(jié)合到H19的啟動子上,引起H19的表達[6]。在結(jié)直腸癌差異性表達(colorectal neoplasia differentially expressed,CRNDE)基因的啟動子區(qū)域則有多個轉(zhuǎn)錄因子的結(jié)合位點,分別與c-Myc、核因子κB、E2F6(E2F transcription factor 6)、TAF1[TATA box binding protein (TBP)-associated factor]和Smads蛋白等轉(zhuǎn)錄因子相結(jié)合,從而引起CRNDE的表達[7]。在最早被發(fā)現(xiàn)的LncRNA——HOTAIRM1(HOX transcript antisense RNA myeloid-specific 1)中也觀察到了同樣的情況,核因子κB、PU.1 [spleen focus forming virus (SFFV) proviral integration oncogene,spi-1或PU.1]和USF-1(upstream stimulatory factors 1)與相應啟動子區(qū)域結(jié)合位點結(jié)合后,也引起了HOTAIRM1的表達[8]。這些LncRNA的表達均受特定轉(zhuǎn)錄因子的調(diào)控,而LncRNA的表達又會對膠質(zhì)瘤的發(fā)生、發(fā)展產(chǎn)生影響。相應的轉(zhuǎn)錄因子與LncRNA關(guān)系的研究仍在不斷完善中。
1.2表觀遺傳學調(diào)控表觀遺傳學的改變也是腫瘤研究的一個重要方向,在LncRNA的表達中,表觀遺傳學的改變也有著重要作用。通過招募染色質(zhì)重塑復合物到特定染色體位點,LncRNA可調(diào)節(jié)表觀遺傳學的修飾[9]。例如:HOTAIR(HOX transcript antisense RNA)通過多梳抑制復合物2(polycomb repressive complex 2,PRC2)發(fā)揮作用[10]。另一個關(guān)于表觀遺傳學基因沉默的例子就是X染色體失活中的X染色體失活特異性轉(zhuǎn)錄副本[11],X染色體失活具有一系列表觀遺傳學的修飾,包括組蛋白H3甲基化、組蛋白H4低度乙?;癉NA甲基化[12],而這些過程均與X染色體失活基因包被失活X染色體相關(guān)。在結(jié)腸癌轉(zhuǎn)移過程中,CCAT2(colon cancer associ-ated transcript 2)的表達就與基因組的擴增有關(guān)[13]。研究表明,LncRNA與表觀遺傳學調(diào)控有著密切關(guān)系[14]。
1.3轉(zhuǎn)錄后調(diào)控在轉(zhuǎn)錄完成后,有些LncRNA通過控制轉(zhuǎn)錄因子的亞細胞定位來調(diào)節(jié)轉(zhuǎn)錄[15]。由RFPL1(Ret finger protein-like 1)反義編碼而得到的RFPL1S(RFPL1 antisense),能夠覆蓋在RFPL1的重要部位,控制細胞周期進程,由此推斷,RFPL1基因的轉(zhuǎn)錄后調(diào)控是RFPL1S發(fā)揮作用的原因[16]。Lottin等[17]研究發(fā)現(xiàn),H19作為一個轉(zhuǎn)移核糖核酸調(diào)節(jié)物,在轉(zhuǎn)錄后水平層面對硫氧還原蛋白有明確的調(diào)控。研究證實,LncRNA在轉(zhuǎn)錄后水平對很多腫瘤及炎癥相關(guān)蛋白均有調(diào)控作用[2]。
1.4選擇性剪切調(diào)控Bernard等[18]研究發(fā)現(xiàn),人肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄因子1與富含絲氨酸/精氨酸的剪切調(diào)節(jié)蛋白相互作用,導致其重新定位于細胞核內(nèi)的剪切斑點,即信使RNA的加工位點。Tripathi等[19]發(fā)現(xiàn),人肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄因子1可以通過調(diào)節(jié)SF2/ASF(splicing factor 2/alternative splicing factor)的磷酸化來調(diào)控選擇性剪切。因此,認為人肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄因子1是選擇性剪切中的重要調(diào)節(jié)因子。
1.5競爭結(jié)合位點Kino等[20]研究發(fā)現(xiàn),Gas5(growth arrest specific 5)能結(jié)合到糖皮質(zhì)激素受體的DNA結(jié)合域,從而與糖皮質(zhì)激素反應元件基因競爭結(jié)合位點,并修改包括真正的糖皮質(zhì)激素反應元件在內(nèi)的目的基因表達。該過程和轉(zhuǎn)錄前調(diào)控又都是在轉(zhuǎn)錄前干擾遺傳物質(zhì),進而改變其表達,但是其調(diào)節(jié)過程中具有競爭性結(jié)合,因此該調(diào)節(jié)機制是否能看作轉(zhuǎn)錄前調(diào)控的一個子類仍需進一步研究。
2LncRNA在膠質(zhì)瘤中的作用
LncRNA在多種腫瘤中存在著表達異常,既有表達增多,也有表達降低,并且在不同的腫瘤類型、腫瘤等級、惡性程度及預后中均有相關(guān)關(guān)系。利用基因芯片技術(shù)、實時定量聚合酶鏈反應和功能獲得/缺失型研究,目前已研究了大量LncRNA 與腫瘤的關(guān)系,其中有上千個LncRNA與膠質(zhì)瘤相關(guān)[21]。LncRNA與膠質(zhì)瘤的起源、生長、侵襲、遷移及預后等均呈相關(guān)關(guān)系,并可能作為未來膠質(zhì)瘤診斷的生物標志和治療的標靶[22]。
2.1膠質(zhì)瘤中表達上調(diào)的LncRNA
2.1.1Linc-POU3F3(long intergenic noncoding RNA -POU class 3 homeobox 3)Linc-POU3F3是一個位于染色體2q12負鏈上,含747個堿基對的轉(zhuǎn)錄本,包含了4個內(nèi)含子,距離它僅4千堿基對的下游就是POU3F3基因。Li等[23]的研究表明,改變Linc-POU3F3的表達能夠推進食管鱗狀細胞癌細胞中POU3F3的甲基化水平。而作為轉(zhuǎn)錄因子的POU3F3被證明能夠調(diào)節(jié)德爾塔樣1基因[24]和性別決定區(qū)域Y盒2[25]的表達,后兩者則是干細胞神經(jīng)分化過程中的重要基因。同時,Linc-POU3F3與POU3F3的關(guān)系是通過EZH2(enhancer of zeste homologue 2)的調(diào)控來實現(xiàn)的[26]。Guo等[27]的研究顯示,Linc-POU3F3的表達在細胞核及細胞質(zhì)中均能檢測到,但在細胞核中的表達明顯多于在細胞質(zhì)中的表達;在膠質(zhì)瘤細胞中,Linc-POU3F3對于POU3F3的調(diào)控則呈負相關(guān),Linc-POU3F3 表達增多導致POU3F3的降低,Linc-POU3F3表達減少導致POU3F3的升高;隨著膠質(zhì)瘤等級的升高,腫瘤細胞中的Linc-POU3F3表達也增多,而POU3F3與膠質(zhì)瘤等級的關(guān)系則正好與Linc-POU3F3相反。
2.1.2HOTAIRHOTAIR含2158個堿基對,首次被發(fā)現(xiàn)是以反式轉(zhuǎn)錄作用調(diào)控基因表達,其作為組蛋白修飾復合物的支架,5′端結(jié)構(gòu)域結(jié)合PRC2,3′端結(jié)構(gòu)域結(jié)合賴氨酸特異性組蛋白去甲基化酶,并介導這兩種復合體至特定基因位點,分別使染色體組蛋白H3第27位氨基酸三甲基化和組蛋白h3H3第4位氨基酸去二甲基化,從而使其發(fā)生表觀遺傳學沉默[10]。Zhang等[28]的研究表明,HOTAIR主要通過其依賴EZH2的5′端結(jié)構(gòu)域PRC2軸調(diào)節(jié)細胞周期進程,而其3′端則無該功能。HOTAIR的甲基化作用也可能是通過EZH2的甲基化酶功能而實現(xiàn)的。在膠質(zhì)瘤中,HOTAIR與膠質(zhì)瘤分子亞型、分期、等級及預后相關(guān),HOTAIR是膠質(zhì)瘤惡性進展和不良預后的有利因素[29]。
2.1.3CRNDECRNDE 基因位于第16號染色體上,且與相鄰IRX5(iroquois homeobox 5)基因的位置相對,含10 kb,包含5個外顯子。Tilgner等[30]研究顯示,CRNDE在轉(zhuǎn)錄中存在不完全剪接的傾向,剪接后剩余的內(nèi)含子主要是下游的內(nèi)含子,而上游的內(nèi)含子均被切除了,尤其是第1個內(nèi)含子。CRNDE具有組織特異性和暫時性表達模式,在很多組織中不表達,而在有的組織中則呈現(xiàn)高表達。Ellis等[31]的研究發(fā)現(xiàn),CRNDE在膠質(zhì)瘤中的表達升高,且在膠質(zhì)母細胞瘤中最明顯,而在某些少突膠質(zhì)細胞瘤和少突星形細胞瘤病例中并未觀察到CRNDE有明顯改變。CRNDE的水平與膠質(zhì)瘤的等級呈正相關(guān),同時它也是膠質(zhì)瘤中上調(diào)最高的LncRNA[32]。CRNDE還與表皮生長因子受體基因擴增相關(guān)[33],另外,CRNDE的表達還受到Myc的調(diào)節(jié)[34]。作為一個多功能的LncRNA,其不同的剪接亞型為不同的調(diào)節(jié)復合物提供了特定的功能,比如引導PRC2和RE-1元件輔助抑制因子染色體修飾復合體到目的基因[28]。Ducray等[33]的研究認為,在高度惡性的少突神經(jīng)膠質(zhì)細胞瘤中,CRNDE與表皮生長因子受體的基因擴增密切相關(guān),而且發(fā)現(xiàn)表皮生長因子受體的表達程度與腫瘤的分化程度呈負相關(guān),同時發(fā)現(xiàn)表皮生長因子受體高表達伴隨著CRNDE高表達,但兩者的關(guān)系及其在神經(jīng)膠質(zhì)細胞分化中的確切機制仍不明確。
2.1.4H19H19 位于染色體11p15.5上,在胰島素樣生長因子2基因下游約200 kb的位置。LncRNA H19是印跡基因H19所產(chǎn)生的,其表達是依賴染色體的親本來源。以往的研究顯示,在肝癌、膀胱癌和乳腺癌中,H19均扮演著癌基因的角色,而在膠質(zhì)瘤中,其與膠質(zhì)瘤等級相關(guān),且受到微RNA(microRNA,miRNA)-675的調(diào)節(jié)[35]。高級別膠質(zhì)瘤中有更多的H19,并且通過小干擾RNA來干擾H19能抑制膠質(zhì)瘤細胞的侵襲。H19的減少可抑制miR-675的表達,miR-675通過直接目的性結(jié)合到非翻譯區(qū)3′端位點,調(diào)節(jié)鈣黏連蛋白13的表達,從而影響膠質(zhì)瘤的侵襲性[35]。H19通過衍生出miR-675 并抑制鈣粘連蛋白13來調(diào)節(jié)膠質(zhì)瘤細胞侵襲,這種LncRNA-miRNA模式也可能成為未來膠質(zhì)瘤治療的新靶標。
2.2膠質(zhì)瘤中表達下調(diào)的LncRNA
2.2.1ADAMTS9-AS2(ADAM metallopeptidase with thrombospondin type 1 motif,9 antisense RNA2)ADAMTS9-AS2是腫瘤抑制因子ADAMTS9的反義轉(zhuǎn)錄物,與ADAMTS9基因成對位于染色體3p14.1上。ADAMTS9是一個重要的抗血管發(fā)生因子,能夠通過調(diào)節(jié)成纖維細胞生長因子和血管內(nèi)皮生長因子抑制腫瘤的進展和轉(zhuǎn)移[36]。與正常組織相比,腫瘤組織中的ADAMTS9-AS2表達明顯下調(diào),并且與腫瘤等級和預后呈負相關(guān),而且ADAMTS9-AS2的過表達明顯抑制了膠質(zhì)瘤遷移;另外,在ADAMTS9-AS2和ADAMTS9的啟動子上發(fā)現(xiàn)了廣泛的DNA甲基化和組蛋白修飾標記,而ADAMTS9-AS2表達和DNA甲基轉(zhuǎn)移酶1呈負相關(guān)[37]。因此推測,ADAMTS9-AS2 的表達可能是通過DNA甲基轉(zhuǎn)移酶1使DNA甲基化而實現(xiàn)的。
2.2.2肺癌腫瘤抑制因子1反義RNA1(tumor suppressor in lung cancer 1 antisense RNA1,TSLC1-AS1)TSLC1-AS1位于染色體11q23.2上,是通過蛋白編碼基因TSLC1反義轉(zhuǎn)錄得到的,它在很多惡性腫瘤中通常都被刪除了[38]。在很多腫瘤中TSLC1均因超甲基化而被下調(diào)。在膠質(zhì)瘤組織中,TSLC1-AS1 與TSLC1均被下調(diào),TSLC1-AS1與膠質(zhì)瘤的增殖、遷移、侵襲性及世界衛(wèi)生組織分級相關(guān)[39]。而TSLC1也可在無超甲基化的情況下,通過TSLC1-AS1的過表達使其轉(zhuǎn)錄增多[40]。而TSLC1-AS1又與很多腫瘤抑制因子和癌基因相關(guān),研究顯示,TSLC1-AS1的表達與其他腫瘤抑制因子如NF1(neurofibromatosis type 1)、VHL(von hippel-lindau tumor suppressor)[41]、磷脂酰肌醇3-激酶調(diào)節(jié)亞基1[42]呈正相關(guān),而與癌基因BRAF(B-Raf proto-oncogene)[43]呈負相關(guān)。這也表明其可能是膠質(zhì)瘤中一個關(guān)鍵的調(diào)節(jié)分子,聯(lián)絡了很多的腫瘤相關(guān)基因[38]。關(guān)于TSLC1-AS1在膠質(zhì)瘤中的準確機制仍需進一步探索。
2.2.3CASC2(cancer susceptibility candidate 2)基因CASC2基因位于染色體10q26,最早是作為在子宮內(nèi)膜癌中下調(diào)的基因而被發(fā)現(xiàn),從而推測其為腫瘤抑制基因。Wang等[44]的研究顯示,CASC2在膠質(zhì)瘤組織中呈低表達,CASC2的過表達能降低miR-21的表達水平,而miR-21對CASC2的結(jié)合位點是高度保守的。因此,推測CASC2和miR-21之間存在一個相互抑制的反饋環(huán)路。這種相互抑制關(guān)系存在argonaute蛋白RNA誘導沉默復合物催化元件2依賴性,MiR-21和CASC2之間的相互抑制是由RNA誘導的沉默復合物所誘導,而miR-21的負調(diào)節(jié)可引起CASC2介導的對膠質(zhì)瘤細胞增殖、遷移、侵襲及促進細胞凋亡的抑制[44]。同時也提示LncRNA-miRNA模式并不僅僅只存在于H19中,這種LncRNA 與miRNA的相互作用可能是未來LncRNA研究的一個熱點。
3小結(jié)
隨著對LncRNA研究的逐漸深入,其在膠質(zhì)瘤中的作用也越來越受到人們的重視,而且LncRNA是能夠在癌癥患者的體液中被檢測到的[45]。因此,在未來的臨床實踐中,其對于膠質(zhì)瘤預后的判斷也有著重要意義。雖然目前對于LncRNA 的作用機制仍處于探索階段,但從已有的研究中可以發(fā)現(xiàn),LncRNA與膠質(zhì)瘤有著密切聯(lián)系,日后針對相應LncRNA或其相關(guān)調(diào)節(jié)物質(zhì)的治療可能成為膠質(zhì)瘤治療的一種更加有效的方法。
參考文獻
[1]Derrien T,Johnson R,Bussotti G,etal.The GENCODE v7 catalog of human long noncoding RNAs:analysis of their gene structure,evolution,and expression[J].Genome Res,2012,22(9):1775-1789.
[2]Niland CN,Merry CR,Khalil AM.Emerging Roles for Long Non-Coding RNAs in Cancer and Neurological Disorders[J].Front Genet,2012,3:25.
[3]Louis DN,Ohgaki H,Wiestler OD,etal.The 2007 WHO classification of tumours of the central nervous system[J].Acta Neuropathol,2007,114(2):97-109.
[4]Harries LW.Long non-coding RNAs and human disease[J].Biochem Soc Trans,2012,40(4):902-906.
[5]Wang KC,Chang HY.Molecular mechanisms of long noncoding RNAs[J].Mol Cell,2011,43(6):904-914.
[6]Barsyte-Lovejoy D,Lau SK,Boutros PC,etal.The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis[J].Cancer Res,2006,66(10):5330-5337.
[7]Yang JH,Li JH,Jiang S,etal.ChIPBase:a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data[J].Nucleic Acids Res,2013,41(Database issue):D177-187.
[8]Zhang XQ,Leung GK.Long non-coding RNAs in glioma:functional roles and clinical perspectives[J].Neurochem Int,2014,77:78-85.
[9]Kaikkonen MU,Lam MT,Glass CK.Non-coding RNAs as regulators of gene expression and epigenetics[J].Cardiovasc Res,2011,90(3):430-440.
[10]Tsai MC,Manor O,Wan Y,etal.Long noncoding RNA as modular scaffold of histone modification complexes[J].Science,2010,329(5992):689-693.
[11]Plath K,Fang J,Mlynarczyk-Evans SK,etal.Role of histone H3 lysine 27 methylation in X inactivation[J].Science,2003,300(5616):131-135.
[12]Agrelo R.X inactivation and progenitor cancer cells[J].Cancers (Basel),2011,3(2):2169-2175.
[13]Ling H,Spizzo R,Atlasi Y,etal.CCAT2,a novel noncoding RNA mapping to 8q24,underlies metastatic progression and chromosomal instability in colon cancer[J].Genome Res,2013,23(9):1446-1461.
[14]Lee JT.Epigenetic regulation by long noncoding RNAs[J].Science,2012,338(6113):1435-1439.
[15]Mercer TR,Dinger ME,Mattick JS.Long non-coding RNAs:insights into functions[J].Nat Rev Genet,2009,10(3):155-159.
[16]Bonnefont J,Laforge T,Plastre O,etal.Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation[J].Cell Death Differ,2011,18(2):293-303.
[17]Lottin S,Vercoutter-Edouart AS,Adriaenssens E,etal.Thioredoxin post-transcriptional regulation by H19 provides a new function to mRNA-like non-coding RNA[J].Oncogene,2002,21(10):1625-1631.
[18]Bernard D,Prasanth KV,Tripathi V,etal.A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression[J].EMBO J,2010,29(18):3082-3093.
[19]Tripathi V,Ellis JD,Shen Z,etal.The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation[J].Mol Cell,2010,39(6):925-938.
[20]Kino T,Hurt DE,Ichijo T,etal.Noncoding RNA gas5 is a growth arrest-and starvation-associated repressor of the glucocorticoid receptor[J].Sci Signal,2010,3(107):a8.
[21]Rinn JL,Chang HY.Genome regulation by long noncoding RNAs[J].Annu Rev Biochem,2012,81:145-166.
[22]Qi P,Du X.The long non-coding RNAs,a new cancer diagnostic and therapeutic gold mine[J].Mod Pathol,2013,26(2):155-165.
[23]Li W,Zheng J,Deng J,etal.Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells[J].Gastroenterology,2014,146(7):1714-1726.
[24]Stamataki D,Holder M,Hodgetts C,etal.Delta1 expression,cell cycle exit,and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system[J].PLoS One,2011,6(9):e24484.
[25]Catena R,Tiveron C,Ronchi A,etal.Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells[J].J Biol Chem,2004,279(40):41846-41857.
[26]Vire E,Brenner C,Deplus R,etal.The Polycomb group protein EZH2 directly controls DNA methylation[J].Nature,2006,439(7078):871-874.
[27]Guo H,Wu L,Yang Q,etal.Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma[J].Gene,2014,554(1):114-119.
[28]Zhang K,Sun X,Zhou X,etal.Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner[J].Oncotarget,2015,6(1):537-546.
[29]Zhang JX,Han L,Bao ZS,etal.HOTAIR,a cell cycle-associated long noncoding RNA and a strong predictor of survival,is preferentially expressed in classical and mesenchymal glioma[J].Neuro Oncol,2013,15(12):1595-1603.
[30]Tilgner H,Knowles DG,Johnson R,etal.Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs[J].Genome Res,2012,22(9):1616-1625.
[31]Ellis BC,Molloy PL,Graham LD.CRNDE:A Long Non-Coding RNA Involved in CanceR,Neurobiology,and DEvelopment[J].Front Genet,2012,3:270.
[32]Zhang X,Sun S,Pu JK,etal.Long non-coding RNA expression profiles predict clinical phenotypes in glioma[J].Neurobiol Dis,2012,48(1):1-8.
[33]Ducray F,Idbaih A,de Reynies A,etal.Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile[J].Mol Cancer,2008,7:41.
[34]Khalil AM,Guttman M,Huarte M,etal.Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression[J].Proc Natl Acad Sci U S A,2009,106(28):11667-11672.
[35]Shi Y,Wang Y,Luan W,etal.Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675[J].PLoS One,2014,9(1):e86295.
[36]Clark ME,Kelner GS,Turbeville LA,etal.ADAMTS9,a novel member of the ADAM-TS/ metallospondin gene family[J].Genomics,2000,67(3):343-350.
[37]Yao J,Zhou B,Zhang J,etal.A new tumor suppressor LncRNA ADAMTS9-AS2 is regulated by DNMT1 and inhibits migration of glioma cells[J].Tumour Biol,2014,35(8):7935-7944.
[38]Nowacki S,Skowron M,Oberthuer A,etal.Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma[J].Oncogene,2008,27(23):3329-3338.
[39]Qin X,Yao J,Geng P,etal.LncRNA TSLC1-AS1 is a novel tumor suppressor in glioma[J].Int J Clin Exp Pathol,2014,7(6):3065-3072.
[40]Ando K,Ohira M,Ozaki T,etal.Expression of TSLC1,a candidate tumor suppressor gene mapped to chromosome 11q23,is downregulated in unfavorable neuroblastoma without promoter hypermethylation[J].Int J Cancer,2008,123(9):2087-2094.
[41]Chen L,Han L,Zhang K,etal.VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1alpha/VEGF and beta-catenin/Tcf-4 signaling[J].Neuro Oncol,2012,14(8):1026-1036.
[42]Weber GL,Parat MO,Binder ZA,etal.Abrogation of PIK3CA or PIK3R1 reduces proliferation,migration,and invasion in glioblas-toma multiforme cells[J].Oncotarget,2011,2(11):833-849.
[43]von Deimling A,Korshunov A,Hartmann C.The next generation of glioma biomarkers:MGMT methylation,BRAF fusions and IDH1 mutations[J].Brain Pathol,2011,21(1):74-87.
[44]Wang P,Liu YH,Yao YL,etal.Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21[J].Cell Signal,2015,27(2):275-282.
[45]Zhang XQ,Sun S,Lam KF,etal.A long non-coding RNA signature in glioblastoma multiforme predicts survival[J].Neurobiol Dis,2013,58:123-131.
The Research Progress of LncRNA in Brain GliomaTANYin-qiu,CHENQian-xue.(DepartmentofNeurosurgery,RenminHospitalofWuhanUniversity,Wuhan430060,China)
Abstract:In recent years,a class of long transcript non-coding RNA(LncRNAs) were discovered to be involved in regulating the expression of genetic information,especially in the tumor cells.The role of LncRNA in glioma has become a new hot spot for neurosurgery research.Here is to summarize some of the new characteristics of LncRNA by searching the recently published literature on LncRNA role in glioma.By exploring the mechanisms of LncRNA in glioma,we try to elucidate the origin,growth,progression,metastasis,invasion of glioma and determine their grades,staging and prognosis,to provide a theoretical basis for the clinical treatment.
Key words:Glioma; Long non-coding RNA; Mechanism
收稿日期:2015-03-13修回日期:2015-05-22編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.24.013
中圖分類號:R730.23
文獻標識碼:A
文章編號:1006-2084(2015)24-4454-04