• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of hydraulic conductivity of fractured rock masses: A case study for a rock cavern project in Singapore

    2015-02-08 09:02:54ZhipengXuZhiyeZhoJinpingSunMingLu

    Zhipeng Xu,Zhiye Zho,Jinping Sun,Ming Lu

    aSchool of Civil and Environmental Engineering,Nanyang Technological University,639798 Singapore,Singapore

    bThomson Line Division of Rail Group,Land Transport Authority,219428 Singapore,Singapore

    Determination of hydraulic conductivity of fractured rock masses: A case study for a rock cavern project in Singapore

    Zhipeng Xua,*,Zhiye Zhaoa,Jianping Sunb,Ming Lua

    aSchool of Civil and Environmental Engineering,Nanyang Technological University,639798 Singapore,Singapore

    bThomson Line Division of Rail Group,Land Transport Authority,219428 Singapore,Singapore

    A R T I C L E I N F O

    Article history:

    Received 30 April 2014

    Received in revised form

    25 September 2014

    Accepted 9 October 2014

    Available online 3 December 2014

    Rock caverns

    Hydraulic conductivity

    Fractured rock masses

    Seepage analysis

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore,a reliable hydro-geological model should be established based on the in situ investigation data.The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses.Based on the data obtained from different stages(feasibility investigation stage,construction stage,and post-construction stage),suitable models and methods are proposed to determine the hydraulic conductivities at different locations and depths,which will be used at other locations in the future.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    The rock cavern project located at an offshore island in Singapore is an underground liquid hydrocarbon storage facility. The underground storage rock caverns have many advantages over the aboveground storages,in terms of protection against f re, earthquake and explosion,and can save substantial aboveground land for other better uses.The underground rock caverns are also superior in terms of environmental conservation,because the sealing effects of groundwater ensure that there is less danger for the stored oil to leak out to the ground surface(Kiyoyama,1990).

    The rock caverns are located at a depth of 130 m beneath a basin, and their crowns are located at about 100 m below the sea bottom. Each rock cavern is excavated by drill-and-blast method,and then lined by a high-pressure spray“shotcrete”.This project includes a number of caverns/tunnels at two levels:the water curtain tunnels are at upper level,and oil storage caverns are at lower level. Groundwater seeps through rock joints,exerting a pressure known as hydrostatic pressure to keep oil from leaking out of the rock mass.The water curtain helps to provide a stable pressure distributed around the caverns.Pressure gauges are installed in the water curtains,and water from the operational and access tunnels is injected continuously into the curtains to maintain the pressure. The water that seeps into the cavern is collected using sumps within the caverns,and then treated and discharged into the sea.

    As witnessed in many underground projects all over the world, water seepage related problem is considered as one of the main geological hazards which may potentially cause:accidents,deteriorated working conditions and threat to workers’safety,rockfalls,settlement of aboveground buildings,extended construction duration,and a high cost.The groundwater control during the construction(i.e.excavation)phase and the operation phase plays a critical role in terms of construction/operation cost and construction safety.In order to reduce the risk associated with the groundwater seepage,a reliable hydro-geological model should be established based on the in situ investigation data.The key challenging issue is how to integrate limited geological and hydrogeological data to determine the hydraulic conductivity of the fractured rock masses.For this project,various data are collected at different stages:feasibility investigation stage,construction stage, and post-construction stage.This paper tries to propose suitable models and methods to determine the hydraulic conductivity of the fractured rock masses based on different monitored data.

    2.Determination of the hydraulic conductivity at the site investigation stage

    At the site investigation stage,six vertical boreholes were drilled to investigate the hydraulic properties of the fractured rock masses. The locations of six vertical boreholes B1 to B6 are shown in Fig.1. The basic information of the six boreholes is listed in Table 1.The fracture orientation data and dip/dip angle were obtained from the borehole survey.In total,72 hydraulic conductivity measurements as listed in Table 1 were conducted in the six boreholes,by theinjection tests.Fig.2 presents the measured hydraulic conductivity data at the six boreholes at the depth between-40 mACD and-200 mACD,where ACD stands for admiralty chart datum.The results show that the hydraulic conductivity varies between 10-11m/s and 10-4m/s.It should be noted that the hydraulic conductivities obtained from the correlation curve of injected water pressure and f ow quantity of the injected water(Spane and Wurstner,1993;Chakrabarty and Enachescu,1997)are based on the assumptions that the fractured rock masses are homogenous, isotropic and porous media,and the f ow geometry is cylindrical, which do not re f ect the anisotropic property of the fractured rock masses.In order to derive the local stress regime at the proposed development area,10 hydrofrac/hydraulic injection tests were conducted in the uncased section of borehole B5 between-96 mACD and-181.4 mACD.A typical test record illustrating the test procedure is shown in Fig.3,and the results of the stress f eld inversion calculations are shown in Fig.4.

    In order to obtain anisotropic permeabilitykijalong the boreholes,the following assumptions are made:

    (1)Each fracture is idealized by a set of parallel plates with a uniform aperturet.

    (2)The solid matrix is impermeable.

    (3)The hydraulic gradient is uniformly distributed over the whole body.

    (4)Seepage f ow through a fracture can be treated as laminar f ow between parallel plates with a uniform aperture.

    (5)There is no water head loss at intersections between

    fractures.

    Fig.1.Schematic map of locations of the six vertical boreholes.

    Table 1Basic information of six boreholes.

    Fig.2.Hydraulic conductivity with increasing depth at the six boreholes.

    Based on the above assumptions,the fractured rock masses can be treated as equivalent continuous media,and Oda(1985)proposed hydraulic conductivity components as follows:

    wheregis the gravitational acceleration;υis the kinematic viscosity;λis a dimensionless scalar dependent on the connectivity among joints and can be set to 1/12 for practical applications(Oda et al.,1987);δijis the Kronecker delta;ρis the number of joints per unit volume;niis the component ofnprojected on the orthogonal reference axis system(xi=1,2,3);E(n,r,t)is the density function;ris the fracture length;kijandPijare both symmetric second-rank tensors,and have the principal values in the principal directions.

    There is a relationship between the aperturetand the fracture lengthr(Hatton et al.,1994),and a larger fracture tends to have a wider initial aperturet0.The aspect ratiocis introduced as an approximated measure of the fracture lengthr(Oda,1986),because no information about the fracture lengthris available from the site investigation:

    Fig.3.A typical set of injection pressure and f ow rate records of hydraulic fracturing test.

    Fig.4.Stress pro f le for borehole B5.ShandSHare the minimum and maximum horizontal principal stresses,respectively;andSvis the vertical principal stress.The direction of the maximum horizontal stressSHis N10°(NNE-SSW).

    The number of joints per unit volumeρcan be obtained as follows(Cheng,2006):

    whereNqk/lis the number of fractures crossed by unit length of a scan line in the directionq.With the assumption that the statisticalvariablesnandrare mutually independent,the density functionE(n,r)is given by Oda(1985)as follows:

    Table 2Six components of hydraulic conductivity and three principal hydraulic conductivities at depth of-111 mACD at borehole B6(unit:m/s).

    whereE(n),f(r)are the probability density functions ofnandr, respectively.The density functionE(n)can be obtained from the in situ fracture orientation survey.The distributed forms of fracture length,i.e.f(r),can be considered as negative exponential or lognormal form(Dershowitz and Einstein,1988).A lognormal distribution functionf(r)is adopted:

    Based on the parameter sensitivity analysis,the ratios of anisotropic hydraulic conductivity,de f ned ask1/k3andk1/k2,are mainly controlled by the fracture orientation distribution and in situ geostatic stress.The in f uence of joint size,normal stiffness constant and aspect ratio on anisotropy is negligible(Cheng,2006). The fracture orientation information in each borehole and in situ stress in borehole B5 are used to determine the anisotropic hydraulic conductivity along the six boreholes.The analysis results show thatk1andk2are almost in horizontal directions,andk3is close to vertical direction.Ask1andk2are almost the same and along horizontal direction,the hydraulic conductivity measured from the injection test can be considered approximately as the average value ofk1andk2.Because the in f uence of joint size, normal stiffness constant and aspect ratio on anisotropic hydraulic conductivity is very little,any parameter can be changed until the average value ofk1andk2equals the hydraulic conductivity measured from injection test,then the hydraulic conductivity components can be considered as the real anisotropic hydraulic conductivities along these boreholes.Table 2 lists the six anisotropic hydraulic conductivity components and three calculated principal hydraulic conductivities.

    3.Determination of the hydraulic conductivity at the construction stage

    An important part of the project during the construction stage is the characterization of the hydraulic properties of the rock mass through probe holes during the excavation.The work involves the drilling of a number of probe holes from the tunnel front.The water f ow rate and water pressure are measured near the water-bearing zone with 79 measured data at f ve sections,to estimate the hydraulic properties of the rock mass.Based on the measured data, the hydraulic conductivity can be derived based on the following equation(Goodman et al.,1965;Fernandez,1994):

    whereQis the measured water f ow rate at the site(m3/s),Lis the drill hole length(m),r′is the drill hole radius(m),andHis the hydraulic head(m).Fig.5 shows the cumulative distribution plot of the 79 hydraulic conductivity data.It shows that the hydraulic conductivity at the water-bearing zone is in the order of 10-6m/s and the average value is 1.73×10-6m/s.In this case,grouting is used to reduce the hydraulic conductivity in the water-bearing zone and some check holes are used to measure the water f ow and the water pressure after grouting.When reducing the seepage f ow rate or improving the rock mass conditions is needed,grouting will be carried out prior to the excavation:

    (1)If the measured f ow rateQis greater than the prede f ned threshold valueQ1for the total water ingress in a certain probe hole.

    (2)And/or if the local increment of the water ingressQ′on a 3 m interval is greater than the threshold valueq′.

    The prede f ned threshold values ofQ1andq′can be calculated by Eq.(12),andkis the acceptable hydraulic conductivity(i.e.grouting target).In this study,we usek=1×10-7 m/s forQ1 andk=5×10-7m/s forq′.

    Fig.5.Cumulative distribution of hydraulic conductivity at the water-bearing zone.

    The hydraulic conductivity after grouting is evaluated again based on Eq.(12).The results show that the hydraulic conductivity after grouting is in the order of 10-7m/s as shown in Fig.6.It means that the reduction of permeability of the grouted rock mass is successful.

    Fig.6.Hydraulic conductivity after grouting based on 34 data from check holes.

    4.Determination of the hydraulic conductivity at the postconstruction stage

    The practical range of hydraulic conductivity in fractured rock is typically having a large range.It is very hard to determine the hydraulic conductivity along the cavern length.In order to have an indepth understanding in the hydro-geological behavior,the water f ow data,including water pressure,groundwater table and rainfall, were monitored and collected.In this study,only the hydraulic conductivities around Cavern A at lower level(Fig.7)are studied. The hydraulic heads at eight control points in Tunnel A at upper level(Fig.7)were monitored and the water f ow into Cavern A was collected.Data monitored during the 65 d after the Cavern A and Tunnel A were totally excavated are used for model calibration and validation,as shown in Figs.8 and 9.

    In order to back calculate hydraulic conductivity,one of the most popular approaches is to compare the measured in f ow data with modeled in f ows,and the relationship between water in f ow and hydraulic conductivity can be established.Several researchers presented analytical solutions to establish the relationship between the hydraulic conductivity and water in f ow for the circular tunnel (e.g.Lei,1999;El Tani,2003).In order to study more complicated scenarios,El Tani(1999)derived formulas which permit the calculation of the water in f ow into tunnels in elliptical or square cross-section.Until now,there is no analytical solution available in general for the water in f ow of tunnels in horseshoe cross-section. In order to derive the relationship,the code FLAC is adopted tomodel the groundwater f ow into the caverns,with following assumptions:

    Fig.7.Schematic diagram of Cavern A and Tunnel A.

    Fig.8.Measured water heads at eight vertical manometer holes(VMHs).

    (1)The dimensions of the model domain are chosen large enough to ensure that the boundaries will have little effect on the calculated results.

    (2)Atmospheric pressure is effective inside the cavern and at its perimeter.

    (3)Groundwater f ow is assumed to be steady,and hydraulic head is not uniform but higher at the cavern crown than that at the invert.

    (4)The upper boundary is located at-93 mACD,coinciding with the location of the water pressure monitoring holes.And the lateral and the bottom boundaries are no-f ow boundary.

    (5)For the upper boundary,water pressure obtained from the probe holes in gallery tunnel varies from 0 m to 120 m water column(Fig.8),i.e.the parameter ofH.

    (6)According to geological survey data,the vertical effective hydraulic conductivity is considered to be 10-10m/s in this case study.

    Groundwater is assumed to obey Darcy’s law and is incompressible.The shape of the cavern is horseshoe,with the height of 27 m and the width of 20 m.Based on the numerical results,the relationship between the water in f ow and the hydraulic conductivity around Cavern A can be determined as

    Fig.9.Measured and computed water in f ow rates into Cavern A.

    In this project,only eight control points were installed to monitor the water pressure along Tunnel A,so the rock mass around the Cavern A is assumed to have eight hydro-geological units,and each unit has a constant hydraulic conductivity.Data monitored during the f rst 50 d were used for model calibration. Measured data after 50 d were used to test the validity of the model.The back analysis consists of minimizing an error functionEthat represents the discrepancy between the water in f ow into the Cavern A in the f eld and the corresponding computed results, which in turn depend on eight unknown coef f cients of hydraulic conductivitykj:

    The hydraulic conductivity distribution along the length of the Cavern A is shown in Fig.10.The result illustrates that the hydraulic conductivities are mainly in the order of 10-10m/s except two locations where the water-bearing zones are intersected with the Cavern A.For this project,the target hydraulic conductivity after grouting is in the order of 10-7m/s.The result shows that the computed hydraulic conductivities at the two water-bearing zones are in the order of 10-7m/s,which means that the computed results are close to the real condition and can be acceptable to represent the hydro-geological condition around the Cavern A.

    Fig.10.The hydraulic conductivity distribution along the length of the Cavern A.

    5.Conclusions

    In order to reduce the risk associated with the groundwater seepage,reliable hydro-geological model should be established based on the in situ investigation data.The key challenging issue is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. For this project,different data are collected at different stages:site investigation stage,construction stage,and post-construction stage.This paper proposes suitable models and methods to determine the hydraulic conductivity at speci f c locations based on monitored data.The semi-analytical method for anisotropic permeability estimation provides background knowledge for site measurement based estimation models in Sections 3 and 4.At this stage,only the data of water pressure and water f ow rate areutilized.We will add the fracture orientation information in our further study to capture the anisotropic characteristics.

    When the hydraulic conductivities are known at some speci f c locations,determination of hydraulic conductivities at other locations is another challenging issue,because the fractured rock masses are heterogenous media.The arti f cial neural network, which is a computational model for information processing based on the biological neural networks,can be used to determine the hydraulic conductivities at other locations(Sun et al.,2011).Based on the obtained hydraulic conductivity at different locations and depths,the reliable hydro-geological model can be established.At the same time,the reliability of the proposed model can be updated if more boreholes or more monitoring data are provided.

    Con f ict of interest

    The authors wish to con f rm that there are no known con f icts of interest associated with this publication and there has been no signi f cant f nancial support for this work that could have in f uenced its outcome.

    Goodman R,Moye D,Schalkwyk A,Javendel I.Ground-water in f ow during tunnel driving.Engineering Geology 1965;2(2):39-56.

    Hatton CG,Main IG,Meredith PG.Non-universal scaling of fracture length and opening displacement.Nature 1994;367:160-2.

    Kiyoyama S.The present state of underground crude oil storage technology in Japan.Tunnelling and Underground Space Technology 1990;5(4):343-9.

    Lei S.An analytical solution for steady f ow into a tunnel.Ground Water 1999;37(1): 23-6.

    Oda M,Hatsuyama Y,Ohnishi Y.Numerical experiments on permeability tensor and its application to jointed granite at Stripa Mine,Sweden.Journal of Geophysical Research 1987;92(8):8037-48.

    Oda M.An equivalent continuum model for coupled stress and f uid f ow analysis in jointed rock masses.Water Resources Research 1986;22(13):1845-56.

    Oda M.Permeability tensor for discontinuous rock masses.Geotechnique 1985;35(4):483-95.

    Spane FA,Wurstner SK.DERIV:a computer program for calculating pressure derivatives for use in hydraulic test analysis.Ground Water 1993;31(5):814-22.

    Sun JP,Zhao ZY,Zhang Y.Determination of three-dimensional hydraulic conductivities using a combined analytical/neural network model.Tunnelling and Underground Space Technology 2011;26(2):310-9.

    Sun JP,Zhao ZY.Effects of anisotropic permeability of fractured rock masses on underground oil storage caverns.Tunnelling and Underground Space Technology 2010;25(5):629-37.

    Zhang WG,Goh ATC.Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns.Tunnelling and Underground Space Technology 2012;32:221-30.

    Chakrabarty C,Enachescu C.Using the deconvolution approach for slug test analysis:theory and application.Ground Water 1997;35(5):797-806.

    Cheng YJ.Inherent and stress-dependent anisotropy of permeability for jointed rock masses.MS Thesis.Taiwan,China:National Central University;2006.

    Dershowitz WS,Einstein HH.Characterizing rock joint geometry with joint system models.Rock Mechanics and Rock Engineering 1988;21(1):21-51.

    El Tani M.Circular tunnel in a semi-in f nite aquifer.Tunnelling and Underground Space Technology 2003;18(1):49-55.

    El Tani M.Water in f ow into tunnels.In:Proceedings of the World Tunnel Congress ITA-AITES 1999,Oslo.Rotterdam,Netherlands:A.A.Balkema;1999.p.61-70.

    Fernandez G.Behavior of pressure tunnels and guidelines for liner design.Journal of Geotechnical Engineering 1994;120(10):1768-91.

    Zhipeng Xuobtained a M.Sc.degree from China Coal Research Institute,Beijing.He is research associate of Geotechnical Engineering at the Nanyang Center for Underground Space in Nanyang Technological University, Singapore.He has been involved in geotechnical&engineering geology research,especially in grouting materials, grouting model based test,and grouting design.He is a member of International Society for Rock Mechanics (ISRM)and The International Association of Engineering Geology and the Environment(IAEG),as well as Chinese Society for Rock Mechanics and Engineering(CSRME)and The Society for Rock Mechanics&Engineering Geology (Singapore)(SRMEG).

    *Corresponding author.Tel.:+65 65927875.

    E-mail address:ZPXu@ntu.edu.sg(Z.Xu).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2014.10.006

    国产高清有码在线观看视频| 十八禁网站免费在线| 欧美日韩精品网址| 禁无遮挡网站| 色综合亚洲欧美另类图片| 无限看片的www在线观看| 熟女人妻精品中文字幕| 亚洲18禁久久av| 亚洲专区国产一区二区| 给我免费播放毛片高清在线观看| 男女午夜视频在线观看| 久久久成人免费电影| 日韩欧美在线乱码| 亚洲狠狠婷婷综合久久图片| 在线观看av片永久免费下载| 久久久久久久午夜电影| 中文资源天堂在线| 久久精品国产清高在天天线| 亚洲午夜理论影院| 女人被狂操c到高潮| 国产高清有码在线观看视频| 色综合亚洲欧美另类图片| 国内精品美女久久久久久| 亚洲av中文字字幕乱码综合| 久久性视频一级片| 一进一出好大好爽视频| 国产极品精品免费视频能看的| 成人一区二区视频在线观看| 欧美色欧美亚洲另类二区| 91在线精品国自产拍蜜月 | 宅男免费午夜| 国产乱人伦免费视频| 欧美日韩亚洲国产一区二区在线观看| 女人十人毛片免费观看3o分钟| 久久99热这里只有精品18| 国产精品乱码一区二三区的特点| 午夜福利成人在线免费观看| 日韩高清综合在线| 欧美一区二区国产精品久久精品| 成人三级黄色视频| 午夜两性在线视频| 免费av观看视频| 性欧美人与动物交配| 久久6这里有精品| 国产欧美日韩一区二区三| 亚洲 欧美 日韩 在线 免费| 亚洲久久久久久中文字幕| 午夜免费激情av| 琪琪午夜伦伦电影理论片6080| 美女大奶头视频| 三级男女做爰猛烈吃奶摸视频| 国产在线精品亚洲第一网站| 99在线视频只有这里精品首页| 成年女人永久免费观看视频| 日本与韩国留学比较| 一级黄色大片毛片| 亚洲av中文字字幕乱码综合| 久久久国产成人精品二区| 欧美成狂野欧美在线观看| 日本a在线网址| 哪里可以看免费的av片| 日韩 欧美 亚洲 中文字幕| 久久精品国产自在天天线| 麻豆久久精品国产亚洲av| 又黄又粗又硬又大视频| 99热这里只有是精品50| 97超级碰碰碰精品色视频在线观看| 18美女黄网站色大片免费观看| 亚洲av成人av| 精华霜和精华液先用哪个| 夜夜看夜夜爽夜夜摸| netflix在线观看网站| 国内久久婷婷六月综合欲色啪| tocl精华| 18禁在线播放成人免费| 一区福利在线观看| 亚洲成人免费电影在线观看| 久久久久久久久中文| 亚洲av电影不卡..在线观看| 男插女下体视频免费在线播放| 国产一区二区亚洲精品在线观看| 波多野结衣高清无吗| 国产精品98久久久久久宅男小说| 国产aⅴ精品一区二区三区波| 51国产日韩欧美| 男女视频在线观看网站免费| 免费高清视频大片| 亚洲精品成人久久久久久| 国产老妇女一区| 又黄又粗又硬又大视频| 日本三级黄在线观看| 高清毛片免费观看视频网站| 宅男免费午夜| 亚洲精品亚洲一区二区| 国产毛片a区久久久久| 亚洲在线观看片| 成人亚洲精品av一区二区| 99久久无色码亚洲精品果冻| 变态另类丝袜制服| www日本黄色视频网| 一进一出抽搐gif免费好疼| 欧美激情久久久久久爽电影| 亚洲在线自拍视频| 中出人妻视频一区二区| 午夜精品久久久久久毛片777| 中亚洲国语对白在线视频| 久久久国产精品麻豆| 热99在线观看视频| 国产高清视频在线播放一区| 手机成人av网站| 91九色精品人成在线观看| 亚洲久久久久久中文字幕| 亚洲欧美日韩高清专用| 免费观看人在逋| 一二三四社区在线视频社区8| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一及| 精品久久久久久久毛片微露脸| 亚洲av美国av| 国产主播在线观看一区二区| 亚洲自拍偷在线| 亚洲精品在线观看二区| 久久久久久九九精品二区国产| 我的老师免费观看完整版| 夜夜看夜夜爽夜夜摸| 在线观看免费视频日本深夜| 熟妇人妻久久中文字幕3abv| 在线国产一区二区在线| 欧美最黄视频在线播放免费| 国产综合懂色| 午夜福利成人在线免费观看| 深爱激情五月婷婷| 欧美黄色片欧美黄色片| 亚洲人成网站在线播放欧美日韩| 婷婷精品国产亚洲av| 又黄又爽又免费观看的视频| 中文字幕av在线有码专区| 怎么达到女性高潮| 黄色丝袜av网址大全| 亚洲欧美精品综合久久99| 国产单亲对白刺激| 无人区码免费观看不卡| 无人区码免费观看不卡| 在线观看日韩欧美| 国产精品嫩草影院av在线观看 | 日日干狠狠操夜夜爽| 18禁在线播放成人免费| 亚洲av日韩精品久久久久久密| 亚洲熟妇熟女久久| 一二三四社区在线视频社区8| 热99在线观看视频| 国产主播在线观看一区二区| 日韩人妻高清精品专区| 亚洲精品在线美女| 99久久九九国产精品国产免费| 一个人看视频在线观看www免费 | 国产91精品成人一区二区三区| www日本黄色视频网| 国产男靠女视频免费网站| 91字幕亚洲| 老汉色∧v一级毛片| 黄色成人免费大全| 国产精品国产高清国产av| 久久久精品大字幕| 亚洲不卡免费看| 欧洲精品卡2卡3卡4卡5卡区| 内地一区二区视频在线| 成年免费大片在线观看| 99热6这里只有精品| 亚洲人成伊人成综合网2020| 日韩有码中文字幕| 在线观看日韩欧美| 1024手机看黄色片| 欧美色视频一区免费| 国产精品美女特级片免费视频播放器| 一进一出抽搐动态| 一本一本综合久久| 国产亚洲精品久久久com| 真人一进一出gif抽搐免费| 五月玫瑰六月丁香| 99热只有精品国产| АⅤ资源中文在线天堂| 99国产综合亚洲精品| 久久人人精品亚洲av| 欧美在线黄色| 草草在线视频免费看| 国产免费av片在线观看野外av| 草草在线视频免费看| 国产精品一及| 国产私拍福利视频在线观看| 国产蜜桃级精品一区二区三区| 免费av毛片视频| h日本视频在线播放| 一级毛片女人18水好多| 国产av麻豆久久久久久久| 韩国av一区二区三区四区| 日韩欧美在线乱码| 天天一区二区日本电影三级| 成人国产综合亚洲| 日本成人三级电影网站| 欧美三级亚洲精品| 12—13女人毛片做爰片一| 国产午夜福利久久久久久| 亚洲成人久久性| 精品人妻1区二区| www日本黄色视频网| 国产私拍福利视频在线观看| 国产av不卡久久| 国产亚洲av嫩草精品影院| 国产中年淑女户外野战色| 18禁黄网站禁片午夜丰满| 两人在一起打扑克的视频| 女人被狂操c到高潮| 亚洲男人的天堂狠狠| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 岛国视频午夜一区免费看| 变态另类丝袜制服| 偷拍熟女少妇极品色| 一个人免费在线观看的高清视频| 日本免费一区二区三区高清不卡| 亚洲18禁久久av| 亚洲av一区综合| 日韩欧美精品v在线| 欧美日韩精品网址| 老司机在亚洲福利影院| 悠悠久久av| 欧美av亚洲av综合av国产av| 香蕉av资源在线| 少妇的逼好多水| 午夜亚洲福利在线播放| 免费观看的影片在线观看| av片东京热男人的天堂| 精品久久久久久成人av| 亚洲人成网站高清观看| 日韩欧美在线乱码| 国产精品一区二区三区四区免费观看 | 99在线人妻在线中文字幕| 九色成人免费人妻av| 丰满乱子伦码专区| 免费大片18禁| 一个人观看的视频www高清免费观看| 午夜老司机福利剧场| 成年人黄色毛片网站| 在线观看日韩欧美| 亚洲一区高清亚洲精品| 成人18禁在线播放| 天堂网av新在线| 欧美乱色亚洲激情| 国产精品1区2区在线观看.| 国产99白浆流出| 国产三级中文精品| 美女黄网站色视频| 国产精品女同一区二区软件 | 一本精品99久久精品77| 淫妇啪啪啪对白视频| 老司机深夜福利视频在线观看| 国产精品一区二区三区四区免费观看 | 国产一区二区三区在线臀色熟女| 久久天躁狠狠躁夜夜2o2o| 国产中年淑女户外野战色| 欧美日韩亚洲国产一区二区在线观看| 一级毛片女人18水好多| 成人欧美大片| 99久久九九国产精品国产免费| 国产精品综合久久久久久久免费| 日韩 欧美 亚洲 中文字幕| 长腿黑丝高跟| 欧美在线一区亚洲| 精品欧美国产一区二区三| 亚洲第一欧美日韩一区二区三区| 男女那种视频在线观看| 国产亚洲精品一区二区www| 国产99白浆流出| 悠悠久久av| 精华霜和精华液先用哪个| 男女床上黄色一级片免费看| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清专用| 少妇的丰满在线观看| 天堂av国产一区二区熟女人妻| 欧美激情久久久久久爽电影| 成人特级黄色片久久久久久久| 成人av一区二区三区在线看| 亚洲国产精品999在线| 男女床上黄色一级片免费看| 18禁在线播放成人免费| 69av精品久久久久久| 午夜免费激情av| 国内精品久久久久久久电影| 亚洲av电影不卡..在线观看| 欧美高清成人免费视频www| 九九在线视频观看精品| 国产午夜精品久久久久久一区二区三区 | 我要搜黄色片| 老鸭窝网址在线观看| 国产中年淑女户外野战色| 婷婷丁香在线五月| 最新美女视频免费是黄的| 久久精品国产亚洲av涩爱 | 色播亚洲综合网| 免费人成视频x8x8入口观看| 日本一二三区视频观看| 老司机午夜十八禁免费视频| 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| av福利片在线观看| 又粗又爽又猛毛片免费看| 一进一出好大好爽视频| 国产高清有码在线观看视频| 成人av在线播放网站| 国产精品一区二区免费欧美| 757午夜福利合集在线观看| 国产av在哪里看| 天堂动漫精品| 亚洲aⅴ乱码一区二区在线播放| 真人一进一出gif抽搐免费| 久久久久精品国产欧美久久久| netflix在线观看网站| av在线蜜桃| 精品国产三级普通话版| 乱人视频在线观看| 日韩亚洲欧美综合| 亚洲天堂国产精品一区在线| 国产精品国产高清国产av| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久末码| 中文字幕精品亚洲无线码一区| 国产又黄又爽又无遮挡在线| 欧美精品啪啪一区二区三区| 亚洲精品亚洲一区二区| 久久久成人免费电影| 叶爱在线成人免费视频播放| 麻豆国产av国片精品| 国产高清videossex| 搡老熟女国产l中国老女人| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 99国产综合亚洲精品| 禁无遮挡网站| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 亚洲 欧美 日韩 在线 免费| 在线观看一区二区三区| 俄罗斯特黄特色一大片| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 他把我摸到了高潮在线观看| 丝袜美腿在线中文| 非洲黑人性xxxx精品又粗又长| 久久国产精品人妻蜜桃| 白带黄色成豆腐渣| 男人舔奶头视频| 中文字幕人妻丝袜一区二区| 亚洲五月婷婷丁香| 亚洲天堂国产精品一区在线| 少妇熟女aⅴ在线视频| 亚洲自拍偷在线| 九九热线精品视视频播放| tocl精华| 看免费av毛片| 精品国产亚洲在线| 九九久久精品国产亚洲av麻豆| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 午夜日韩欧美国产| 午夜免费成人在线视频| 色综合站精品国产| 麻豆成人午夜福利视频| 国产av一区在线观看免费| 国产精品一区二区三区四区免费观看 | 国产成人aa在线观看| 国产精品亚洲av一区麻豆| 中文字幕av在线有码专区| 99久久久亚洲精品蜜臀av| 国产高清视频在线观看网站| 国产精华一区二区三区| www.熟女人妻精品国产| 少妇熟女aⅴ在线视频| 精品久久久久久,| 日本在线视频免费播放| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区| 黄片小视频在线播放| 国产亚洲精品久久久com| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av在线天堂中文字幕| 国产淫片久久久久久久久 | 中文字幕熟女人妻在线| bbb黄色大片| 日韩欧美在线乱码| 97碰自拍视频| 听说在线观看完整版免费高清| 久久久国产成人精品二区| 亚洲一区二区三区不卡视频| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 51国产日韩欧美| 少妇的逼水好多| 欧美日本亚洲视频在线播放| 香蕉丝袜av| 国产精品 欧美亚洲| 动漫黄色视频在线观看| 亚洲av成人av| aaaaa片日本免费| 国产探花极品一区二区| 日本 av在线| 俺也久久电影网| 免费在线观看日本一区| 一区二区三区高清视频在线| 免费大片18禁| 国产高清videossex| 国产精品一区二区三区四区免费观看 | 午夜激情欧美在线| 看片在线看免费视频| 国产精品影院久久| 一夜夜www| 蜜桃久久精品国产亚洲av| 熟女电影av网| 亚洲av成人av| 狂野欧美白嫩少妇大欣赏| 看黄色毛片网站| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清| 久久久久性生活片| 中文资源天堂在线| 美女大奶头视频| 亚洲精华国产精华精| 黑人欧美特级aaaaaa片| 国产高潮美女av| av在线天堂中文字幕| 人妻久久中文字幕网| 亚洲欧美日韩东京热| 三级国产精品欧美在线观看| 高清日韩中文字幕在线| 欧美性猛交黑人性爽| 成人无遮挡网站| 内地一区二区视频在线| 欧美日韩精品网址| 宅男免费午夜| 成人av在线播放网站| 9191精品国产免费久久| 精品久久久久久,| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 久久精品亚洲精品国产色婷小说| 精品国产美女av久久久久小说| 久久久久久久久久黄片| 久久精品综合一区二区三区| 国内精品久久久久久久电影| 日韩精品中文字幕看吧| 亚洲,欧美精品.| 少妇人妻精品综合一区二区 | 九九在线视频观看精品| 国产精品久久久人人做人人爽| 亚洲五月婷婷丁香| 国产av麻豆久久久久久久| 成人三级黄色视频| 欧美成人a在线观看| 淫妇啪啪啪对白视频| 一区二区三区高清视频在线| 俄罗斯特黄特色一大片| 中出人妻视频一区二区| 激情在线观看视频在线高清| 一区福利在线观看| 久久久色成人| 亚洲一区二区三区不卡视频| av欧美777| 最后的刺客免费高清国语| 99热这里只有是精品50| 精品福利观看| 欧美+亚洲+日韩+国产| 免费看a级黄色片| 久久精品夜夜夜夜夜久久蜜豆| 热99在线观看视频| 男女下面进入的视频免费午夜| 日韩欧美一区二区三区在线观看| 男人的好看免费观看在线视频| 美女被艹到高潮喷水动态| 女人高潮潮喷娇喘18禁视频| 我要搜黄色片| 色视频www国产| 99视频精品全部免费 在线| 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 少妇人妻一区二区三区视频| 青草久久国产| 日韩欧美在线二视频| 国产黄片美女视频| 床上黄色一级片| 中出人妻视频一区二区| 成人特级黄色片久久久久久久| 国产高清视频在线观看网站| 成人鲁丝片一二三区免费| 久久香蕉精品热| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| 日韩精品青青久久久久久| 欧美在线一区亚洲| 日日夜夜操网爽| 久久精品国产自在天天线| 久久久色成人| 搞女人的毛片| 免费电影在线观看免费观看| 美女高潮的动态| 成人特级黄色片久久久久久久| 日韩欧美免费精品| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 禁无遮挡网站| 日本熟妇午夜| 露出奶头的视频| 黄色丝袜av网址大全| 午夜免费成人在线视频| 亚洲黑人精品在线| 一区二区三区国产精品乱码| 国产精品久久久人人做人人爽| 日本黄色片子视频| 国产极品精品免费视频能看的| 69人妻影院| 天堂av国产一区二区熟女人妻| 日韩欧美一区二区三区在线观看| 午夜激情福利司机影院| 99视频精品全部免费 在线| av视频在线观看入口| 天堂av国产一区二区熟女人妻| 久久久成人免费电影| 首页视频小说图片口味搜索| 日本免费一区二区三区高清不卡| 俺也久久电影网| 在线十欧美十亚洲十日本专区| 成年女人永久免费观看视频| svipshipincom国产片| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 欧美最新免费一区二区三区 | 国产三级中文精品| 国产精品久久久久久人妻精品电影| 亚洲午夜理论影院| 亚洲av成人av| 国产在视频线在精品| 99国产极品粉嫩在线观看| 久久久色成人| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产综合久久久| 免费高清视频大片| 国产色爽女视频免费观看| 婷婷六月久久综合丁香| 99久久综合精品五月天人人| av天堂在线播放| 在线观看免费午夜福利视频| 国产一区二区三区视频了| 久久久久九九精品影院| 白带黄色成豆腐渣| 一个人免费在线观看电影| 午夜日韩欧美国产| 亚洲精品色激情综合| 日韩欧美国产在线观看| 热99在线观看视频| 91麻豆av在线| 欧美日本亚洲视频在线播放| 美女 人体艺术 gogo| 老汉色∧v一级毛片| 毛片女人毛片| 亚洲成人免费电影在线观看| 亚洲精华国产精华精| 欧美不卡视频在线免费观看| 日本a在线网址| 久久精品亚洲精品国产色婷小说| 成年女人永久免费观看视频| 久久久精品大字幕| 日韩欧美三级三区| 国产色爽女视频免费观看| 他把我摸到了高潮在线观看| 蜜桃久久精品国产亚洲av| 欧美在线黄色| 国产v大片淫在线免费观看| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| av中文乱码字幕在线| 少妇人妻精品综合一区二区 | 中文字幕人成人乱码亚洲影| 欧美丝袜亚洲另类 | 嫁个100分男人电影在线观看| h日本视频在线播放| 99国产精品一区二区蜜桃av| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 国产伦一二天堂av在线观看| 叶爱在线成人免费视频播放| 91九色精品人成在线观看| 久久久精品欧美日韩精品| 亚洲成av人片在线播放无| 国产精品爽爽va在线观看网站| 久久久久久久久中文| 一个人免费在线观看的高清视频| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 可以在线观看毛片的网站| 少妇的逼好多水| 国产激情欧美一区二区| 有码 亚洲区| 真人做人爱边吃奶动态| 久久久久久久午夜电影| a级一级毛片免费在线观看| 琪琪午夜伦伦电影理论片6080| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 亚洲国产日韩欧美精品在线观看 | 日本三级黄在线观看| 一区福利在线观看|