• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laboratory study on the mechanical behaviors of an anisotropic shale rock

    2015-02-08 09:03:00QuanGaoJunliangTaoJianyingHuXiongBillYu

    Quan Gao,Junliang Tao,Jianying Hu,Xiong(Bill)Yu

    Department of Civil Engineering,Case Western Reserve University,10900 Euclid Avenue,Cleveland,OH 44106,USA

    Laboratory study on the mechanical behaviors of an anisotropic shale rock

    Quan Gao,Junliang Tao,Jianying Hu,Xiong(Bill)Yu*

    Department of Civil Engineering,Case Western Reserve University,10900 Euclid Avenue,Cleveland,OH 44106,USA

    A R T I C L E I N F O

    Article history:

    Received 22 January 2015

    Received in revised form

    4 March 2015

    Accepted 6 March 2015

    Available online 19 March 2015

    Shale rock

    Anisotropy

    Shear wave

    Compression wave

    Shale gas is becoming an important energy source worldwide.The geomechanical properties of shale rocks can have a major impact on the ef f ciency of shale gas exploration.This paper studied the mineralogical and mechanical characteristics of a typical gas shale in Ohio,USA.Scanning electron microscope(SEM)with energy dispersive X-ray(EDX)analyses was employed to measure the microstructure and material composition of the shale rock.The anisotropic behaviors of shale rock,including compressive and tensile strengths,were experimentally measured.The characteristics of shale rock were also studied by nondestructive wave speed measurements.The shale demonstrated strong anisotropic behaviors with the tensile strengths perpendicular to the bedding plane around 300-360 times of that parallel to bedding plane.Results of ultrasonic tests indicated that both compression and shear wave velocities show strong anisotropic patterns.The compression wave speed was the smallest in the direction perpendicular to the bedding plane;while the shear wave speed was the smallest in the direction parallel to the bedding plane.The ratio of wave speed anisotropy is around 1.3-1.4 for compression wave;the ratio of shear wave speed anisotropy is larger and more diverse compared with the compression wave anisotropy.This might be related to the larger variability in the frictional adhesive strength along bedding plane than the compressive adhesive strength.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Shale gas has aroused signi f cant interest worldwide due to its potential as a major natural gas supply source.It is geographically widely distributed with major capacities in USA(Peebles,1980; Donohue et al.,1981;Zielinski and McIver,1982;Selley,2012),UK (Brooks et al.,2001;Swann and Munns,2003;Selley,2012),China (Zou et al.,2010;Chen et al.,2011;Huang et al.,2012),and other countries.Geomechanics study of shale gas is important for the effective recovery of shale gas such as wellbore instability,optimization of hydraulic fracture,etc.All of these require to understand the mechanical properties of shale rocks surrounding the wellbores(Ibanez and Kronenberg,1993;Horsrud et al.,1998;Al-Bazali et al.,2008).

    A number of publications have focused on understanding the physical,electrical,thermal and geochemical properties of shale rocks.For example,Al-Harahsheha et al.(2009)studied the dielectric properties of Jordanian shale and the effect of organic content,temperature,and moisture content on its dielectric constant.Other researchers(Jones and Wang,1981;Holt et al., 1991;Hornby et al.,1994;Liu et al.,1994;Johnston and Christensen,1995;Vernik and Landis,1996;Hornby,1998; Sayers,1999;Kuila et al.,2011)studied factors such as the preferred orientation of clay minerals,presence of f uid f lled microcracks,stress state and stress history,and physicochemical interactions with pore f uids on the rock behaviors.These factors were believed to affect shale anisotropy.Sonibare et al.(2005) studied the thermal breakdown of shale.Researchers such as Low and Anderson(1958),Pashley and Israelachvili(1984) investigated the swelling behaviors of shale.The results showed that capillary suction,osmotic pressure and hydraulic pore pressure imbalance were the possible causes of observed swelling phenomena in shale rocks.However,limited experimental data on shale are available due to the dif f culty in preserving shale rock sample caused by its fragile nature(Hornby, 1998;Kuila et al.,2011).

    Understanding the anisotropic behaviors of shale rock has important impacts on shale energy exploration,wellbore stability,interpretation of microseismic monitoring,etc.This paper studied the anisotropic behaviors of shale rocks at both smallstrain and large strain levels.A unique characteristic of shale rock is its anisotropic behavior,which has important impacts on the fracture pattern and consequently the ef f ciency in shale gas exploration.Anisotropic compression and tensile strengths of shale rocks were measured by uniaxial compression test as well as direct and indirect tensile tests.Directional compression wave velocities of shale were measured using ultrasonic technology.

    2.Mineral composition analysis

    Samples used in this study are typical gas shale rocks in Northeastern Ohio region.Scanning electron microscope(SEM) with energy dispersive X-ray(EDX)analyses was employed to measure its surface topography,microstructure and chemical composition.Fig.1 shows the SEM images of typical shale sample at different magni f cation factors(×500,×1000,×2000, and×5000).With increasing magni f cation,the crystal structure can be clearly observed.The crystals tend to be in platy structure, which might correspond to the direction of the bedding plane. Element composition of the sample was analyzed with EDX module and the results are presented in Table 1.This table indicates that oxygen(O),silica(Si)and ferrum(Fe)are the primary elements in this shale rock,accounting for nearly 90%of the gross weight.Other elements,such as aluminum(Al),potassium(K) and calcium(Ca),can be also observed but with low content.No appreciable organic components were observed,possibly due to the fact that the entrapped gas might have escaped during storage.

    Table 1Chemical element constitution of the shale rock.

    3.Experimental design for mechanical tests

    3.1.Specimen preparation

    Three types of specimens were prepared for different types of destructive or nondestructive mechanical tests(Fig.2).According to ASTM D3967 and D4543,cylindrical specimens with heightdiameter ratio of 2:1 and 1:2 were prepared for direct and indirect tensile tests,respectively.According to the standards,for diameter of the cylindrical specimens of 5 cm,the height of specimens for direct and indirect tensile tests needs to be at least 10 cm and 2.5 cm,respectively.The anisotropic properties(specially the extremely low interlaminar strength)of this type of shale make it very dif f cult to prepare testing specimens with the exact length required.Therefore,the height of prepared specimens for uniaxial compression test and direct tensile test was within the range of 80-100 mm.Prismatic specimens were prepared for wave velocity measurements(Fig.2).The top and bottom surfaces of the specimens were prepared as smooth and f at as possible so that bothends were parallel to each other.Three duplicate specimens were prepared for each type of test.The average density of the shale rock was measured to be around 2.503 g/cm3.

    Fig.1.SEM images of shale specimen at different magni f cation factors:(a)×500,(b)×1000,(c)×2000,and(d)×5000.

    Fig.2.Photos of representative specimens prepared for different types of mechanical tests:(a)Uniaxial compression and direct tensile test;(b)Indirect tensile test;and(c) Compression and shear wave velocity measurement.

    3.2.Testing program

    A series of laboratory mechanical tests were conducted on the prepared shale rock specimens,including uniaxial compression tests,direct tensile tests,and indirect tensile tests.The strengths and stress-strain relationships were obtained from the experimental data.A MTS testing system was employed for the testing. The loading rate was set as 0.002 mm/s in both compression and tensile tests.Superglue was applied on both ends of the specimen during direct tensile tests.

    The wave speeds in the specimens were measured by nondestructive ultrasonic measurements.Both compression and shear wave modes of ultrasonic transducers were used to measure the compression and shear wave velocities,respectively. Wave velocities in the directions parallel and perpendicular to bedding plane were measured to evaluate the anisotropic behaviors of the shale rock.Fig.3 shows the setup of ultrasonic measuring system,which includes a pulse transmitter,an ultrasonic transducer(with frequency of 0.5 MHz),and a PC oscilloscope.Typically,there are three modes of operation in an ultrasonic test system(Kundu,2000),i.e.pulse echo,throughtransmission,and pitch catch.Through-transmission mode of the ultrasonic system was used in this study,where two ultrasonic transducers served as transmitter and receiver,respectively. The transmitter sends a wide-band acoustic signal into the testing specimen from one surface,which propagates in the testing material and is picked up by the receiver on the opposite surface of the testing specimen.From these,the travel time of the acoustic signal in the testing specimen is determined.The wave velocity can then be calculated from the travel time and the thickness of the specimen.For compression wave tests,the ultrasonic tests were conducted underwater to facilitate the coupling of wave with the testing specimens.For shear wave testing,a special couplant for the shear wave transducers was used.

    Fig.3.Setup of ultrasonic testing system.

    4.Experimental results and analysis

    4.1.Uniaxial compression test

    Uniaxial compression tests were performed on three groups of specimens.Table 2 presents the summary of the specimens for this type of tests.The stress-strain curves are shown in Fig.4. With the increment of compression strain,stress increases to a peak and then decreases rapidly.The average peak strength is 47.9 MPa.

    Fig.5 shows the crack patterns at failure.As can be seen,the crack patterns in anisotropic shale under compression loads are more complex than those observed in a homogenous specimen.In general,the initiation and propagation of cracks play a signi f cant role in the failure behaviors of the anisotropic shale samples.The direction of cracks can be initialized along the circumferential or perpendicular to the bedding plane.As stress increases,more microcracks initiate and propagate in the specimens.When the number of microcracks in the sample exceeds the threshold,the microcracks start to connect with each other,and the whole sample would break into pieces.This corresponds to the collapse failure point in stress-strain curves.

    Table 2Summary of specimens for uniaxial compression tests.

    Fig.4.Stress-strain relationships of shale in uniaxial compression test.

    4.2.Direct tensile test

    Table 3 shows the results of direct tensile tests conducted on three duplicate specimens.The results show large variability,which is indicative of the inherent geological variability in the strength of bedding planes.Fig.6 shows the measured stress-strain curves.All curves show brittle types of failure.The following failure mode was observed during the testing process:with the increases in the axial loading,a microcrack f rstly occurred at a certain location in the specimens,and then propagated along the circumference and from the outer circumference to the center of the specimens until the specimen was split into two parts(Fig.7).

    There were signi f cant variations in the tensile strength,which is possibly due to the intrinsic variability of rock specimens resulting from the geological process or sample coring procedures. The average tensile strength is 25 kPa,which is the average adhesion strength along the bedding plane.The tensile strength is signi f cantly lower than the compression strength.

    4.3.Indirect tensile test

    Two groups of specimens(each with 4 duplication)were prepared for indirect tensile tests.The f rst group(P-02,P-03,P-04,P-05)was performed without loading beams at the top or bottom of the specimens;whereas the second group(P-07,P-08,P-09,P-10) was tested with the use of loading beams at both the top and bottom of the specimens.The results are summarized in Table 4. The measured indirect tensile strengths were 7.4 MPa and 9.1 MPa, respectively(Table 4),around 300-360 times of the average tensile strength perpendicular to the bedding plane.

    Fig.5.Typical failure mode of samples after uniaxial compression test.

    Table 3Summary of specimens in direct tensile tests.

    Fig.8 shows the measured load-displacement curves,in which Fig.8a is for testing without loading beams and Fig.8b is for testing with loading beams.The observed failure trends are similar to that of direct tensile tests and compression tests,i.e.the specimens showed brittle types of failures.Secondary peak appears in the load-displacement curves for specimens without loading beams (Fig.8a)compared with those with loading beams(Fig.8b).The reason might be that without loading beams,it is dif f cult for specimens to be in complete contact with loading platens due to surface roughness of the specimens.This might lead to stress concentration and local failure.For example,the secondary peak in the stress-strain curve is likely caused by the unbroken part of the sample.Specimens with loading beams ensure good contact to avoid local failures.This mobilizes the strength of the specimen and results in slightly higher average strengths.

    The failure mode of anisotropic shale(due to the low interlaminar strength)under indirect tensile loading is different from and much more complex than that of isotropic rocks(Erarslan and Williams,2012).Fig.9 shows photos of representative types of failure modes.Based on the Hooke’s law,compression stressσ1along the radius direction will lead to tensile stress in the direction perpendicular to the loading direction,i.e.in directions ofσ2andσ3shown in Fig.9a.Both can lead to failures in respective directions. Therefore,besides the typical failure pattern of split tensile tests(Fig.9b),split cracks and failure between layers are intertangled in anisotropic shale(Fig.9c,d and e).It was observed in the tests that the crack or failure parallel to the bedding layers tends to slightly reduce the measured indirect tensile strength.Therefore,it is very dif f cult to accurately determine the indirect tensile strength of anisotropic shale rock by indirect tensile tests without observing/ specifying the actual fracture patterns.The fracture mechanism of anisotropic shale under complex stress conditions is a challenging topic that deserves further investigations.

    Fig.6.Tensile stress-strain relationships of specimens for direct tensile test.

    Fig.7.Typical failure mode of specimens after direct tensile test.

    Table 4Summary of specimens for indirect tensile tests.

    4.4.Ultrasonic wave velocity measurement

    Four prismatic specimens were prepared for ultrasonic measurements on the wave speeds of the shale rock.The two surfaces perpendicular to the bedding plane were marked as 1-1 and 2-2, whereas the surface parallel to the bedding plane was marked as 3-3.Wave velocity from three pairs of surfaces was measured with ultrasonic technology as described previously.Fig.10 shows a typical output waveform for compression wave.The red and blue lines are the signals by the transmitter and receiver,respectively. The travel time of the wave between the two opposite surfaces can be determined from the signal arrival analyses.

    Fig.11 plots the measured travel time of compression wave as a function of the travel distance(or the dimension of the specimen) in each direction.From this f gure,the average compressional wave velocity in the shale rock along each direction can be easily calculated from the slope of the f tting line.Similar analyses were conducted on the shear wave signals.Reverse polarity method was used to identify the arrival shear waves.The results of compression and shear wave velocities are summarized in Table 5.

    The compression wave velocities in the direction parallel to the bedding plane,i.e.1-1 and 2-2 directions,are similar.They are typically 1.3-1.4 times of that perpendicular to the bedding plane, i.e.3-3 direction.The measured shear wave velocity,however,is the smallest in the 2-2 direction(one of the directions parallel to the bedding plane).The ratios of wave speed in different directions are larger and more diverse.That is possibly due to the relatively weak bonding between bedding layers,history of geological formation, etc.This leads to larger variability in the frictional adhesive strength along bedding plane than the compressive adhesive strength.The fundamental mechanism for the observed anisotropic wave speed patterns needs to be further understood.

    Fig.8.Load-displacement curves of indirect tensile tests.(a)Without loading beams and(b)with loading beams.

    Fig.9.Typical failure mode of specimens after indirect tensile tests.

    Fig.10.Example of measured ultrasonic waveforms.

    Fig.11.Measured travel time as a function of the travel distance(or the dimension of the specimen)in each direction.

    Table 5Summary of shear and compression wave velocity measurements.

    5.Conclusions

    This paper studied the experimental characterization of the anisotropic behaviors of shale rock at both large strain and small strain levels.The compression and tensile strengths were measured by uniaxial compression tests and direct/indirect tensile tests.From these,the stress-strain behaviors and strength characteristics along different directions were obtained.In general,the compression strength of shale is much higher than tensile strengths.The failure patterns are more complex than those observed in a homogenous specimen.Besides,the tensile strengths of shale rocks are different in the direction parallel to the bedding layers versus those in the direction perpendicular to the bedding layers.From the results of direct and indirect tensile tests,the tensile strength along the bedding layer is around 300-360 times of that perpendicular to the bedding layer.The phenomena observed from indirect tensile test revealed that the tensile strength along the bedding plane might be underestimated due to the in f uence of interlaminar failure along the bedding plane.Results of ultrasonic testing indicated that both compression and shear wave velocities show strong anisotropic patterns.The compression wave speed is the smallest in the direction perpendicular to the bedding plane.The shear wave speed,however,is the smallest in the direction parallel to the bedding plane.The ratio of wave speed anisotropy is around 1.3-1.4 times for compression wave.The ratio of shear wave speed anisotropy is larger and more diverse,which is indicative of the larger variability in the frictional adhesive strength along bedding plane than the compressive adhesive strength.The fundamental mechanism of the observed anisotropic wave speed patterns and the implications for the engineering practice need to be further studied.

    Con f ict of interest

    The authors wish to con f rm that there are no known con f icts of interest associated with this publication and there has been no signi f cant f nancial support for this work that could have in f uenced its outcome.

    Al-Bazali T,Zhang JG,Chenevert ME,Sharm MM.Factors controlling the compressive strength and acoustic properties of shale when interacting with water-based f uids.International Journal of Rock Mechanics and Mining Sciences 2008;45(5):729-38.

    Al-Harahsheha M,Kingmanb S,Saeidb A,Robinsonb J,Dimitrakisb G, Alnawa f eha H.Dielectric properties of Jordanian oil shales.Fuel Processing Technology 2009;90(10):1259-64.

    Brooks JRV,Stoker SJ,Cameron TDJ.Hydrocarbon exploration opportunities in the twenty-f rst century in the United Kingdom.In:Downey MW,Threet JC, Morgan WA,editors.Petroleum provinces of the twenty-f rst century,AAPG Memoir 74.2001.p.167-99.

    Chen SB,Zhu YM,Wang HY,Liu HL,Wei W,Fang JH.Shale gas reservoir characterization:a typical case in the southern Sichuan Basin of China.Energy 2011;36(11):6609-16.

    Donohue D,Anstey N,Morrill N.Shale gas in the southern central area of New York State,Vol.4.Morgantown,USA:Department of Energy;1981.

    Erarslan N,Williams DJ.Investigating the effect of cyclic loading on the indirect tensile strength of rocks.Rock Mechanics and Rock Engineering 2012;45(3): 327-40.

    Holt RM,Fj?r E,Raaen AM,Ringstad C.In f uence of stress state and stress history on acoustic wave propagation in sedimentary rocks.In:Hovem JM, Richardson MD,Stoll RD,editors.Shear Waves in Marine Sediments.Kluwer: Springer;1991.p.167-74.

    Hornby BE,Schwartz LM,Hudson JA.Anisotropic effective-medium modeling of the elastic properties of shales.Geophysics 1994;59(10):1570-83.

    Hornby BE.Experimental laboratory determination of the dynamic elastic properties of wet,drained shales.Journal of Geophysical Research:Solid Earth(1978-2012)1998;103(B12):29945-64.

    Horsrud P,Sqonstebo EF,Boe R.Mechanical and petrophysical properties of North Sea shales.International Journal of Rock Mechanics and Mining Sciences 1998;35(8):1009-20.

    Huang JL,Zou CN,Li JZ,Dong DZ,Wang SL,Wang SQ,Cheng KM.Shale gas generation and potential of the lower Cambrian Qiongzhusi formation in the southern Sichuan Basin,China.Petroleum Exploration and Development 2012;39(1):75-81.

    Ibanez WD,Kronenberg AK.Experimental deformation of shale:mechanical properties and microstructural indicators of mechanisms.International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1993;30(7):723-34.

    Johnston JE,Christensen NI.Seismic anisotropy of shales.Journal of Geophysical Research:Solid Earth(1978-2012)1995;100(B4):5991-6003.

    Jones LEA,Wang HF.Ultrasonic velocities in Cretaceous shales from the Williston Basin.Geophysics 1981;46(3):288-97.

    Kuila U,Dewhurst DN,Siggins AF,Raven MD.Stress anisotropy and velocity anisotropy in low porosity shale.Tectonophysics 2011;503(1-2):34-44.

    Kundu T.Nondestructive testing techniques for material characterization:modeling in geomechanics.Chichester,UK:John Wiley and Sons Ltd.;2000.p.267-98.

    Liu X,Vernik L,Nur A.Effects of saturating f uids on seismic velocities in shales.In: SEG Annual Meeting;1994.p.1121-4.

    Low PF,Anderson DM.Osmotic pressure equations for determining thermodynamic properties of soil water.Soil Science 1958;86(5):251-3.

    Pashley RM,Israelachvili JN.DLVO and hydration forces between mica surfaces in Mg2+,Ca2+,Si2+and Ba2+chloride solutions.Journal of Colloid and Interface Science 1984;97(2):446-55.

    Peebles MHW.Evolution of the gas industry.New York:New York University Press; 1980.

    Sayers CM.Stress-dependent seismic anisotropy of shales.Geophysics 1999;64(1): 93-8.

    Selley RC.UK shale gas:the story so far.Marine and Petroleum Geology 2012;31(1): 100-9.

    Sonibare OO,Ehinola OA,Egashira R.Thermal and geochemical characterization of Lokpanta oil shale,Nigeria.Energy Conversion and Management 2005;46(15-16):2335-44.

    Swann G,Munns J.The hydrocarbon prospectivity of Britain’s onshore basins. London:DTI;2003.

    Vernik L,Landis C.Elastic anisotropy of source rocks:implications for hydrocarbon generation and primary migration.AAPG Bulletin 1996;80:531-44.

    Zielinski RE,McIver RD.Resources and exploration assessment of the oil and gas potential in the devonian shale gas of the Appalachian Basin.Morgantown, USA:Department of Energy;1982.

    Zou CN,Dong DZH,Wang SHJ,Li JZ,Li XJ,Wang YM,Li DH,Cheng KM.Geological characteristics and resource potential of shale gas in China.Petroleum Exploration and Development 2010;37(6):641-53.

    Dr.Xiong Yuis working as an associate professor at Case Western Reserve University,USA.His research interests cover geotechnical and infrastructure engineering,environmental geotechnology,foundation engineering, nondestructive testing,sensor technology for infrastructure,environment and energy applications,multi-scale mo del of civ il engin e ering mate ria l a nd sy stem, computer-aided design,green design,sustainable engineering,etc.

    *Corresponding author.Tel.:+1 216 368 6247.

    E-mail address:xiong.yu@case.edu(X.(Bill)Yu).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.003

    老女人水多毛片| ponron亚洲| 精品国产三级普通话版| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 少妇高潮的动态图| 18禁黄网站禁片免费观看直播| 97在线视频观看| 美女内射精品一级片tv| 色尼玛亚洲综合影院| 亚洲欧美日韩东京热| 免费看a级黄色片| 色综合站精品国产| 免费在线观看成人毛片| 国产午夜精品论理片| 人妻夜夜爽99麻豆av| 国产精品,欧美在线| 国产精品久久久久久av不卡| 国产在视频线在精品| h日本视频在线播放| 欧美+亚洲+日韩+国产| 久久精品影院6| 美女cb高潮喷水在线观看| 亚洲第一电影网av| 精品少妇黑人巨大在线播放 | 久久99蜜桃精品久久| 国国产精品蜜臀av免费| 韩国av在线不卡| 亚洲av中文字字幕乱码综合| 偷拍熟女少妇极品色| 99热6这里只有精品| 国产色婷婷99| 22中文网久久字幕| 亚洲精品国产成人久久av| 99久国产av精品国产电影| 久久人妻av系列| 一级黄色大片毛片| 久久久久久久久久黄片| 男插女下体视频免费在线播放| 99热这里只有精品一区| h日本视频在线播放| 日韩中字成人| 免费看美女性在线毛片视频| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合| av在线观看视频网站免费| 欧美一区二区国产精品久久精品| 夜夜夜夜夜久久久久| 免费av观看视频| 精品熟女少妇av免费看| 亚洲自偷自拍三级| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 国产极品精品免费视频能看的| 我的女老师完整版在线观看| 久久久久网色| 91精品一卡2卡3卡4卡| 亚洲精品日韩在线中文字幕 | 国产伦一二天堂av在线观看| 黄片wwwwww| av在线播放精品| 晚上一个人看的免费电影| 欧美+日韩+精品| 久久99精品国语久久久| 天美传媒精品一区二区| 特大巨黑吊av在线直播| 伦精品一区二区三区| 2022亚洲国产成人精品| 欧美日韩乱码在线| 久久精品久久久久久久性| 日韩在线高清观看一区二区三区| 18禁黄网站禁片免费观看直播| 观看美女的网站| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 91午夜精品亚洲一区二区三区| 99在线人妻在线中文字幕| 精品欧美国产一区二区三| 久久久久久久亚洲中文字幕| 天天躁夜夜躁狠狠久久av| 变态另类丝袜制服| 国产日本99.免费观看| kizo精华| 只有这里有精品99| 一夜夜www| 婷婷色av中文字幕| 99久久九九国产精品国产免费| 深夜a级毛片| 欧美性感艳星| 欧美3d第一页| 欧美人与善性xxx| 成人三级黄色视频| 丝袜美腿在线中文| 精品久久久久久久久久免费视频| 亚洲精品乱码久久久久久按摩| 麻豆国产97在线/欧美| 亚洲欧美中文字幕日韩二区| 欧美日本视频| 精品国产三级普通话版| 久久午夜亚洲精品久久| 成人午夜精彩视频在线观看| 国产乱人视频| a级毛片a级免费在线| 中文字幕精品亚洲无线码一区| 99久久精品一区二区三区| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 亚洲一区高清亚洲精品| 一个人看的www免费观看视频| 久久精品久久久久久噜噜老黄 | 青春草国产在线视频 | 亚洲精品国产成人久久av| 国产69精品久久久久777片| 久久精品国产亚洲av涩爱 | av在线老鸭窝| 欧美又色又爽又黄视频| 毛片一级片免费看久久久久| 一级毛片aaaaaa免费看小| av天堂在线播放| 亚洲精品粉嫩美女一区| 给我免费播放毛片高清在线观看| 在线国产一区二区在线| 一进一出抽搐gif免费好疼| 免费不卡的大黄色大毛片视频在线观看 | 国产精品99久久久久久久久| 久久这里只有精品中国| 一本久久中文字幕| 日日摸夜夜添夜夜添av毛片| 五月伊人婷婷丁香| 在现免费观看毛片| 不卡视频在线观看欧美| 免费av毛片视频| 久久久国产成人免费| 日韩欧美在线乱码| 免费av毛片视频| 在现免费观看毛片| 亚洲精华国产精华液的使用体验 | 老师上课跳d突然被开到最大视频| 亚洲电影在线观看av| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 亚洲国产精品合色在线| 色吧在线观看| 亚洲欧美中文字幕日韩二区| 色综合色国产| 亚洲欧洲日产国产| 99久国产av精品| 在线观看免费视频日本深夜| 97在线视频观看| 99久国产av精品| 在线天堂最新版资源| 亚洲国产欧美在线一区| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 精品不卡国产一区二区三区| 成人特级av手机在线观看| 婷婷色av中文字幕| 国产免费一级a男人的天堂| 最近视频中文字幕2019在线8| 99久国产av精品| 悠悠久久av| 偷拍熟女少妇极品色| 久久久久久久久久久丰满| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 女人被狂操c到高潮| 网址你懂的国产日韩在线| www.色视频.com| 乱系列少妇在线播放| 麻豆成人av视频| 久久久成人免费电影| 成人av在线播放网站| 国产伦理片在线播放av一区 | 国产日本99.免费观看| 免费无遮挡裸体视频| av又黄又爽大尺度在线免费看 | 国内久久婷婷六月综合欲色啪| 国产极品精品免费视频能看的| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式| 永久网站在线| 亚洲七黄色美女视频| 国产又黄又爽又无遮挡在线| 中文欧美无线码| 99riav亚洲国产免费| 午夜视频国产福利| 99久久中文字幕三级久久日本| 国产中年淑女户外野战色| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清视频在线观看网站| 日本一本二区三区精品| 97人妻精品一区二区三区麻豆| 男插女下体视频免费在线播放| 在线播放无遮挡| www.色视频.com| 国产精品美女特级片免费视频播放器| 美女脱内裤让男人舔精品视频 | 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影小说 | 亚洲色图av天堂| 天堂√8在线中文| 免费看日本二区| av.在线天堂| 国产精品精品国产色婷婷| 在线播放国产精品三级| 亚洲成人精品中文字幕电影| 在线免费十八禁| 国产精品一区二区三区四区免费观看| 中国国产av一级| 久久久久久久久久久丰满| 91午夜精品亚洲一区二区三区| av卡一久久| 小蜜桃在线观看免费完整版高清| 深夜精品福利| 久久久久久久久久久丰满| 神马国产精品三级电影在线观看| 好男人视频免费观看在线| 在线国产一区二区在线| 中文精品一卡2卡3卡4更新| 成人鲁丝片一二三区免费| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 美女黄网站色视频| 老司机福利观看| 日本免费一区二区三区高清不卡| 99久久精品国产国产毛片| 一个人看视频在线观看www免费| 国产男人的电影天堂91| 国产一级毛片在线| 日日啪夜夜撸| 在现免费观看毛片| 国产老妇女一区| 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 最新中文字幕久久久久| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 日本av手机在线免费观看| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 精品久久国产蜜桃| 性色avwww在线观看| 亚洲精品国产成人久久av| 一本一本综合久久| 免费一级毛片在线播放高清视频| 人妻夜夜爽99麻豆av| АⅤ资源中文在线天堂| 成人性生交大片免费视频hd| 日韩欧美在线乱码| 欧美日本亚洲视频在线播放| 校园人妻丝袜中文字幕| 老司机福利观看| 免费av不卡在线播放| 国产精品久久久久久精品电影| 免费看美女性在线毛片视频| 午夜激情欧美在线| 一级毛片aaaaaa免费看小| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 亚洲七黄色美女视频| 99热全是精品| 日韩一区二区视频免费看| 欧美一区二区精品小视频在线| 免费不卡的大黄色大毛片视频在线观看 | 日本在线视频免费播放| 国产精品一区二区在线观看99 | 18禁黄网站禁片免费观看直播| 最近2019中文字幕mv第一页| 国产高潮美女av| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 亚洲精品粉嫩美女一区| 青春草视频在线免费观看| 婷婷六月久久综合丁香| 亚洲人成网站在线播| av天堂在线播放| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 波多野结衣高清作品| 亚洲第一电影网av| 97人妻精品一区二区三区麻豆| 久久精品夜色国产| 国产精品综合久久久久久久免费| 能在线免费看毛片的网站| 国产探花极品一区二区| 一级二级三级毛片免费看| 免费人成在线观看视频色| 91麻豆精品激情在线观看国产| 国产精品蜜桃在线观看 | 国产精品久久久久久精品电影小说 | 身体一侧抽搐| 中国美女看黄片| 精品少妇黑人巨大在线播放 | 夜夜夜夜夜久久久久| ponron亚洲| 99久久精品国产国产毛片| 精品久久久久久久久久免费视频| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 亚洲精品亚洲一区二区| 乱系列少妇在线播放| 国产午夜福利久久久久久| 午夜福利在线观看吧| 岛国毛片在线播放| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 听说在线观看完整版免费高清| 国产探花在线观看一区二区| 黄片wwwwww| 美女高潮的动态| 日韩精品青青久久久久久| 一本一本综合久久| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 亚洲av二区三区四区| 一夜夜www| 亚洲无线观看免费| 国产精品精品国产色婷婷| 午夜精品一区二区三区免费看| 国产精品一及| 最近最新中文字幕大全电影3| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 热99在线观看视频| 久久精品国产亚洲av天美| 国产不卡一卡二| 国产精品久久久久久久久免| 亚洲精品成人久久久久久| 国产中年淑女户外野战色| 22中文网久久字幕| 美女 人体艺术 gogo| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 变态另类成人亚洲欧美熟女| 中国美女看黄片| 亚洲av二区三区四区| 日韩av在线大香蕉| 国产精品一区二区在线观看99 | 免费av毛片视频| 国产久久久一区二区三区| av国产免费在线观看| 久久精品国产99精品国产亚洲性色| 亚洲av中文av极速乱| 一进一出抽搐动态| 99国产极品粉嫩在线观看| 非洲黑人性xxxx精品又粗又长| 边亲边吃奶的免费视频| 国产麻豆成人av免费视频| 91久久精品电影网| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 少妇熟女欧美另类| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 久久久久久九九精品二区国产| 久久久久网色| 在线观看av片永久免费下载| 麻豆乱淫一区二区| 成人三级黄色视频| 精品久久久久久成人av| 久久久久久久久大av| 精品久久久久久久久久久久久| 午夜a级毛片| 九九爱精品视频在线观看| 看非洲黑人一级黄片| 女的被弄到高潮叫床怎么办| 26uuu在线亚洲综合色| 国产69精品久久久久777片| 村上凉子中文字幕在线| 国产精品伦人一区二区| 色噜噜av男人的天堂激情| 国产91av在线免费观看| 亚洲av男天堂| 天堂网av新在线| 国产亚洲91精品色在线| 中文字幕av在线有码专区| 色综合站精品国产| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 小说图片视频综合网站| 亚洲欧美日韩高清专用| 日韩av不卡免费在线播放| 三级毛片av免费| 国产极品天堂在线| 国产精品伦人一区二区| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 91麻豆精品激情在线观看国产| 十八禁国产超污无遮挡网站| 一边亲一边摸免费视频| 欧美高清成人免费视频www| 国产一区二区三区在线臀色熟女| 日韩国内少妇激情av| 亚洲av熟女| 国产精品一区二区在线观看99 | 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| АⅤ资源中文在线天堂| 国产精品不卡视频一区二区| 综合色丁香网| 亚洲色图av天堂| 亚洲精品久久国产高清桃花| 国产免费一级a男人的天堂| 国产精品美女特级片免费视频播放器| 久久99蜜桃精品久久| 欧美成人免费av一区二区三区| 亚洲欧美成人综合另类久久久 | 精品熟女少妇av免费看| 亚洲人与动物交配视频| 精品人妻视频免费看| 午夜精品国产一区二区电影 | 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 国产成人精品一,二区 | 看十八女毛片水多多多| 久久久久九九精品影院| 男的添女的下面高潮视频| 日韩一区二区三区影片| 精品久久久久久久久亚洲| 成年av动漫网址| 久久久久久久久大av| 黄色欧美视频在线观看| 青春草亚洲视频在线观看| 欧美人与善性xxx| 久久韩国三级中文字幕| 不卡一级毛片| 中文字幕精品亚洲无线码一区| 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 国产精品免费一区二区三区在线| 免费人成在线观看视频色| 噜噜噜噜噜久久久久久91| 特级一级黄色大片| 亚洲精品久久国产高清桃花| 国产精品综合久久久久久久免费| 免费看av在线观看网站| videossex国产| 黄色日韩在线| 亚洲欧美日韩高清专用| 久久99精品国语久久久| 久久精品国产亚洲av天美| 国产成年人精品一区二区| 免费一级毛片在线播放高清视频| 校园人妻丝袜中文字幕| 高清午夜精品一区二区三区 | 久久精品国产自在天天线| 午夜久久久久精精品| 国产黄a三级三级三级人| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看 | kizo精华| av卡一久久| 色哟哟哟哟哟哟| a级毛色黄片| 少妇丰满av| 精品久久久久久久久久免费视频| 乱人视频在线观看| 欧美最新免费一区二区三区| 成人av在线播放网站| 国产精品无大码| 亚洲图色成人| 久久人人爽人人爽人人片va| 成人永久免费在线观看视频| 成人无遮挡网站| 国内少妇人妻偷人精品xxx网站| 性欧美人与动物交配| 久久亚洲精品不卡| 联通29元200g的流量卡| 国产黄色小视频在线观看| 波野结衣二区三区在线| 亚洲成人久久爱视频| av免费观看日本| 一本精品99久久精品77| 91久久精品国产一区二区三区| 搞女人的毛片| 最后的刺客免费高清国语| 欧美精品一区二区大全| 国产精品蜜桃在线观看 | 亚洲精品乱码久久久v下载方式| 波多野结衣高清作品| 国产午夜精品论理片| 好男人视频免费观看在线| 欧美一区二区精品小视频在线| 亚洲精品456在线播放app| 草草在线视频免费看| 黄色欧美视频在线观看| 国产黄色小视频在线观看| 全区人妻精品视频| 日本撒尿小便嘘嘘汇集6| 热99在线观看视频| 美女被艹到高潮喷水动态| 国产黄色小视频在线观看| 国产精品久久久久久久电影| 国产日本99.免费观看| 久久99热这里只有精品18| 亚洲丝袜综合中文字幕| 欧美zozozo另类| 人体艺术视频欧美日本| 99热全是精品| 日日撸夜夜添| 国产伦理片在线播放av一区 | 岛国毛片在线播放| 麻豆成人午夜福利视频| 国产一区二区在线观看日韩| 天堂网av新在线| 日本免费a在线| 你懂的网址亚洲精品在线观看 | 久久精品国产亚洲av涩爱 | 99国产极品粉嫩在线观看| 色尼玛亚洲综合影院| 色综合站精品国产| 波野结衣二区三区在线| 秋霞在线观看毛片| 亚洲av.av天堂| 日韩欧美在线乱码| 一级毛片我不卡| 久久欧美精品欧美久久欧美| 精品久久久久久久久久久久久| 欧美性猛交黑人性爽| 伦理电影大哥的女人| 99在线视频只有这里精品首页| av免费观看日本| 大又大粗又爽又黄少妇毛片口| 最近中文字幕高清免费大全6| 三级国产精品欧美在线观看| 人妻久久中文字幕网| 亚洲内射少妇av| 欧美不卡视频在线免费观看| 国产人妻一区二区三区在| 最新中文字幕久久久久| 国产在线男女| 一区二区三区免费毛片| 人人妻人人澡欧美一区二区| 男女那种视频在线观看| 日本av手机在线免费观看| 寂寞人妻少妇视频99o| 99久国产av精品| 亚洲内射少妇av| 白带黄色成豆腐渣| 国产精品美女特级片免费视频播放器| 久久这里只有精品中国| 日韩在线高清观看一区二区三区| 午夜免费激情av| 亚洲自拍偷在线| 黄色欧美视频在线观看| 亚洲国产精品成人综合色| 99久久久亚洲精品蜜臀av| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟·www| h日本视频在线播放| 久久人人爽人人片av| 91麻豆精品激情在线观看国产| 国产午夜精品论理片| 日本欧美国产在线视频| 国产精品福利在线免费观看| 亚洲人成网站高清观看| 久久6这里有精品| 男女啪啪激烈高潮av片| 一本精品99久久精品77| 天美传媒精品一区二区| 男的添女的下面高潮视频| 日本三级黄在线观看| a级毛片a级免费在线| 全区人妻精品视频| 极品教师在线视频| 97在线视频观看| 人体艺术视频欧美日本| 国产一级毛片在线| 色哟哟·www| 欧美区成人在线视频| 欧美丝袜亚洲另类| 丰满人妻一区二区三区视频av| 在线播放无遮挡| 久久久色成人| 草草在线视频免费看| av在线亚洲专区| 亚洲国产色片| 男女做爰动态图高潮gif福利片| 久久亚洲国产成人精品v| 久久午夜亚洲精品久久| 色噜噜av男人的天堂激情| 在线国产一区二区在线| 久久九九热精品免费| 男女下面进入的视频免费午夜| kizo精华| 亚洲欧美日韩高清专用| 九九久久精品国产亚洲av麻豆| 亚洲无线观看免费| 亚洲国产精品成人久久小说 | 少妇的逼水好多| 亚洲精品国产av成人精品| 黄片wwwwww| 免费av观看视频| 好男人在线观看高清免费视频| 亚洲美女视频黄频| 国产伦在线观看视频一区| 亚洲欧美中文字幕日韩二区| 久久婷婷人人爽人人干人人爱| 国产午夜精品论理片| 乱系列少妇在线播放| 国产精品,欧美在线| 少妇高潮的动态图| 少妇熟女欧美另类| 中文精品一卡2卡3卡4更新|