• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement parameters in dynamic compaction adjacent to the slopes

    2015-02-08 09:03:04ElhamGhanbariAmirHamidi

    Elham Ghanbari,Amir Hamidi

    School of Engineering,Kharazmi University,Tehran,Iran

    Improvement parameters in dynamic compaction adjacent to the slopes

    Elham Ghanbari,Amir Hamidi*

    School of Engineering,Kharazmi University,Tehran,Iran

    A R T I C L E I N F O

    Article history:

    Received 9 December 2014

    Received in revised form

    7 February 2015

    Accepted 10 February 2015

    Available online 23 February 2015

    Dynamic compaction

    Slopes and trenches

    Crater depth

    Improvement depth

    Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils.A number of researchers have investigated experimentally and numerically the improvement parameters of soils using dynamic compaction,such as crater depth,improvement depth,and radial improvement, however,these parameters are not studied for improvement adjacent to the slopes or trenches.In this research,four different slopes with different inclinations are modeled numerically using the f nite element code ABAQUS,and impact loads of dynamic compaction are applied.The static factors of safety are kept similar for all trenches and determined numerically by application of gravity loads to the slope using strength reduction method(SRM).The analysis focuses on crater depth and improvement region which are compared to the state of f at ground.It can be observed that compacted area adjacent to the slopes is narrower and slightly away from the slope compared to the f at state.Moreover,crater depth increases with increase in slope inclination.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Dynamic compaction pioneered by Menard and Broise(1975) has been used for improvement of deep soil layers for decades.In this method,through falling a tamper of 5-30 t from 10 to 30 m height,improvement depths of 3-9 m are obtained(Lukas,1995). Soil improvement has been investigated by assessing the experimental tests like standard penetration test(SPT),cone penetration test(CPT)and pressure meter test(PMT)before and after compaction(Mayne et al.,1984;Rollins et al.,1998;Zou et al.,2005; Rollins and Kim,2010;Zekkos et al.,2013).Also numerical modeling has been performed to investigate soil improvement after compaction(Pan and Selby,2002;Lee and Gu,2004; Ghassemi et al.,2010;Mostafa,2010;Ghanbari and Hamidi, 2014).Dynamic compaction has not been applied near the slopes due to the instability problems.Zou et al.(2005)reported an application of dynamic compaction in placement of a road embankment with 41 m height made of loessial silty clay in China, wherein dynamic compaction was performed at distance of 6 m from the slope heel in soil layers.Few researchers studied the dynamic compaction process near the slopes experimentally(Zhou et al.,2010;Vahidipour,2014).To the authors’knowledge,there is rare numerical investigation of dynamic compaction near the slopes in the literature.In this study,simulation of dynamic compaction method is performed near the sandy slopes with the same initial factors of safety.

    2.Numerical modeling

    In this study,two-dimensional(2D)plain strain slope models are used in a f nite element code,ABAQUS.Slope models consist of 4 different slope inclinations of 45°,60°,75°and 90°with a height of 6 m and appropriate compaction energy of 4000 kN m. Compaction is performed in two steps:the f rst step is application of gravity load to the whole model in a static manner,and the second one is to apply impact load of the tamper in an implicit dynamic analysis,wherein the tamper is simulated as a rigid body free-falling from a speci f ed height.The latter method was used in previous studies(Pourjenabi et al.,2013;Ghanbari and Hamidi, 2014).In order to keep the similar stability conditions of slopes, the static factors of safety for 4 slope models are kept constant as 1.2,and for this purpose friction angle of soil models is kept to be 30°as a typical value for loose sandy soils and cohesion of soil is changed.Indeed,the soil cohesion has more in f uence on the factor of safety of the slope,e.g.keeping the factor of safety as 1.2 for 45°and 60°slopes,the soil cohesion changes from 4.5 kPa to 8.0 kPa. Hence the slope model with larger slope inclination should have higher soil cohesion.To determine the static factors of safety in the f nite element method(FEM),strength reduction method(SRM)f rst applied by Matsui and San(1992)is used in this study.In this method,the soil gravity is f rstly applied to the whole slope model, and then the soil parameters are reduced gradually by different trial factors of safety to reach the failure.Initial parameters at which slope failure occurs at factor of safety of 1.2 are picked.The onset of failure in slope models is assumed when a sudden increment in nodal displacements is observed.This criterion was used by previous researchers(Grif f ths and Lane,1999;Khosravi and Khabbazian,2012).

    For each slope model,there is a relevant f at model with the same soil properties for comparison.Compaction is simulated for each model at distances of 1-33 m per 4-m interval.Table 1 presents geometry variables of slope models and the compaction energy.Fig.1 shows de f nition of slope geometry variables used in numerical analysis,in whichxis the tamping distance between tamper edge and slope heel.Lateral and f xed boundaries are also shown in this f gure.

    The mesh type is quadrilateral 4-noded plain strain elements. The mesh size is f ner around the tamper and adjacent to slope with the size of 0.2 m and gradually increases to 1 m at boundaries.Fig.2 shows mesh type used in the analysis.

    3.Constitutive model

    Cap plasticity model has been used successfully for simulation of dynamic compaction(Thilakasiri et al.,2001;Gu and Lee,2002; Pak et al.,2005;Ghassemi et al.,2010;Ghanbari and Hamidi,2014). The model has a number of advantages compared with Mohr-Coulomb model,especially for simulation of compaction phenomenon of soils(Pourjenabi et al.,2013).In this study,the cap plasticity model is used with two yield surfaces,consisting of the f xed yield surface of Drucker-Prager model to indicate shear failure,and the moving caps de f ning hardening with change in volumetric strains.The yield surfaces are shown in Fig.3.The f xed and moving yield surfaces for this model can be expressed as follows,respectively:

    wherewandDare the cap plasticity parameters which are dependent on soil compressibility.These parameters were previously calculated by curve f tting with oedometer test results of Oshima and Takada(1997)on a loose sandy soil by Gu and Lee (2002).

    Table 1Geometry variables of slope models and compaction energy.

    Fig.1.Slope geometry variables.

    Fig.2.Mesh type used in numerical analysis.

    As mentioned above,the soil cohesion in each slope model is varied in order to maintain the slope in the same initial factor of safety.The soil cohesions calculated by SRM in f nite element are given in Table 2 together with the soil strength parameters and static factors of safety calculated by a limit equilibrium method(LEM).The LEM presented by Morgenstern and Price(1965)has been applied in the program of Geo-Studio software.As it can be seen,the factors of safety obtained by LEM are in good agreement with those obtained by SRM,and the maximum difference is less than 3%.

    4.Crater depth results

    Fig.4 shows variation of crater depth versus compaction energy in each blow at different compaction distances from the slope heel.As is observed,the crater depth increases with increase in compaction energy.At the distance of 1 m,the crater depth is higher than that at further distances.As the compaction distance from the slope heel increases,values of crater depth gradually decrease until reaching the values of f at models.It shows that the effects of slopes gradually disappear.Comparingthe slope models with different inclinations indicates that the crater depth values at steeper slopes are much higher,also the differences between f at model and slope model at near distances are larger.

    Fig.3.Yield surface of cap plasticity model in stress space.

    Table 2Comparisons of factor of safety by different methods.

    5.Relative density contours

    Since the total failure has not been observed close to the slope models,the improved region around the slope should be investigated.The contours of relative density in a slope model at distance of 1 m from the slope top and the f at model are shown in Fig.5.The relative density(Dr)can be obtained by

    whereemaxandeminare the maximum and minimum void ratios of soil,respectively,obtained from experimental results of Oshima and Takada(1997);andeis the void ratio of soil aftercompaction,which can be obtained as follows based on volumetric plastic strains produced within the compaction:

    Fig.4.Results of crater depth values versus compaction energy with different tamping distances at slope inclination of(a)45°,(b)60°,(c)75°,and(d)90°.

    Fig.5.Results of relative density contours.(a)Slope model;and(b)Flat model.

    wheree0is the initial void ratio.

    As it can be seen from Fig.5,the improved region of f at model consists of relative density contours between 60%and 100%after 10 blows,but at distance of 1 m from the slope top,these contours consist of relative density between 60%and 80%and a small region of 80%-85%.The improved region close to the slope is narrower and it is not completely created compared to the f at models.Also this region is not symmetric around the tamping point.This behavior has been observed in all slopes with different inclinations.As a result,it can be noticed that,one part of the compaction energy close to slope region increases the soil density and decreases the soil volume,and another part of the energy results in lateral slope displacement which is not appropriate in dynamic compaction operation.Also it can be noted that lateral displacement of slope results in the increase of soil volume and decrease of soil density.As it is clear,the dynamic compaction process is not effective close to the slopes,as it was not applicable before.Thus a distance where the slope stability preserved based on different slope stability criteria must be investigated in further studies.Also different slope geometry and compaction energy should be considered.

    6.Conclusions

    In this study,2D f nite element models are simulated in ABAQUS software to investigate the effects of slope on dynamic compaction parameters.By using SRM and applying gravity to the whole slope, the static factors of safety of all models were kept at 1.2.The factor of safety calculated by LEM was in good agreement with Morgenstern-Price method.After tamping of 10 blow counts adjacent to the slope heel,when compared with f at models,the following results can be drawn:

    (1)At near distances of compaction from the slope heel,crater depth values are much higher than those at far distances.As the distance from slope heel increases,crater depth values approach to the values in f at models.

    (2)It is observed that in steeper slopes,crater depth values become higher.Also,a great difference between the values of f at models and slope models at near distances is observed clearly.

    (3)Comparing the relative density contours at distance of 1 m from slope heel and f at model,it can be seen that the contours are not created completely and the improved region is narrower.At distance of 11 m,only a small region of 80%-85%relative density is created,whereas at f at models these contours appropriately reach 100%.As a result,dynamic compaction is not effective adjacent to the slopes.Hence for determining a safe distance from slope heel,more investigations shall be performed and different slope stability criteria shall be considered.

    Con f ict of interest

    The authors wish to con f rm that there are no known con f icts of interest associated with this publication and there has been no signi f cant f nancial support for this work that could have in f uenced its outcome.

    Ghanbari E,Hamidi A.Numerical modeling of rapid impact compaction in loose sands.Geomechanics and Engineering 2014;6(5):487-502.

    Ghassemi A,Pak A,Shahir H.Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils.Computers and Geotechnics 2010;37(1-2):10-24.

    Grif f ths DV,Lane PA.Slope stability analysis by f nite elements.Geotechnique 1999;49(3):387-403.

    Gu Q,Lee FH.Ground response to dynamic compaction.Geotechnique 2002;52(7): 481-93.

    Khosravi M,Khabbazian M.Presentation of critical failure surface of slopes based on the f nite element technique.In:Proceedings of geocongress:state of the art and practice in geotechnical engineering.Reston,Virginia,USA:American Society of Civil Engineers;2012.p.536-45.

    Lee FH,Gu Q.Method for estimating dynamic compaction effect on sand.Journal of Geotechnical and Geoenvironmental Engineering 2004;130(2):139-52.

    Lukas RG.Geotechnical engineering circular no.1-dynamic compaction.1995. Publication No.FHWA-SA-95-037.

    Matsui T,San KC.Finite element slope stability analysis by shear strength reduction technique.Soils and Foundations 1992;32(1):59-70.

    Mayne PW,Jones JS,Dumas JC.Ground response to dynamic compaction.Journal of Geotechnical Engineering 1984;110(6):757-74.

    Menard L,Broise Y.Theoretical and practical aspects of dynamic consolidation. Geotechnique 1975;25(1):3-16.

    Morgenstern NR,Price VE.The analysis of the stability of general slip surfaces. Geotechnique 1965;15(1):79-93.

    Mostafa K.Numerical modeling of dynamic compaction in cohesive soils.PhD Thesis.Akron,OH,USA:University of Akron;2010.

    Oshima A,Takada N.Relation between compacted area and ram momentum by heavy tamping.In:Proceedings of the 14th international conference on soil mechanics and foundation engineering(ICSMFE).Rotterdam,Netherland:A.A. Balkema;1997.p.1641-4.

    Pak A,Shahir H,Ghassemi A.Behavior of dry and saturated soils under impact load during dynamic compaction.In:Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical engineering(ICSMGE).Rotterdam, Netherland:Millpress Science Publishers;2005.p.1245-8.

    Pan JL,Selby AR.Simulation of dynamic compaction of loose granular soils.Advances in Engineering Software 2002;33(7-10):631-40.

    Pourjenabi M,Ghanbari E,Hamidi A.Numerical modeling of dynamic compaction in dry sand using different constitutive models.In:Proceedings of the 4th ECCOMAS Conference on Computational Methods in Structural Dynamics and Earthquake Engineering,Kos Island,Greece;2013.

    Rollins KM,Jorgensen SJ,Ross TE.Optimum moisture content for dynamic compaction of collapsible soils.Journal of Geotechnical and Geoenvironmental Engineering 1998;124(8):699-708.

    Rollins KM,Kim J.Dynamic compaction of collapsible soils based on U.S.case histories.Geotechnical and Geoenvironmental Engineering 2010;136(9):1178-86.

    Thilakasiri HS,Gunaratne M,Mullins G,Stinnette P,Kuo C.Implementation aid for dynamic replacement of organic soils with sand.Journal of Geotechnical and Geoenvironmental Engineering 2001;127(1):25-35.

    Vahidipour A.Experimental study of dynamic compaction adjacent to the slope.MS Thesis.Tehran,Iran:Kharazmi University;2014.

    Zekkos D,Kabalan M,Flanagan M.Lessons learned from case histories of dynamic compaction at municipal solid waste sites.Journal of Geotechnical and Geoenvironmental Engineering 2013;139(5):735-51.

    Zhou Z,Chao WL,Liu BC.Model test study on dynamic responses of step-shaped loess slope with dynamic compaction.In:Proceedings of the 10th International Conference of Chinese Transportation Professionals.Reston,VA,USA: American Society of Civil Engineers;2010.p.3227-37.

    Zou WL,Wang Z,Yao ZF.Effect of dynamic compaction on placement of high-road embankment.Performance of Constructed Facilities 2005;19(4):316-23.

    Amir Hamidiis an Associate Professor in the School of Engineering at Kharazmi University of Tehran since 2006. He has obtained his B.Sc.and M.Sc.degrees from Civil Engineering Department of Sharif University of Technology in 1997 and 1999,respectively.He has also received his Ph.D.degree in Geotechnical Engineering from Department of Civil Engineering,Sharif University of Technology in 2005 working on experimental behavior and constitutive modeling of cemented gravely sands.His research interests include experimental soil mechanics, plasticity concepts and constitutive modeling and ground improvement.Dr.Hamidi has been professionally working in a variety of ground improvement projects especially dynamic compaction and land reclamation.

    *Corresponding author.Tel.:+98 21 88830891.

    E-mail address:hamidi@khu.ac.ir(A.Hamidi).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.02.002

    日韩成人av中文字幕在线观看| 日韩 亚洲 欧美在线| 成人二区视频| 午夜免费观看性视频| 国产午夜精品一二区理论片| 亚洲,欧美,日韩| 国产成人精品无人区| 国产成人91sexporn| 免费久久久久久久精品成人欧美视频 | 日本爱情动作片www.在线观看| a 毛片基地| 久久久久久久久久久丰满| 91精品一卡2卡3卡4卡| 欧美xxⅹ黑人| 亚洲美女视频黄频| 国精品久久久久久国模美| 午夜激情av网站| 十八禁高潮呻吟视频| 国产成人一区二区在线| 亚洲av中文av极速乱| 国产男人的电影天堂91| 一区二区三区乱码不卡18| 亚洲精品中文字幕在线视频| 高清视频免费观看一区二区| av在线观看视频网站免费| 中文精品一卡2卡3卡4更新| 99九九线精品视频在线观看视频| 免费观看无遮挡的男女| 久久精品久久精品一区二区三区| 成人影院久久| 国产av国产精品国产| 韩国av在线不卡| 成人综合一区亚洲| 在线看a的网站| 亚洲av男天堂| 黑人欧美特级aaaaaa片| 日韩一区二区三区影片| 久久av网站| 男的添女的下面高潮视频| 亚洲av.av天堂| av在线播放精品| 在线免费观看不下载黄p国产| 丝袜喷水一区| 女人久久www免费人成看片| 久久99精品国语久久久| 黑人欧美特级aaaaaa片| 国产免费一区二区三区四区乱码| 伦理电影免费视频| 亚洲国产av影院在线观看| 久久精品国产自在天天线| 国产伦精品一区二区三区视频9| 国产男人的电影天堂91| 青春草亚洲视频在线观看| 久久久精品94久久精品| 夜夜骑夜夜射夜夜干| 99久久人妻综合| 九草在线视频观看| 日本色播在线视频| 欧美日韩视频高清一区二区三区二| 美女国产高潮福利片在线看| 精品人妻一区二区三区麻豆| 中文字幕制服av| 国产av码专区亚洲av| 亚洲在久久综合| 久久久国产精品麻豆| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 熟妇人妻不卡中文字幕| 久久人妻熟女aⅴ| 中国三级夫妇交换| 狂野欧美激情性bbbbbb| 人妻制服诱惑在线中文字幕| 久久久久久伊人网av| 能在线免费看毛片的网站| 涩涩av久久男人的天堂| 国产永久视频网站| 国产黄片视频在线免费观看| 国产在线一区二区三区精| 亚洲成人av在线免费| 极品人妻少妇av视频| 人妻人人澡人人爽人人| 亚洲精品久久成人aⅴ小说 | 免费观看无遮挡的男女| 亚洲精品乱码久久久v下载方式| 久久精品人人爽人人爽视色| 日韩中文字幕视频在线看片| 三级国产精品片| 亚洲国产精品999| 国产精品无大码| 久久99热这里只频精品6学生| 晚上一个人看的免费电影| 国产在线免费精品| 免费不卡的大黄色大毛片视频在线观看| 我要看黄色一级片免费的| 国产成人精品一,二区| 国产成人精品无人区| 欧美少妇被猛烈插入视频| 日韩一区二区三区影片| 免费高清在线观看日韩| 国产亚洲午夜精品一区二区久久| 婷婷色av中文字幕| 精品国产露脸久久av麻豆| 免费不卡的大黄色大毛片视频在线观看| 色婷婷久久久亚洲欧美| 欧美精品高潮呻吟av久久| 精品酒店卫生间| 大香蕉97超碰在线| 最近中文字幕高清免费大全6| 久久99蜜桃精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 丝袜脚勾引网站| 日本欧美视频一区| 亚洲成人av在线免费| 日本午夜av视频| 国产精品女同一区二区软件| 黄色视频在线播放观看不卡| 亚洲不卡免费看| 99国产精品免费福利视频| 亚洲激情五月婷婷啪啪| 国产国语露脸激情在线看| 97在线视频观看| 免费日韩欧美在线观看| 久久精品国产a三级三级三级| 免费看光身美女| 亚洲精品乱码久久久久久按摩| 国产一区亚洲一区在线观看| 久久97久久精品| 狂野欧美白嫩少妇大欣赏| 国产高清三级在线| 波野结衣二区三区在线| 日产精品乱码卡一卡2卡三| 久久久国产一区二区| 大香蕉97超碰在线| 亚洲国产毛片av蜜桃av| 国产成人精品在线电影| 如日韩欧美国产精品一区二区三区 | 亚洲久久久国产精品| 国产一区二区在线观看日韩| 大片电影免费在线观看免费| 国产男女内射视频| 亚洲高清免费不卡视频| 国产乱来视频区| tube8黄色片| 一区二区日韩欧美中文字幕 | 亚洲av不卡在线观看| 亚洲人成网站在线播| 日韩在线高清观看一区二区三区| 久久久久国产网址| 免费人妻精品一区二区三区视频| 肉色欧美久久久久久久蜜桃| 18在线观看网站| 国产有黄有色有爽视频| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 99久久综合免费| 99久久人妻综合| 赤兔流量卡办理| 夜夜看夜夜爽夜夜摸| av免费观看日本| 国产片内射在线| 国产黄色视频一区二区在线观看| 九九爱精品视频在线观看| 在线播放无遮挡| 人成视频在线观看免费观看| 免费高清在线观看视频在线观看| 国产男女内射视频| 日韩欧美精品免费久久| 亚洲av综合色区一区| 在线观看人妻少妇| 国产免费又黄又爽又色| 成人免费观看视频高清| 成人毛片60女人毛片免费| 亚洲怡红院男人天堂| 激情五月婷婷亚洲| 王馨瑶露胸无遮挡在线观看| 婷婷成人精品国产| 国产免费又黄又爽又色| videosex国产| 91国产中文字幕| 国产高清国产精品国产三级| 免费看av在线观看网站| 国产精品99久久久久久久久| 人体艺术视频欧美日本| 欧美日韩精品成人综合77777| av一本久久久久| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 一个人免费看片子| 插逼视频在线观看| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 夜夜骑夜夜射夜夜干| 丁香六月天网| 女性生殖器流出的白浆| 日本与韩国留学比较| 日韩中字成人| 97在线视频观看| 亚洲欧美一区二区三区国产| 两个人免费观看高清视频| 亚洲av欧美aⅴ国产| 又大又黄又爽视频免费| 在线观看国产h片| 亚洲国产色片| av专区在线播放| 一级毛片黄色毛片免费观看视频| 婷婷色综合大香蕉| 色视频在线一区二区三区| 国产亚洲一区二区精品| 日韩视频在线欧美| 亚洲第一区二区三区不卡| 一区二区av电影网| 中国国产av一级| 日韩 亚洲 欧美在线| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 最新中文字幕久久久久| 制服人妻中文乱码| 大香蕉97超碰在线| 乱码一卡2卡4卡精品| 精品酒店卫生间| 搡女人真爽免费视频火全软件| 国产无遮挡羞羞视频在线观看| 秋霞在线观看毛片| 两个人免费观看高清视频| 精品人妻偷拍中文字幕| 欧美少妇被猛烈插入视频| 国产亚洲一区二区精品| 十八禁网站网址无遮挡| 日韩人妻高清精品专区| 精品午夜福利在线看| 亚洲精品国产av成人精品| 亚洲国产精品国产精品| 亚洲人成网站在线观看播放| 欧美xxⅹ黑人| 美女国产视频在线观看| 美女福利国产在线| 亚洲精品一区蜜桃| 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| 美女xxoo啪啪120秒动态图| 另类精品久久| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| 国产黄片视频在线免费观看| 亚洲人成网站在线播| 欧美日本中文国产一区发布| 国产 一区精品| 天美传媒精品一区二区| 99热6这里只有精品| 涩涩av久久男人的天堂| 久久人妻熟女aⅴ| 少妇的逼好多水| 午夜91福利影院| 国产乱人偷精品视频| 女性生殖器流出的白浆| 视频区图区小说| 国模一区二区三区四区视频| 亚洲精品一区蜜桃| 日本免费在线观看一区| 又粗又硬又长又爽又黄的视频| 51国产日韩欧美| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| 免费av中文字幕在线| 国产乱来视频区| 国产欧美亚洲国产| 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 成人综合一区亚洲| 制服丝袜香蕉在线| 91久久精品国产一区二区三区| 丰满饥渴人妻一区二区三| 日韩,欧美,国产一区二区三区| av福利片在线| 成年人午夜在线观看视频| 少妇的逼水好多| 国产极品天堂在线| 国产精品一区二区在线不卡| 在线观看www视频免费| 十八禁网站网址无遮挡| 成人国产麻豆网| 一本大道久久a久久精品| 97超碰精品成人国产| 精品久久久久久久久亚洲| 日日摸夜夜添夜夜爱| av在线老鸭窝| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 精品人妻一区二区三区麻豆| 伦理电影大哥的女人| 观看av在线不卡| 亚洲国产最新在线播放| 欧美老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 亚洲精品乱码久久久久久按摩| 欧美少妇被猛烈插入视频| 一级黄片播放器| 亚洲国产精品999| 纵有疾风起免费观看全集完整版| 国产片内射在线| 亚洲人与动物交配视频| 尾随美女入室| 日本wwww免费看| 国产精品熟女久久久久浪| 蜜桃在线观看..| 免费观看a级毛片全部| 一级毛片我不卡| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 亚洲精品日本国产第一区| kizo精华| 精品一区二区免费观看| 国内精品宾馆在线| 免费人成在线观看视频色| 国产成人精品久久久久久| 日韩av免费高清视频| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 视频区图区小说| 男男h啪啪无遮挡| 黄色欧美视频在线观看| 夜夜看夜夜爽夜夜摸| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| 满18在线观看网站| 国产视频首页在线观看| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 国产成人精品久久久久久| 午夜免费鲁丝| 乱码一卡2卡4卡精品| 国产精品偷伦视频观看了| 热re99久久国产66热| 国产日韩欧美在线精品| 制服诱惑二区| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 高清不卡的av网站| 精品亚洲成国产av| 午夜福利网站1000一区二区三区| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 日本-黄色视频高清免费观看| 18禁裸乳无遮挡动漫免费视频| 国内精品宾馆在线| 日韩成人伦理影院| 九九久久精品国产亚洲av麻豆| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 国产黄片视频在线免费观看| 免费黄频网站在线观看国产| 91久久精品电影网| 久久青草综合色| 午夜福利影视在线免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 国产男女内射视频| 日本欧美视频一区| 成人亚洲欧美一区二区av| 中文字幕最新亚洲高清| 九九爱精品视频在线观看| 久久99一区二区三区| 高清不卡的av网站| 亚洲性久久影院| av一本久久久久| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 2021少妇久久久久久久久久久| 国产成人一区二区在线| 精品久久久久久电影网| 国产乱来视频区| 亚洲av二区三区四区| 免费久久久久久久精品成人欧美视频 | 免费av不卡在线播放| 黑人猛操日本美女一级片| 香蕉精品网在线| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 一级爰片在线观看| 两个人的视频大全免费| 高清不卡的av网站| 久久亚洲国产成人精品v| 免费久久久久久久精品成人欧美视频 | 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 桃花免费在线播放| 美女视频免费永久观看网站| 边亲边吃奶的免费视频| 日韩欧美精品免费久久| 久久久国产精品麻豆| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 人人妻人人澡人人看| 久久精品久久久久久久性| 亚洲欧美一区二区三区黑人 | 2022亚洲国产成人精品| 在现免费观看毛片| 黄色一级大片看看| 精品一区在线观看国产| 又黄又爽又刺激的免费视频.| 少妇人妻 视频| 亚洲欧美一区二区三区国产| videosex国产| 激情五月婷婷亚洲| 亚洲第一av免费看| 欧美精品人与动牲交sv欧美| 简卡轻食公司| 国产精品无大码| 精品99又大又爽又粗少妇毛片| 亚洲欧洲国产日韩| 免费少妇av软件| 97在线视频观看| 人人妻人人爽人人添夜夜欢视频| 免费观看无遮挡的男女| 高清午夜精品一区二区三区| 国产精品99久久99久久久不卡 | 十八禁高潮呻吟视频| 大码成人一级视频| 国产成人午夜福利电影在线观看| av在线播放精品| 成人亚洲欧美一区二区av| 亚洲四区av| 亚洲精品自拍成人| 久久久久久久大尺度免费视频| 国产国语露脸激情在线看| 日本91视频免费播放| 国产男女内射视频| 91精品三级在线观看| 丝袜美足系列| av.在线天堂| 国产黄色视频一区二区在线观看| 亚洲精品日韩av片在线观看| 国产亚洲精品第一综合不卡 | 狂野欧美激情性bbbbbb| 69精品国产乱码久久久| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| 日本与韩国留学比较| 免费黄网站久久成人精品| av免费在线看不卡| 国产成人午夜福利电影在线观看| 啦啦啦视频在线资源免费观看| 你懂的网址亚洲精品在线观看| 美女国产高潮福利片在线看| 精品人妻熟女毛片av久久网站| 国产成人av激情在线播放 | 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 国内精品宾馆在线| 国产精品偷伦视频观看了| 99热这里只有精品一区| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 国产免费视频播放在线视频| 天堂中文最新版在线下载| 最近的中文字幕免费完整| 亚洲天堂av无毛| 91成人精品电影| 丰满乱子伦码专区| 女人久久www免费人成看片| 国产精品久久久久成人av| 久久热精品热| 中文字幕亚洲精品专区| 国产欧美另类精品又又久久亚洲欧美| 久久亚洲国产成人精品v| 午夜福利视频精品| 国产成人精品无人区| 妹子高潮喷水视频| 亚洲一级一片aⅴ在线观看| 久久久欧美国产精品| 91久久精品国产一区二区成人| 一级毛片黄色毛片免费观看视频| 一边摸一边做爽爽视频免费| 日本wwww免费看| h视频一区二区三区| 日本av手机在线免费观看| 国产av码专区亚洲av| 一级黄片播放器| 日本wwww免费看| 秋霞伦理黄片| 啦啦啦视频在线资源免费观看| 亚洲av日韩在线播放| 另类精品久久| 黑人高潮一二区| 亚洲精品一二三| 91精品伊人久久大香线蕉| 三级国产精品欧美在线观看| 国产一级毛片在线| 国产男人的电影天堂91| 十八禁网站网址无遮挡| 免费日韩欧美在线观看| 一区在线观看完整版| 午夜福利视频在线观看免费| 18禁在线播放成人免费| 一级毛片黄色毛片免费观看视频| 国产亚洲一区二区精品| 亚洲一级一片aⅴ在线观看| 久久亚洲国产成人精品v| 99九九在线精品视频| 天天躁夜夜躁狠狠久久av| 国产爽快片一区二区三区| 日本猛色少妇xxxxx猛交久久| 成年人免费黄色播放视频| 色婷婷久久久亚洲欧美| 欧美日韩精品成人综合77777| 日韩视频在线欧美| 亚洲欧美日韩卡通动漫| 男的添女的下面高潮视频| 三上悠亚av全集在线观看| 久久久国产一区二区| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区| 街头女战士在线观看网站| 亚洲少妇的诱惑av| 国产日韩一区二区三区精品不卡 | 亚洲精品av麻豆狂野| 久久99一区二区三区| 欧美日韩亚洲高清精品| 欧美精品国产亚洲| 欧美精品一区二区大全| 香蕉精品网在线| 国产国拍精品亚洲av在线观看| 国产在线视频一区二区| 日韩欧美精品免费久久| 国产免费福利视频在线观看| 熟女人妻精品中文字幕| 国产精品 国内视频| 亚洲综合精品二区| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩国产mv在线观看视频| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 伦理电影大哥的女人| av卡一久久| 精品国产一区二区三区久久久樱花| av电影中文网址| 制服丝袜香蕉在线| 欧美精品亚洲一区二区| 亚洲一区二区三区欧美精品| 麻豆乱淫一区二区| 日本午夜av视频| av黄色大香蕉| 人人澡人人妻人| 免费观看在线日韩| 欧美亚洲日本最大视频资源| 一边亲一边摸免费视频| 看十八女毛片水多多多| 老司机影院成人| 久久久久精品久久久久真实原创| 午夜视频国产福利| av国产久精品久网站免费入址| 久久99精品国语久久久| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 亚洲av中文av极速乱| 日本91视频免费播放| 精品少妇久久久久久888优播| 两个人的视频大全免费| av线在线观看网站| 久久综合国产亚洲精品| 永久免费av网站大全| 免费黄网站久久成人精品| 国产精品一区二区在线不卡| 成年美女黄网站色视频大全免费 | 成人国语在线视频| 国产欧美亚洲国产| 少妇人妻精品综合一区二区| 一本色道久久久久久精品综合| 伊人久久精品亚洲午夜| 最近2019中文字幕mv第一页| 亚洲av男天堂| 久久久久久久久久成人| 人妻少妇偷人精品九色| 亚洲av男天堂| 国产成人freesex在线| 日韩 亚洲 欧美在线| 色吧在线观看| 十八禁网站网址无遮挡| 欧美xxxx性猛交bbbb| 国产精品国产三级国产av玫瑰| 国产欧美亚洲国产| 99热全是精品| 中文精品一卡2卡3卡4更新| 国产免费现黄频在线看| 国产69精品久久久久777片| 九色成人免费人妻av| 成人亚洲欧美一区二区av| 999精品在线视频| 久久久精品94久久精品| 免费观看av网站的网址| 99热这里只有精品一区| 99九九线精品视频在线观看视频| 两个人的视频大全免费| 极品少妇高潮喷水抽搐| 久久久久久久精品精品| 亚洲精品自拍成人| 亚洲第一av免费看| 久久午夜福利片| 一区在线观看完整版|