• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the microscopic moisture migration in pore space using DEM simulation

    2015-02-08 09:02:52YuanGuoXiongBillYu

    Yuan Guo,Xiong(Bill)Yu

    Department of Civil Engineering,Case Western Reserve University,10900 Euclid Avenue,Cleveland,OH 44106,USA

    Understanding the microscopic moisture migration in pore space using DEM simulation

    Yuan Guo,Xiong(Bill)Yu*

    Department of Civil Engineering,Case Western Reserve University,10900 Euclid Avenue,Cleveland,OH 44106,USA

    A R T I C L E I N F O

    Article history:

    Received 26 December 2014

    Received in revised form

    4 March 2015

    Accepted 6 March 2015

    Available online 20 March 2015

    Moisture migration

    Consolidated undrained triaxial test

    Particle chains

    Porosity distribution

    Pore water pressure

    The deformation of soil skeleton and migration of pore f uid are the major factors relevant to the triggering of and damages by liquefaction.The in f uence of pore f uid migration during earthquake has been demonstrated from recent model experiments and f eld case studies.Most of the current liquefaction assessment models are based on testing of isotropic lique f able materials.However the recent New Zealand earthquake shows much severer damages than those predicted by existing models.A fundamental cause has been contributed to the embedded layers of low permeability silts.The existence of these silt layers inhibits water migration under seismic loads,which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories.This study intends to understand the process of moisture migration in the pore space of sand using discrete element method(DEM)simulation.Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant con f ning pressure and axial loading.The porosity distribution was monitored during the axial loading process.The spatial distribution of porosity change was determined,which had a direct relationship with the distribution of excess pore water pressure.The non-uniform distribution of excess pore water pressure causes moisture migration.From this,the migration of pore water during the loading process can be estimated.The results of DEM simulation show a few important observations:(1)External forces are mainly carried and transmitted by the particle chains of the soil sample;(2)Porosity distribution during loading is not uniform due to nonhomogeneous soil fabric(i.e.the initial particle arrangement and existence of particle chains);(3) Excess pore water pressure develops differently at different loading stages.At the early stage of loading, zones with a high initial porosity feature higher porosity changes under the in f uence of external loading, which leads to a larger pore pressure variation(increase or decrease)in such zones.As the axial strain increases,particle rearrangement occurs and f nal porosity distribution has minor relationship with the initial condition,and the pore pressure distribution becomes irregular.The differences in the pore pressure development imply that water will migrate in the pore space in order to balance the pore water pressure distribution.The results of this simulation offer an insight on the microscale water migration in the soil pore space,which is important for holistic description of the triggering of soil liquefaction in light of its microstructure.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Soil liquefaction,which leads to substantial losses of soil stiffness and strength,can cause catastrophic damages to the superstructures.Most of the current liquefaction assessment models are based on the assumption of isotropic lique f able materials. However,the recent New Zealand earthquake shows a much severer damage than expected.Researches have also shown that migration of water in sand is an important factor triggering soil liquefaction(Dashti et al.,2010a,2010b;Maharjan and Takahashi, 2013,2014).The ground settlement is not proportional to the thickness of lique f able layers as predicted by existing models (Dashti et al.,2010b).

    Understanding soil-water interactions can provide a new insight on the liquefaction mechanism,which has aroused signi fcant interest in the research community.In static condition,water migration in soil was found to behave non-linearly during experiment(Wang et al.,2013a).For hydrophobic soil contaminated by oil,there is a critical moisture content,beyond which it behaves as hydrophilic soil(Quyum et al.,2002).Oscillating water pressurewas found to have a signi f cant effect on liquefaction of sand(Lu and Cui,2004).For non-uniform sand,the pore pressure and the skeleton strain raise rapidly in low permeability areas.Centrifuge tests also indicate that the soil permeability plays an important role in pore water pressure development during and after liquefaction (Wang et al.,2013b).Models based on strain energy have been proposed to describe the liquefaction process(Jafarian et al.,2012). These researches show that moisture migration and soil particle deformation determine the macroscopic mechanical responses of sand.

    Bray’s centrifuge test explicitly demonstrates the importance of moisture migration in triggering sand liquefaction(Dashti et al., 2010a).By installing an impermeable water barrier underneath a model building to prevent water migration but allow shear deformation,the settlement was reduced by over 25%compared with the condition when moisture migration is allowed.This clearly demonstrates the crucial role of moisture migration in soil liquefaction.The discontinuous layered soil deposits can also in f uence the pore water migration,for example,as observed in the experiments conducted by Takahashi(Maharjan and Takahashi,2013).In the centrifuge model,the pore water was found to be trapped beneath the low permeability silty sand,and it took a long period for the excess pore water pressure to dissipate.This also leads to non-uniform settlement of the upper structure.

    The thermally induced water migration has been discussed theoretically and veri f ed with experiments(Liu et al.,2013).The variation of pore pressure up to 40 kPa was observed in sand sample during freezing-thawing test(Zhang et al.,2014).For dynamic response,the coupled method,which considers both the solid particles and f uid f eld,provides a good understanding of the process of liquefaction(El Shamy and Abdelhamid,2014).Researches show that liquefaction can be explained by the reduction in void space during shaking that leads to accumulation of pore water pressure.

    In this paper,discrete element method(DEM)was used to understand the mechanism of moisture migration during a static consolidated undrained triaxial test.The pore pressure distribution in the sand sample was estimated by monitoring the spatial variations of porosity during the loading process.

    2.A DEM model for consolidated undrained triaxial test

    A computational model was built for consolidated undrained shear test with a diameter of 50 mm and height of 100 mm.Table 1 shows the partial parameters and mechanical properties of sand. The particle radii range from 1.5 mm to 2.5 mm with a uniform distribution(Fig.1).The con f ning pressure is set to be 100 kPa. Strain-controlled loading was assumed where the upper wall moves downward with a constant velocity.The loading rate was determined via a sensitivity study on the loading velocity.The results show that below a certain velocity value(i.e.7.5 mm/s),the mechanical responses are very much similar.Based on this observation,loading velocity of 7.5 mm/s was used in the simulations,which corresponds to a strain rate of 7.5%/s.

    The deformation of soil particles results from the effective stress among particles.To describe the macro mechanical responses of the sand sample under loading,the pore water pressure development in this model was determined.The pore water pressure is estimated by the change of volumetric strain among the sand particles.The compressibility of water-air mixture can be calculated through the equation below(Fredlund,1976;Fredlund and Rahardjo,1993):

    Table 1Particle parameters and mechanical properties of sand.

    Fig.1.DEM model and particle size distribution curve.

    whereCawis the compressibility of air-water mixture(kPa-1);Sis the degree of saturation;Cwis the compressibility of water,which equals 4.58×10-7kPa-1;his the solubility of air in water, expressed as ratio of absorbed air volume to water volume;BwandBaare pore-water and pore-air pressure coef f cients for isotropic loading,both of which are assumed to be 1.0.

    According to Henry’s Law,the air dissolved in water is proportional to the air pressure.The solubility of air in water at 20°C under a pressure of 202 kPa is 0.037.It is very dif f cult to acquire a fully saturated sample in the f eld or laboratory conditions.Researches show that the degree of saturation of saturated soil varies from 85%to 95%in the f eld and laboratory conditions (Faybishenko,1995;Fry et al.,1997;Holocher et al.,2002; Sakaguchi et al.,2005).In this model,we assume the quasi-saturated soil with a degree of saturation of 90%.This corresponds to compressibility of air-water mixture of 6.58×10-4kPa-1.The pore water pressureuwas calculated during each time step using Eq.(2).The con f ning pressure,which is the sum of effective stress and pore water pressure,is assumed to maintain constant using the servo control.

    where εvis the volumetric strain of soil sample.

    3.Simulation results

    During loading,particles in the DEM model are subjected to the effective stress,and the pore pressure distribution is calculated from the porosity distribution.The coupling process is based on two assumptions:(1)reaction forces on soil particles due to water migration are negligible;and(2)water migration completes in each time step.

    The simulated loading curves for the total stress and effective stress are shown in Figs.2 and 3,respectively.The effective stresses are determined directly from the numerical model simulations.Thelarger effective stress than total stress indicates the development of a negative pore pressure.

    The simulation results indicated that when the sample is subjected to axial load(εa<0.005),the volumetric strain decreases slightly and then increases dramatically.This indicates that a shear dilation occurs in most time.The average pore water pressure of the whole sample is plotted in Fig.4.The increase of volumetric strain leads to generation of negative pore pressure in the f uid f eld,and therefore the effective stress on soil increases during the loading process(Fig.3).

    Fig.2.Total stress curves during loading.

    4.Contact forces among particles

    The normal and shear contact forces among particles are obtained.Each contact consists of two types of contacting entities, particle-particle contact or particle-wall contact.Among the 3808 particles,a total of 8228 contacts are generated.These contacts provide normal or shear forces if two particles have normal or tangential relative motions.

    The contact forces range from 0 N to 43 N when the axial strain3aequals 17%.Despite of this large range in the magnitude of contact force,the majority of contact forces are in the small ends.A cumulative distribution curve for normal contact forces is plotted in Fig.5.It describes the distribution of the magnitude of normalcontact forces among particles.For example,80%of the normal contact forces are smaller than 8 N,and 95%of the normal contact forces lie within 15 N.Large normal contact forces only occur among a very small amount of particles.

    Fig.3.Effective stress curves during loading.

    Fig.4.Pore water pressure curve during loading.Negative value means traction.

    Fig.5.Cumulative percentage curve of normal contact forces.

    Fig.6.Cumulative percentage curve of shear contact forces.

    The shear contact forces show a similar phenomenon(Fig.6). While the maximum shear contact force reaches 9 N,more than 95%of shear contact forces are smaller than 3 N.

    The spatial distribution of contact forces is plotted in Fig.7.It shows that the contact forces are not uniformly distributed among particles.The external forces are transmitted along granular chains formed within the soil skeleton(Santamarina,2001).Particles within the granular chains tend to be subjected to larger forces. Formation of granular chains depends largely on the particle arrangement,particle size,initial condition,etc.The overall soil deformation is mainly determined by the deformation of granular chains of the soil skeleton.For particles lying outside of the granular chains,the contact force and deformation are much smaller. This non-uniform distribution of both contact force and deformation leads to a non-uniform development of volumetric strain. Consequently,for saturated soil,pore water pressure will be quite different at different locations when subjected to external loading.

    As discussed in the previous context,although the maximum contact force is 43 N,only 5%of particles are subjected to forces larger than 15 N.These particles with normal contact forces larger than 15 N are plotted in Fig.8.It clearly shows the transfer of external forces through the soil skeleton.Since the bottom wall is a f xed end,the load transferring routes at the bottom of sample are obviously concentrated on a few spots.

    Fig.9 plots the average contact forces vs.particle sizes.It shows that the average contact forces of larger particles tend to be larger than that of smaller ones.As the radii vary from 1.5 mm to 2.5 mm, the average contact forces increase by 140%from 4.5 N to 10.8 N.If we normalize the contact forces by dividing by their corresponding particle hemisphere areas,as shown in Fig.10,particles with a smaller radius are subjected to equal or even larger stress compared with large particles.As a quick note,there are somesmall-sized particles detached from their surroundings,which may also cause the smaller average contact force.All these discussions show that contact forces for small-sized particles are small but the stress in the particles is not negligible.

    Fig.7.Contact forces(normal and shear)among particles.

    Fig.8.Particles with contact forces larger than 15 N.

    Fig.9.Average contact forces vs.different particle sizes.

    Fig.10.Normalized stress vs.different particle sizes.

    Fig.11.Porosity distribution at different axial strains.

    Fig.12.Pore water pressure distribution at different axial strains(unit:Pa).

    Table 2Fluid velocities based on Darcy’s Law.

    5.Pore pressure distribution

    The porosity distribution during loading is determined from computational simulations(Fig.11).Before the loading begins,soil sample is only subjected to con f ning pressure.However,the porosity distribution is quite non-uniform and varies from 0.33 to 0.37.When the axial strain increases,zones with high porosities deform signi f cantly.These deformations cause large increases of porosity in these areas.As the axial strain increases to 0.06,particle rearrangement occurs and porosity distribution changes signi fcantly.The f nal porosity distribution has little relationship with the initial condition.

    The permeability of medium sand is relatively high and water migration,even under a low pressure gradient,can be quite rapid. Assuming that water migration completes at the end of each time step,by calculating the change of volumetric strains at different locations,we can determine the distribution of pore water pressure at different times,as shown in Fig.12.The black arrows represent the main migrating routes of water.

    The direction of water migration concurs well with the porosity distribution.At the early stage,particle deformations are highly related to the initial condition.As the zones with higher porosities keep bulging,extra water f ows into these areas,as shown in Fig.12a-c.However,under large strain conditions,particle rearrangement occurs and particles within soil chains produce much larger deformations.Corresponding to the random distribution of the particle chains,the routes of water migration also show irregularity.

    Using the Darcy’s Law,the migration velocity of f uid during the testing process can be estimated.The coef f cient of permeability for clean sand is chosen as 5×10-3cm/s(West,1995).The pore pressure and porosity can be determined directly from the model. The maximum f uid velocities at different axial strains are calculated and shown in Table 2.

    In general,the velocity of f ow migration increases with strain levels.

    6.Conclusions

    Fluid migration has been identi f ed as an important process responsible for damages due to liquefaction.To understand the process of moisture migration,a model for triaxial test has been built using DEM to simulate the microscopic phenomena during consolidated undrained shear test.The f uid pressure was calculated by considering the change of volumetric strain during loading.

    The results of contact forces show that external forces are transmitted through soil skeletons inside the soil sample.Particles inside the particle chains tend to have larger contact forces.Although the maximum contact force can be as large as 43 N,95%of the total particles are subjected to the forces smaller than 15 N.It also shows that large particles typically have large contact forces.But stress in the particles due to contact forces is generally higher in smaller particles.

    The simulation model predicted uneven distribution of porosity during loading conditions.This non-uniform distribution comes from two sources:the initial anisotropic property of soil sample from particle generation,and the randomly distributed soil skeletons.At low axial strain conditions(εa<0.06),porosity increases signi f cantly in zones with a large initial porosity.As the axial strain further increases,particle rearrangement occurs and the porosity distribution becomes random.

    The simulation also indicates that under external loading,the change of pore space leads to a redistribution of pore water pressure.The direction of water migration is consistent with the variation of porosity.At the initial loading stage,water migrates into areas with high porosity.As the axial strain further increases,the direction of water migration becomes more randomly oriented.

    Overall,the simulation provides insight on the migration of water in the pore space,an important process determining the responses of saturated soils under loading.The process of simulation will be further extended to more complex loading conditions.

    Con f ict of interest

    The authors wish to con f rm that there are no known con f icts of interest associated with this publication and there has been no signi f cant f nancial support for this work that could have in f uenced its outcome.

    Fredlund DG,Rahardjo H.Soil mechanics for unsaturated soils.Wiley-Interscience; 1993.

    Fredlund DG.Density and compressibility characteristics of air-water mixtures. Canadian Geotechnical Journal 1976;13(4):386-96.

    Fry VA,Selker JS,Gorelick SM.Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation.Water Resources Research 1997;33(12):2687-96.

    Holocher J,Peeters F,Aeschbach-Hertig W,Hofer M,Brennwald M,Kinzelbach W, Kipfer R.Experimental investigations on the formation of excess air in quasisaturated porous media.Geochimica et Cosmochimica Acta 2002;66(23): 4103-17.

    Jafarian Y,Towhata I,Baziar MH,Noorzad A,Bahmanpour A.Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments.Soil Dynamics and Earthquake Engineering 2012;35:13-28.

    Liu Z,Zhang B,Yu X,Tao J,Sun Y,Gao Q.Thermally induced water f ux in soils. Journal of Transportation Research Record 2013;2349:63-71.

    Lu X,Cui P.The liquefaction and displacement of highly saturated sand under water pressure oscillation.Ocean Engineering 2004;31(7):795-811.

    Maharjan M,Takahashi A.Centrifuge model tests on liquefaction-induced settlement and pore water migration in non-homogeneous soil deposits.Soil Dynamics and Earthquake Engineering 2013;55:161-9.

    Maharjan M,Takahashi A.Liquefaction-induced deformation of earthen embankments on non-homogeneous soil deposits under sequential ground motions. Soil Dynamics and Earthquake Engineering 2014;66:113-24.

    Quyum A,Achari G,Goodman RH.Effect of wetting and drying and dilution on moisture migration through oil contaminated hydrophobic soils.The Science of the Total Environment 2002;296(1-3):77-87.

    Sakaguchi A,Nishimura T,Kato M.The effect of entrapped air on the quasisaturated soil hydraulic conductivity and comparison with the unsaturated hydraulic conductivity.Vadose Zone Journal 2005;4(1):139-44.

    Santamarina JC.Soil behavior at the microscale:particle forces.In:Germaine JT, Sheahan TC,Whitman RV,editors.Soil behavior and soft ground construction: proceedings of the symposium;2001.p.25-56.

    Wang B,Zen K,Chen GQ,Zhang YB,Kasama K.Excess pore pressure dissipation and solidi f cation after liquefaction of saturated sand deposits.Soil Dynamics and Earthquake Engineering 2013b;49:157-64.

    Wang MW,Li J,Ge S,Li ST.Moisture migration tests on unsaturated expansive clays in Hefei,China.Applied Clay Science 2013a;79:30-5.

    West TR.Geology applied to engineering.Prentice Hall;1995.

    Zhang L,Ma W,Yang C,Yuan C.Investigation of the pore water pressures of coarsegrained sandy soil during open-system step-freezing and thawing tests.Engineering Geology 2014;181:233-48.

    Dashti S,Bray JD,Pestana JM,Riemer M,Wilson D.Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms.Journal of Geotechnical and Geoenvironmental Engineering 2010a;136(7):918-29.

    Dashti S,Bray JD,Pestana JM,Riemer M,Wilson D.Mechanisms of seismically induced settlement of buildings with shallow foundations on lique f able soil.Journal of Geotechnical and Geoenvironmental Engineering 2010b;136(1):151-64.

    El Shamy U,Abdelhamid Y.Modeling granular soils liquefaction using coupled lattice Boltzmann method and discrete element method.Soil Dynamics and Earthquake Engineering 2014;67:119-32.

    Faybishenko BA.Hydraulic behavior of quasi-saturated soils in the presence of entrapped air:laboratory experiments.Water Resources Research 1995;31(10): 2421-35.

    Dr.Xiong Yuis working as an associate professor at Case Western Reserve University,USA.His research interests cover geotechnical and infrastructure engineering,environmental geotechnology,foundation engineering,nondestructive testing,sensor technology for infrastructure, environment and energy applications,multi-scale model of civil engineering material and system,computer-aided design,green design,sustainable engineering,etc.

    *Corresponding author.Tel.:+1 2163686247.

    E-mail address:xiong.yu@case.edu(X.(Bill)Yu).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.004

    亚洲成av片中文字幕在线观看| www.精华液| 精品国产乱子伦一区二区三区| 天天一区二区日本电影三级| 国产三级在线视频| 99国产精品99久久久久| 自线自在国产av| 岛国视频午夜一区免费看| 一夜夜www| 18美女黄网站色大片免费观看| 97超级碰碰碰精品色视频在线观看| 欧美另类亚洲清纯唯美| 国产伦在线观看视频一区| 久久香蕉精品热| 国产av在哪里看| av有码第一页| 国产极品粉嫩免费观看在线| 国产1区2区3区精品| 侵犯人妻中文字幕一二三四区| 99re在线观看精品视频| 狠狠狠狠99中文字幕| 桃色一区二区三区在线观看| 国产成+人综合+亚洲专区| 老熟妇仑乱视频hdxx| 亚洲男人天堂网一区| 久久久久国内视频| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站| 国产aⅴ精品一区二区三区波| 国语自产精品视频在线第100页| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦人伦偷精品视频| 性欧美人与动物交配| xxx96com| 岛国在线观看网站| 欧美日韩精品网址| 少妇熟女aⅴ在线视频| 中文字幕av电影在线播放| 国产精品永久免费网站| www.精华液| 欧美大码av| 麻豆一二三区av精品| 岛国在线观看网站| 国产一区二区三区视频了| 不卡一级毛片| 天天躁夜夜躁狠狠躁躁| 97人妻精品一区二区三区麻豆 | 在线免费观看的www视频| 免费高清视频大片| 欧美激情高清一区二区三区| 欧美成狂野欧美在线观看| 亚洲欧美精品综合久久99| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 久久久久久久精品吃奶| 中文在线观看免费www的网站 | 丰满的人妻完整版| 黄片大片在线免费观看| 我的亚洲天堂| 成人特级黄色片久久久久久久| 国产亚洲精品第一综合不卡| 深夜精品福利| 十八禁人妻一区二区| 制服人妻中文乱码| 日韩中文字幕欧美一区二区| 国产av不卡久久| 麻豆国产av国片精品| 成人欧美大片| 伊人久久大香线蕉亚洲五| 在线免费观看的www视频| 成人手机av| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 免费在线观看视频国产中文字幕亚洲| 成人三级黄色视频| 啦啦啦 在线观看视频| 国产v大片淫在线免费观看| 欧美成狂野欧美在线观看| 欧美成狂野欧美在线观看| 麻豆国产av国片精品| 夜夜夜夜夜久久久久| 日韩欧美国产在线观看| 亚洲 欧美一区二区三区| 无限看片的www在线观看| 女同久久另类99精品国产91| 日本免费一区二区三区高清不卡| 99re在线观看精品视频| 亚洲av成人av| 亚洲精品中文字幕一二三四区| 久久久久九九精品影院| 无人区码免费观看不卡| 国产片内射在线| 日韩精品中文字幕看吧| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 一级a爱片免费观看的视频| 色综合站精品国产| 91国产中文字幕| 熟女少妇亚洲综合色aaa.| 午夜激情av网站| 啦啦啦免费观看视频1| 欧美性猛交黑人性爽| 久久这里只有精品19| 成人永久免费在线观看视频| 国产免费av片在线观看野外av| 丝袜人妻中文字幕| www.精华液| 国产激情偷乱视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品合色在线| 此物有八面人人有两片| 在线观看一区二区三区| 亚洲av成人av| 麻豆国产av国片精品| 黄片播放在线免费| 老司机在亚洲福利影院| 成人三级黄色视频| 搡老妇女老女人老熟妇| tocl精华| 精品久久蜜臀av无| 淫妇啪啪啪对白视频| 亚洲中文字幕日韩| 久久久久久大精品| 久久久久精品国产欧美久久久| 久热爱精品视频在线9| 中文字幕人成人乱码亚洲影| 久久午夜亚洲精品久久| 中文字幕精品免费在线观看视频| 国产精品免费一区二区三区在线| 亚洲欧美激情综合另类| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 免费在线观看成人毛片| 成年版毛片免费区| 久久天堂一区二区三区四区| av超薄肉色丝袜交足视频| 黄色a级毛片大全视频| 自线自在国产av| 51午夜福利影视在线观看| 法律面前人人平等表现在哪些方面| 夜夜看夜夜爽夜夜摸| 成人免费观看视频高清| 国产精品 欧美亚洲| 动漫黄色视频在线观看| 国产午夜精品久久久久久| 欧美色欧美亚洲另类二区| 搡老熟女国产l中国老女人| av天堂在线播放| 欧美日韩亚洲综合一区二区三区_| 成人三级做爰电影| 天天躁夜夜躁狠狠躁躁| 亚洲人成77777在线视频| 午夜激情福利司机影院| 热re99久久国产66热| 精品久久久久久,| 国产精品 国内视频| 精品一区二区三区av网在线观看| 日本黄色视频三级网站网址| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全免费视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲自拍偷在线| 一级片免费观看大全| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡| 琪琪午夜伦伦电影理论片6080| 99精品久久久久人妻精品| 亚洲精品av麻豆狂野| 国产精品影院久久| 国产精品爽爽va在线观看网站 | 亚洲国产欧美网| 国内揄拍国产精品人妻在线 | 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网| 中亚洲国语对白在线视频| 啦啦啦观看免费观看视频高清| 无遮挡黄片免费观看| 久久久久国内视频| 日韩国内少妇激情av| 久久久久久久久久黄片| 免费在线观看亚洲国产| 在线观看66精品国产| 午夜福利一区二区在线看| 国产成人精品无人区| 最新美女视频免费是黄的| 91字幕亚洲| 69av精品久久久久久| 午夜免费鲁丝| 久久婷婷人人爽人人干人人爱| 在线观看免费午夜福利视频| 女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月| 99精品久久久久人妻精品| 色婷婷久久久亚洲欧美| 久久久水蜜桃国产精品网| 国产精品亚洲av一区麻豆| 黄网站色视频无遮挡免费观看| 久久久精品欧美日韩精品| 在线播放国产精品三级| 国产精品影院久久| 一本久久中文字幕| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 中亚洲国语对白在线视频| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 在线观看舔阴道视频| 两性午夜刺激爽爽歪歪视频在线观看 | 免费高清视频大片| 99久久综合精品五月天人人| 一二三四在线观看免费中文在| 国产蜜桃级精品一区二区三区| 国产真实乱freesex| 搞女人的毛片| 欧美性猛交黑人性爽| 午夜成年电影在线免费观看| 免费看a级黄色片| 男人的好看免费观看在线视频 | 村上凉子中文字幕在线| 亚洲成人久久爱视频| 国产黄片美女视频| 亚洲欧美一区二区三区黑人| 中文字幕高清在线视频| 88av欧美| 伦理电影免费视频| 久久人人精品亚洲av| 黄片大片在线免费观看| 精品福利观看| 嫩草影院精品99| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 亚洲av第一区精品v没综合| 看免费av毛片| 久久亚洲精品不卡| aaaaa片日本免费| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| av片东京热男人的天堂| 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 国产97色在线日韩免费| 亚洲电影在线观看av| 国产亚洲欧美在线一区二区| 国产久久久一区二区三区| 此物有八面人人有两片| 精品熟女少妇八av免费久了| 久久精品91蜜桃| 亚洲无线在线观看| 欧美一级毛片孕妇| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| √禁漫天堂资源中文www| 成人av一区二区三区在线看| 叶爱在线成人免费视频播放| 国产高清videossex| 久久精品人妻少妇| 大型av网站在线播放| 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 日本在线视频免费播放| 亚洲国产高清在线一区二区三 | 1024手机看黄色片| 日韩国内少妇激情av| 欧美黑人精品巨大| 久久香蕉激情| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 大型av网站在线播放| 午夜久久久久精精品| 亚洲精品中文字幕在线视频| 中文字幕另类日韩欧美亚洲嫩草| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 久久人妻福利社区极品人妻图片| 校园春色视频在线观看| 国产爱豆传媒在线观看 | 久久精品成人免费网站| 国产精品一区二区免费欧美| 色哟哟哟哟哟哟| 听说在线观看完整版免费高清| 国产精品永久免费网站| 2021天堂中文幕一二区在线观 | 在线观看www视频免费| 亚洲性夜色夜夜综合| 欧美中文日本在线观看视频| 国产精品一区二区精品视频观看| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 日本撒尿小便嘘嘘汇集6| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| 欧美性猛交╳xxx乱大交人| 国产单亲对白刺激| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 操出白浆在线播放| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 最近在线观看免费完整版| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 久久人妻福利社区极品人妻图片| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 在线观看午夜福利视频| 久久精品国产综合久久久| 欧美黑人欧美精品刺激| 男女那种视频在线观看| 亚洲第一青青草原| 熟女少妇亚洲综合色aaa.| 久久久久久人人人人人| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| 国产国语露脸激情在线看| 免费无遮挡裸体视频| 91成年电影在线观看| 99精品在免费线老司机午夜| 亚洲精品色激情综合| 国产又黄又爽又无遮挡在线| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 久久精品aⅴ一区二区三区四区| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久末码| 777久久人妻少妇嫩草av网站| 亚洲一码二码三码区别大吗| 中文资源天堂在线| 亚洲第一青青草原| 国产av一区在线观看免费| 一区福利在线观看| 欧美中文综合在线视频| 色综合亚洲欧美另类图片| 国产精品 欧美亚洲| 一区福利在线观看| 精品久久久久久久久久久久久 | 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 国产熟女午夜一区二区三区| 不卡一级毛片| 在线观看日韩欧美| 国产精品久久久久久亚洲av鲁大| 99久久国产精品久久久| 久久欧美精品欧美久久欧美| 中文字幕精品亚洲无线码一区 | 俺也久久电影网| 给我免费播放毛片高清在线观看| 亚洲最大成人中文| 亚洲国产精品成人综合色| www日本在线高清视频| 少妇裸体淫交视频免费看高清 | 婷婷亚洲欧美| 一个人观看的视频www高清免费观看 | 日本 欧美在线| 午夜激情av网站| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 国产精华一区二区三区| 悠悠久久av| 午夜精品久久久久久毛片777| 不卡一级毛片| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 久久久国产成人免费| 一区二区三区高清视频在线| 欧美日韩福利视频一区二区| 999久久久国产精品视频| 人人妻人人澡人人看| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 国产男靠女视频免费网站| 首页视频小说图片口味搜索| 美女大奶头视频| 99久久综合精品五月天人人| 亚洲国产看品久久| 亚洲成国产人片在线观看| 亚洲 国产 在线| tocl精华| 中文亚洲av片在线观看爽| 这个男人来自地球电影免费观看| 亚洲自偷自拍图片 自拍| 老汉色av国产亚洲站长工具| 级片在线观看| 午夜福利在线在线| 欧美乱妇无乱码| 亚洲五月色婷婷综合| 男女之事视频高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美免费精品| 色老头精品视频在线观看| 国产精品 国内视频| 国产亚洲av高清不卡| 1024视频免费在线观看| 日韩国内少妇激情av| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 国产成人系列免费观看| 一本一本综合久久| 日韩精品中文字幕看吧| 久久中文字幕一级| 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 高潮久久久久久久久久久不卡| 哪里可以看免费的av片| 色播在线永久视频| 大型av网站在线播放| 久久国产精品影院| 一级片免费观看大全| 不卡av一区二区三区| 欧美性猛交黑人性爽| 精品久久久久久久久久免费视频| 欧美国产日韩亚洲一区| 在线观看66精品国产| 男女床上黄色一级片免费看| 欧美中文日本在线观看视频| 午夜视频精品福利| 给我免费播放毛片高清在线观看| 国产精品99久久99久久久不卡| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 久久久水蜜桃国产精品网| 青春草视频在线免费观看| 九九热线精品视视频播放| 欧美+日韩+精品| 性插视频无遮挡在线免费观看| 日本黄色视频三级网站网址| 在线免费观看不下载黄p国产| 国产 一区精品| 久久久久久久久久久丰满| 国产精品一区二区三区四区久久| 国产精品不卡视频一区二区| 一个人观看的视频www高清免费观看| 高清午夜精品一区二区三区 | 99热精品在线国产| 一级毛片久久久久久久久女| av福利片在线观看| 能在线免费观看的黄片| 97人妻精品一区二区三区麻豆| 日本在线视频免费播放| 哪里可以看免费的av片| 国产免费男女视频| 一区二区三区免费毛片| 伦精品一区二区三区| 嫩草影院新地址| 亚洲av二区三区四区| 1024手机看黄色片| 深夜a级毛片| 久久久久精品国产欧美久久久| 免费高清视频大片| 久久久久久久久久成人| 午夜福利在线观看吧| 99久久久亚洲精品蜜臀av| 麻豆精品久久久久久蜜桃| 精品人妻视频免费看| 国产单亲对白刺激| 18禁黄网站禁片免费观看直播| 如何舔出高潮| 亚洲综合色惰| 国产激情偷乱视频一区二区| av视频在线观看入口| 插逼视频在线观看| 久久久久性生活片| 国产蜜桃级精品一区二区三区| 欧美最黄视频在线播放免费| 国产黄色小视频在线观看| 亚洲专区国产一区二区| 亚洲人与动物交配视频| 国内揄拍国产精品人妻在线| 国产精品电影一区二区三区| av在线播放精品| 国产极品精品免费视频能看的| 国产视频内射| 国产精品一及| 欧美日本视频| 亚洲高清免费不卡视频| 久久精品人妻少妇| 国产久久久一区二区三区| 色吧在线观看| 日韩成人伦理影院| 午夜老司机福利剧场| 97碰自拍视频| 直男gayav资源| 久久精品综合一区二区三区| 成年版毛片免费区| 亚洲成人久久爱视频| 看非洲黑人一级黄片| 久久久a久久爽久久v久久| 久久久精品欧美日韩精品| .国产精品久久| 亚洲欧美中文字幕日韩二区| 国产不卡一卡二| 黄色欧美视频在线观看| 一夜夜www| 亚洲欧美精品自产自拍| 亚洲精品456在线播放app| 在线免费观看的www视频| 中文资源天堂在线| 亚洲精品国产av成人精品 | 久久精品国产鲁丝片午夜精品| 国产一区二区激情短视频| 色综合色国产| 毛片女人毛片| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 1000部很黄的大片| 男人的好看免费观看在线视频| 色哟哟哟哟哟哟| 中出人妻视频一区二区| 国产私拍福利视频在线观看| 99热这里只有是精品50| 99在线人妻在线中文字幕| 亚洲精华国产精华液的使用体验 | 一本精品99久久精品77| 最近视频中文字幕2019在线8| 国产老妇女一区| a级毛色黄片| 一进一出好大好爽视频| 久久久久免费精品人妻一区二区| 俺也久久电影网| 久久人人精品亚洲av| 日本一本二区三区精品| 我要搜黄色片| 麻豆久久精品国产亚洲av| 老司机福利观看| 变态另类丝袜制服| 国产成人freesex在线 | av国产免费在线观看| 99久久成人亚洲精品观看| 美女黄网站色视频| 国产精品电影一区二区三区| 亚洲最大成人av| 免费无遮挡裸体视频| 一进一出抽搐动态| 国产成人91sexporn| 中国美白少妇内射xxxbb| 日日啪夜夜撸| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| 成人特级黄色片久久久久久久| 成人鲁丝片一二三区免费| 十八禁网站免费在线| 黄色一级大片看看| 少妇人妻精品综合一区二区 | 日韩强制内射视频| 熟女电影av网| 老司机午夜福利在线观看视频| 国产av不卡久久| 国产精品国产高清国产av| 亚洲人与动物交配视频| 亚洲av.av天堂| 伦精品一区二区三区| 亚洲欧美日韩高清专用| 国产真实伦视频高清在线观看| 蜜桃久久精品国产亚洲av| 日韩欧美三级三区| 午夜免费男女啪啪视频观看 | 老熟妇乱子伦视频在线观看| 久久九九热精品免费| 亚洲av中文av极速乱| 色av中文字幕| 亚洲av美国av| 久久久久久久久中文| av视频在线观看入口| 精品熟女少妇av免费看| 亚洲人与动物交配视频| av国产免费在线观看| 国产在视频线在精品| 国产一区二区在线av高清观看| 欧美人与善性xxx| av视频在线观看入口| 小说图片视频综合网站| 午夜精品在线福利| 欧美又色又爽又黄视频| 色av中文字幕| 亚洲自偷自拍三级| 亚洲欧美成人精品一区二区| 女人十人毛片免费观看3o分钟| 你懂的网址亚洲精品在线观看 | 国产精品国产三级国产av玫瑰| 精品久久久久久久人妻蜜臀av| 国产黄色小视频在线观看| av天堂中文字幕网| 国产真实乱freesex| 亚洲成人精品中文字幕电影| 欧美高清性xxxxhd video| 天堂动漫精品| 日韩成人伦理影院| 嫩草影院入口| 午夜福利高清视频| 国产v大片淫在线免费观看| 色吧在线观看| 久久久久久久久中文| 69av精品久久久久久| 国产极品精品免费视频能看的|