• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer

    2015-02-06 07:16:45WUXiaoqingTIANQiguoJIANGPengCHAIBoQINGChunCAIJunJINXinmiaoZHOUHongyan
    Advances in Polar Science 2015年4期

    WU Xiaoqing, TIAN Qiguo, JIANG Peng, CHAI Bo, QING Chun,CAI Jun, JIN Xinmiao & ZHOU Hongyan,

    1 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Science, Hefei 230031, China;

    2 Polar Research Institute of China, Shanghai 200136, China;

    3 University of Science and Technology of China, Hefei 230026, China;

    4 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China

    1 Introduction

    The main effects on the performance of ground-based astronomical telescopes are sky background, transmittance,and optical turbulence and so on[1-2]. Atmospheric turbulence is the major reason for the serious decline of imaging quality of the astronomical optical telescope.Random refractive index fluctuations associated mainly with temperature ぼuctuations are called optical turbulence.The sky background and transmittance limit telescope sensitivity, and optical turbulence limits resolution. Given the influence of atmospheric turbulence on astronomical parameters, seeing is not only one of the important factors in site location decision-making but is also a major measurement parameter. It is an important indicator in evaluating astronomical site quality. Turbulent intensity in the near-surface layer and its rate of decrease with height are closely related to the quality of potential sites. Quoted from Pant’s measurement result in Devasthal[3], seeing of the near-surface 6–12 m layer is 1.28′′, but it is down sharply to 0.32′′ in the 12–18 m layer. In the circumstance where boundary layer and free atmosphere turbulence at candidate astronomical sites are equivalent, as an indicator of seeing, one must compare turbulent intensity of the surface layer and rate of decrease with height to quantify which site is the best for astronomical applications.

    Continuous observation of atmospheric optical turbulence of the surface layer is usually achieved using a meteorological mast equipped with several-layer micro-thermometers. Because dust readily causes probe contamination and strong wind, insects and other factors damage the probe, the micro-thermometer probes need regular replacement and cannot be used in unattended operation in adverse environments. We have proposed measuring the refractive index structure constantCn2with a single-point temperature structure function method, involving analysis of temperature fluctuation time-series data from an ultrasonic anemometer[4-5]. This method was coded into the data acquisition system of a mobile atmospheric parameter measuring system[6-7], soCn2could be measured in real time.This instrument was installed at Antarctic Taishan Station by the 30th Chinese National Antarctic Research Expedition(CHINARE) team for astronomical site testing. Major stations that are currently used for astronomical observation in the Antarctic are Amundsen-Scott at the South Pole, Concordia at Dome C, Kunlun at Dome A, and Fuji at Dome F. At the South Pole, the mean visual seeing, measured by 15 balloon flights in 1997, was 1.86′′, of which the free atmosphere component was only 0.37′′[8]. At Dome C, the summer site testing median seeing based on a Differential Image Motion Monitor (DIMM) was 0.54′′[9]. In 2004, by combining freeatmosphereCn2values determined by the Multi-Aperture Scintillation Sensor[10]with surface boundary layer turbulence determined by Sonic Detection and Ranging, atmospheric seeing above 30 m was 0.27′′. In 2005 seeing, isoplanatic angle and coherent time above 30 m based onin situballoon measurement[11]was 0.36′′, 4.6′′, and 7.9 ms, respectively. In this paper, we analyze turbulence data obtained by a mobile atmospheric parameter acquisition system at Antarctic Taishan Station, and compare several methods of optical turbulence measurement. We found a value ofCn2derived from a structure function analysis previously proposed with a sonic anemometer was different from that of microthermometer measured. Thus, a new method to measureCn2with a temperature spectrum analysis is proposed.Cn2data derived from an ultrasonic anemometer with the new method and micro-thermometer were mainly the same in magnitude and trend.

    2 Introduction to measurement system

    The Antarctic mobile atmospheric parameter measurement system[6]includes a CR5000 data logger, CSAT3 threedimensional ultrasonic anemometer, micro-thermometer,temperature and relative humidity probe, wind monitor,485 communication module, power module, and a 3-m tower. Two levels of air temperature, relative humidity and wind speed, and one level of air pressure, surface temperature,atmospheric optical turbulence intensity and other atmospheric parameters can be measured. Taishan Station is located in Princess Elizabeth Land between the Chinese Antarctic Zhongshan and Kunlun stations, 76°58’E, 73°51’S, at altitude 2621 m. Figure 1 shows the mobile atmospheric parameter measurement system at Chinese Antarctic Taishan Station. The site testing experiments were carried out during the 30th CHINARE. Part of the data from 30 December 2013, when the system was installed, to 10 February 2014,when the expedition staff returned, were analyzed here.

    Figure 1 Mobile atmospheric parameters measurement system installed at Antarctic Taishan Station.

    3 Measurement methods of Cn2

    For Kolmogorov turbulence, the refractive index structure constant and the temperature structure constant are defined as[11]

    whereTis air temperature (K) andPis air pressure (hPa).Therefore,C2ncan be calculated through Equations (2) and(3) by measuring the square and average of the temperature difference given by two sensors separated by a known distancerin the inertial region. This is called the structure function method of temperature differences between two points.

    The relationship between temperature and wire resistance is

    Thus, the ΔRand ΔTrelationship is

    whereis the resistance at reference temperatureT0andαis the coefficient of thermal resistivity of the wires.

    The two resistance sensors are legs of a Wheatstone bridge that generates a voltage difference ΔVproportional to the temperature difference ΔT:

    Here,Cis the calibration coefficient.

    The principle of micro-thermometer measurement is the same as in the last paragraph.Cn2is deduced from a pair of horizontally separated micro-temperature probes. The frequency response range of the micro-thermometer is 0.1–30 Hz, and the standard deviation of minimum temperatureぼuctuation is < 0.002°C[13].

    The triaxial ultrasonic anemometer measures temperature from transit timest1andt2measured along a known distance path of the anemometer’ probe. The speed of sound in moist air is a function of temperature and humidity. Sonic temperatureTsand air temperatureThave the following relationship[14]:

    Here,t1andt2are the transit times in seconds for sound pulses traveling in opposite directions along acoustic path lengthd, andVnis the magnitude of the horizontal wind vector normal tod.qis specific humidity. In dry conditions,the diference ofTsandTis very small.

    For the temperature fluctuation time series data measured by the ultrasonic anemometer, Taylor’s frozen turbulence hypothesis was used to convert a time series of aぼuctuating quantity into a spatial series of ぼuctuations along the direction of the mean wind. Therefore,is deduced via Equations (9) and (3) by measuring the square and average of the temperature difference between two time points in the inertial region. This method is known as single-point temperature structure function method.

    whereτis the time interval, determined by the average wind speed and the known space length (typically 1 m).

    can be determined by the one-dimensional temperature spectrum of the turbulence inertia region. For Kolmogorov turbulence, the one-dimensional temperature wave number spectrumΨT(k) is wherekis the wave number. For the power spectrum,temporal and spatial frequencies are related byk. It is easy to show that the relationship between the temporal and spatial one-dimensional spectra is

    We can write

    This method is called the single-point temperature spectrum method.

    More generally, the form ofcan be expressed as

    Here,Ais the coefficient related to the generalized temperature structure constantandαis the spectral power law of one dimension. On a logarithmic scale,Equation. 13 is written as

    can be estimated via linear regression.

    4 Measurement results and discussion

    4.1 Comparison of Cn2 between ultrasonic anemometer with single-point temperature structure function method and micro-thermometer

    Figure 2 is an example of derived from the ultrasonic anemometer with structure function analysis and those from micro-thermometer at Taishan Station on 6 January 2014.The sampling frequency of the ultrasonic anemometer was 50 Hz and the average time for calculatingCn2was 20 s. It is seen thatvalues from the ultrasonic anemometer are several times greater than those of the micro-thermometer,sometimes even one order of magnitude greater. The characteristicdiurnal cycle with minima near sunrise(about 0900) and sunset (about 1900) is not obvious. The other time data also have similar characteristics. No matter the order of magnitude and trend ofthe data measured with the single-point temperature structure function method cannot be used to explain thecharacteristics at Taishan Station. However, although the order of magnitude ofCn2measured by the two methods had a few differences from other field experiments[4-6,16], trends were basically the same,with a correlation coefficient > 0.9.

    4.2 Comparison of Cn2 between ultrasonic anemometer with single-point temperature spectrum method and micro-thermometer

    Figure 2 Comparison of Cn2 derived from ultrasonic anemometers with structure function analysis and those from micro-thermometer.

    Using Equations (10)–(12) we measuredCn2by the single-point temperature spectrum method. Triaxial sonic anemometer sampling frequency was 50 Hz and the sampling period was 16.4 min. This yielded 49200 data points per run. A fast Fourier transform was carried out and the power spectrum of 25 Hz was obtained. The power spectrum was smoothed and combined with wind speed, and the approximate inertial range was determined. After the medianCT2of a set of values in the inertial region was calculated by the formula (12),Cn2was obtained. Figure 3 is a comparison ofCn2values derived from the ultrasonic anemometers with spectrum analysis and micro-thermometer, using Figure 2 dataset. In comparison with Figure 2,Cn2values derived from the ultrasonic anemometer with spectrum analysis are closer to those from the micro-thermometer.The former was smoother than the latter, and was only sensitive over 2×10-16m-2/3, but the micro-thermometer was sensitive about 2×10-18m-2/3. To confirm the data reliability by ultrasonic anemometer at Taishan Station in an adverse environment, and the possibility of measuringCn2from ultrasonic anemometer instead of micro-thermometer, we compared both instruments for long time. After abnormal data owing to the broken wire being eliminated, a 23-day dataset was used. Figure 4 is a comparison ofCn2values from spectrum analysis of sonic anemometer data and microthermometer data from 11 January through 2 February 2014.In this dataset, under various meteorological conditions and regardless of day or night, the comparison was satisfactory.

    Figure 3 Comparison of Cn2 derived from ultrasonic anemometers with spectrum analysis and micro-thermometer.

    Figure 4 Comparison of Cn2 derived from ultrasonic anemometers with spectrum analysis and micro-thermometer during field experiment.

    Figure 5 Comparison of Cn2 frequency distribution derived from ultrasonic anemometer with spectrum analysis and micro-thermometer during field experiment.

    Figure 5 compares aCn2frequency distribution from spectrum analysis with the sonic anemometer and microthermometer data on 30 December 2013 to 10 February 2014. Sample numbers were 3446 and 59175, respectively.Table 1 is aCn2frequency distribution from the microthermometer and anemometer in three frequency ranges.In the ?15<lg(Cn2)<?13.8 range, the frequencies of the two are both 78%. Frequencies in the lg(Cn2) > ?13.8 range are 1.7% and 6.9%, respectively, and those in the lg(Cn2) <?15 range are 20.3% and 14.8%. During the experiment, 78%optical turbulence at Taishan Station was concentrated in the range 10?15<Cn2<1.6×10?14. In this range, theCn2frequency distributions of both anemometer and micro-thermometer were consistent. Frequency statistics within the scope of strong and weak turbulence measured by the two instruments had a 6% difference. This may be attributable to smoothing,because the time for those statistics of the ultrasonic anemometer was 16.4 min whereas that for the microthermometer was only 20 s.

    At Taishan Station, the difference ofCn2measured by the single-point temperature structure function method and the sonic anemometer and micro-thermometer is very large. Thismay be related with factors such as spectral characteristics,turbulent multi-scale spatial and temporal structure, and whether the Taylor assumption is valid. A similar result was found in reference[17]. In that work, an aero thermal series from a cold wire probe mounted on an aircraft was analyzed.CT2from the structure function sometimes agreed well with spectral analysis, but sometimes the difference was very large, five times larger than the spectrum analysis results. The author believed that the large differences were in the regionsαwhere deviated from ?5/3, so the structure function estimator was only valid for ?3≤α<?1. For aero-thermal series data to be used in spectral analysis, it is speculated thatCT2must be obtained via the single-point temperature structure function method under the Taylor assumption. To discover whyCn2values from the ultrasonic anemometer were several times larger than those of the micro-thermometer at Taishan Station,it is necessary to determine the power frequency distribution of the temperature spectrum during an experiment. Figure 6 is the frequency distribution of the power law of a onedimensional spectrum. The frequency forα<?1 was 36.2%,and that forα>?1 was 63.8%. That is, there is nearly twothirds of spectral power outside the range ?3≤α<?1, so we cannot use the single-point temperature structure function method to calculateCn2. In addition, during the Taishan Station experiment, average wind speed was 7.7 m·s-1, and the maximum was 16.3 m·s-1. Average wind speed from the literature[4-6,15]was not more than 3 m·s-1, so we should consider that this speed has an impact on the single-point measurement of temperature structure function method.

    Table 1Cn2 frequency distribution derived from spectrum analysis of sonic anemometer and micro-thermometer data

    5 Conclusions

    Atmospheric parameters at Taishan Station from 30 December 2013 through 10 February 2014 were obtained by a mobile measuring system, and these data were analyzed.Cn2derived from the single-point temperature spectrum method with the sonic anemometers and micro-thermometer was compared. In the range ?15 < lg(Cn2) < ?13.8, the frequencies of both were 78%. Frequencies for lg(Cn2) >?13.8 were 1.7% and 6.9%, respectively, and for lg(Cn2) <?15 they were 20.3% and 14.8%. Compared with the microthermometer, results ofCn2measured by the ultrasonic anemometer from the spectrum analysis method were satisfactory in magnitude and trend.

    Figure 6 Frequency distribution of power law of one-dimensional spectrum.

    1 Hou J L. Site testing parameters and their measurements. Prog Astron,1994, 12(2): 126–132 (in Chinese)

    2 Wu X Q. Site testing for ground-based optical telescope. J Anhui Norm Univ (Nat Sci), 2013, 36(5): 414–418 (in Chinese)

    3 Pant P, Stanlin C S, Sagar R. Microthermal measurements of surface layer seeing at Devasthal site. Astron Astrohys Suppl Ser, 1999, 136:19–25

    4 Zhu X T, Wu X Q, Li D Y. Characteristics of ASL turbulence andC2nusing three-dimensional ultrasonic anemometer. J Atmos Environ Opt, 2012, 7(1): 6–12 (in Chinese)

    5 Wu X Q, Zhu X T, Huang H H, et al. Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory. Acta Opt Sinica, 2012, 32(7): 0701004-1–0701004-7(in Chinese)

    6 Tian Q G, Chai B, Wu X Q, et al. A mobile polar atmospheric parameter measurement system. I. Development and performance testing. Chin J Polar Res, 2015, 27(2): 12540–13146 (in Chinese)

    7 Tian Q G, Jiang P, Wu X Q, et al. A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station. Adv Polar Sci, 2015, 26:140-146, doi: 10.13679/j.advps.2015.2.00140

    8 Marks R D. Astronomical seeing from the summits of the Antarctic plateau. Astron Astrophys, 2002, 385(1): 328–336

    9 Aristidi E, Agabi A, Fossat E, et al. Site testing in summer at Dome C,Antarctica. Astron Astrophys, 2005, 444(2): 651–659

    10 Lawrence J S, Ashley M C B, Tokovinin A, et al. Exceptional astronomical seeing conditions above Dome C in Antarctica. Nature,2004, 431(7006): 278–281

    11 Agabi A, Aristidi E, Azouit M, et al. First whole atmosphere nighttime seeing measurements at Dome C, Antarctica. PASP, 2006, 118(840):344–348

    12 Beland R R. Propagation through atmospheric optical turbulence//Smith F G. The infrared and electro-optical systems handbook.Bellingham, WA: SPIE Press, 1993, 2: 161–176

    13 Wu X Q, Zeng Z Y, Rao R Z. Measurement procedure of microthermometer measuring atmospheric optical turbulence.Enterprise Standards of Hefei Institutes of Physical Science Chinese Academy of Sciences, Q/AG 05–2008(in Chinese)

    14 Kaimal J C, Gaynor J E. Another look at sonic thermometry.Boundary-Layer Meteorology, 1991, 56(4): 401-410

    15 Wu X Q, Huang Y B, Mei H P, et al. Measurement of non-Kolmogorov turbulence characteristic parameter in atmospheric surface layer. Acta Opt Sinica, 2014, 34(6): 0601001-1–0601001-6(in Chinese)

    16 Wang P, Wu X Q. Experimental study of effects of humidity fluctuation on the refractive index structure parameter for visible radiation. Acta Opt Sinica, 2014, 7, 34(4): 0401003-1–0401003-4(in Chinese)

    17 Nichols-Pagel G A, Percival D B, Reinhall P G, et al. Should structure functions be used to estimate power laws in turbulence? A comparative study. Phys D-nonlin Phenom, 2008, 237(5): 665–677

    啦啦啦在线免费观看视频4| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 免费观看a级毛片全部| 日韩人妻精品一区2区三区| 黑丝袜美女国产一区| 人人妻人人爽人人添夜夜欢视频| av电影中文网址| 成人三级做爰电影| 后天国语完整版免费观看| 一区二区三区精品91| 美女高潮到喷水免费观看| 日本欧美视频一区| 亚洲成人免费电影在线观看| 大片免费播放器 马上看| 久久人妻av系列| 国产精品偷伦视频观看了| 99re6热这里在线精品视频| 久久精品熟女亚洲av麻豆精品| 国产在线观看jvid| 男女无遮挡免费网站观看| 美女午夜性视频免费| 免费看a级黄色片| 涩涩av久久男人的天堂| 亚洲三区欧美一区| 亚洲精品一卡2卡三卡4卡5卡| 精品少妇一区二区三区视频日本电影| 色播在线永久视频| 日韩中文字幕视频在线看片| 日本vs欧美在线观看视频| 久久久久国产一级毛片高清牌| 99香蕉大伊视频| 日本黄色日本黄色录像| 久久精品国产亚洲av香蕉五月 | 精品国产乱码久久久久久男人| 一区二区日韩欧美中文字幕| 国产一区二区三区视频了| 亚洲av片天天在线观看| 人妻久久中文字幕网| 一区二区三区精品91| 国产一区二区三区在线臀色熟女 | 欧美黄色淫秽网站| 十八禁人妻一区二区| 国产有黄有色有爽视频| 欧美激情 高清一区二区三区| 欧美日韩精品网址| 成年人午夜在线观看视频| 99国产精品一区二区三区| 69精品国产乱码久久久| 18禁美女被吸乳视频| 国产欧美日韩精品亚洲av| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品自拍成人| 国产一卡二卡三卡精品| 91精品三级在线观看| 十八禁网站网址无遮挡| 大陆偷拍与自拍| 男女之事视频高清在线观看| 少妇裸体淫交视频免费看高清 | 夫妻午夜视频| 亚洲伊人久久精品综合| a在线观看视频网站| 天堂中文最新版在线下载| 亚洲精品美女久久av网站| 热99久久久久精品小说推荐| 波多野结衣av一区二区av| 欧美精品啪啪一区二区三区| 一本大道久久a久久精品| 欧美日韩精品网址| 18禁观看日本| 人人妻,人人澡人人爽秒播| 精品福利观看| 亚洲专区字幕在线| 亚洲色图av天堂| av国产精品久久久久影院| 久久久久久久久免费视频了| 亚洲欧美日韩高清在线视频 | 男人舔女人的私密视频| 热99国产精品久久久久久7| 中文亚洲av片在线观看爽 | 欧美久久黑人一区二区| 国产麻豆69| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区黑人| 国产午夜精品久久久久久| 国产高清激情床上av| 韩国精品一区二区三区| 一级片'在线观看视频| 欧美乱妇无乱码| 黄色视频,在线免费观看| 亚洲精品美女久久av网站| 性高湖久久久久久久久免费观看| 极品教师在线免费播放| 亚洲人成77777在线视频| 国产不卡av网站在线观看| 在线观看一区二区三区激情| 亚洲国产看品久久| 亚洲 国产 在线| 中文亚洲av片在线观看爽 | 国产av国产精品国产| 熟女少妇亚洲综合色aaa.| 久久香蕉激情| 欧美日韩福利视频一区二区| 精品国产一区二区久久| 国产精品九九99| 欧美激情 高清一区二区三区| 久久久国产一区二区| 五月开心婷婷网| 成人18禁高潮啪啪吃奶动态图| 免费观看a级毛片全部| 国产成人精品无人区| 久久中文字幕人妻熟女| av视频免费观看在线观看| 国产xxxxx性猛交| 午夜福利一区二区在线看| 中文字幕人妻丝袜一区二区| 日韩三级视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 国产一区二区三区综合在线观看| 国产成人精品久久二区二区91| 91精品三级在线观看| 亚洲精品美女久久av网站| 国产午夜精品久久久久久| 久久人妻福利社区极品人妻图片| 国产成人精品久久二区二区91| 国产黄频视频在线观看| 一区二区av电影网| 久久久久久久精品吃奶| 国产av精品麻豆| 人人妻人人爽人人添夜夜欢视频| 巨乳人妻的诱惑在线观看| 少妇粗大呻吟视频| 97人妻天天添夜夜摸| 91九色精品人成在线观看| 日日爽夜夜爽网站| 制服人妻中文乱码| 成年女人毛片免费观看观看9 | 欧美亚洲日本最大视频资源| 在线十欧美十亚洲十日本专区| 真人做人爱边吃奶动态| 脱女人内裤的视频| 正在播放国产对白刺激| 国产亚洲欧美精品永久| 国产麻豆69| 亚洲成国产人片在线观看| 亚洲国产欧美在线一区| 欧美日韩福利视频一区二区| 国产有黄有色有爽视频| 91av网站免费观看| 青草久久国产| 亚洲国产欧美一区二区综合| 少妇裸体淫交视频免费看高清 | 不卡av一区二区三区| 亚洲av成人一区二区三| 99精品在免费线老司机午夜| 青青草视频在线视频观看| 制服人妻中文乱码| 国产成人av激情在线播放| 午夜久久久在线观看| 男女高潮啪啪啪动态图| 午夜免费鲁丝| 搡老熟女国产l中国老女人| 国产精品亚洲一级av第二区| 老司机深夜福利视频在线观看| 美国免费a级毛片| 男男h啪啪无遮挡| 真人做人爱边吃奶动态| 黄色成人免费大全| 午夜视频精品福利| 老汉色∧v一级毛片| 亚洲av成人不卡在线观看播放网| 黄网站色视频无遮挡免费观看| 国产一区二区三区视频了| 免费看a级黄色片| a级片在线免费高清观看视频| 午夜福利在线免费观看网站| 最近最新中文字幕大全免费视频| 欧美精品人与动牲交sv欧美| 日本av免费视频播放| e午夜精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲第一欧美日韩一区二区三区 | 搡老熟女国产l中国老女人| 水蜜桃什么品种好| 国产深夜福利视频在线观看| 精品人妻在线不人妻| 少妇精品久久久久久久| 免费黄频网站在线观看国产| 亚洲美女黄片视频| videos熟女内射| 丁香六月天网| 丝袜喷水一区| 国产成人系列免费观看| 在线观看一区二区三区激情| 日韩视频在线欧美| 美女午夜性视频免费| 国产精品.久久久| 欧美日韩亚洲综合一区二区三区_| 捣出白浆h1v1| 性高湖久久久久久久久免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲欧美精品综合一区二区三区| 国产精品亚洲一级av第二区| 女人被躁到高潮嗷嗷叫费观| 精品视频人人做人人爽| 19禁男女啪啪无遮挡网站| 精品福利永久在线观看| 电影成人av| 亚洲av欧美aⅴ国产| 日本av免费视频播放| 2018国产大陆天天弄谢| 亚洲精品国产色婷婷电影| 一本综合久久免费| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 啦啦啦 在线观看视频| 国产在线免费精品| 午夜福利在线免费观看网站| 少妇裸体淫交视频免费看高清 | 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 天天操日日干夜夜撸| 久久天躁狠狠躁夜夜2o2o| 青草久久国产| 视频区图区小说| 国产单亲对白刺激| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 日韩中文字幕欧美一区二区| 欧美日韩亚洲高清精品| 国产深夜福利视频在线观看| 国产一区有黄有色的免费视频| 欧美黄色片欧美黄色片| 大型av网站在线播放| 亚洲一区二区三区欧美精品| 国产成人一区二区三区免费视频网站| 国产极品粉嫩免费观看在线| 成人三级做爰电影| 中文字幕最新亚洲高清| 天天躁日日躁夜夜躁夜夜| 动漫黄色视频在线观看| 另类亚洲欧美激情| 露出奶头的视频| 男女之事视频高清在线观看| 一级,二级,三级黄色视频| 成年人黄色毛片网站| 免费不卡黄色视频| 欧美大码av| 亚洲欧美一区二区三区久久| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三区在线| 啦啦啦免费观看视频1| 一二三四社区在线视频社区8| 亚洲av电影在线进入| 一边摸一边抽搐一进一小说 | 国产精品久久久久久人妻精品电影 | 在线观看人妻少妇| 深夜精品福利| 国产有黄有色有爽视频| 欧美乱妇无乱码| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 国产日韩欧美视频二区| 国产亚洲精品第一综合不卡| 黄色视频不卡| 麻豆国产av国片精品| 成人18禁高潮啪啪吃奶动态图| 国产老妇伦熟女老妇高清| 日韩欧美国产一区二区入口| 美女午夜性视频免费| 十八禁网站免费在线| 免费看十八禁软件| www.熟女人妻精品国产| 美国免费a级毛片| 国产av一区二区精品久久| 99在线人妻在线中文字幕 | 精品少妇黑人巨大在线播放| 叶爱在线成人免费视频播放| 国产黄色免费在线视频| 18禁黄网站禁片午夜丰满| 久久久国产一区二区| 啦啦啦在线免费观看视频4| 变态另类成人亚洲欧美熟女 | 亚洲专区国产一区二区| 99re在线观看精品视频| 男女下面插进去视频免费观看| av网站在线播放免费| 精品国产国语对白av| 一边摸一边抽搐一进一出视频| 久久婷婷成人综合色麻豆| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区 | av电影中文网址| 建设人人有责人人尽责人人享有的| 女人高潮潮喷娇喘18禁视频| 1024香蕉在线观看| 国产伦人伦偷精品视频| 欧美日韩视频精品一区| 国产精品久久电影中文字幕 | 国产免费福利视频在线观看| 女性生殖器流出的白浆| 欧美激情高清一区二区三区| 国产福利在线免费观看视频| 黑丝袜美女国产一区| 大片电影免费在线观看免费| 欧美成人午夜精品| 好男人电影高清在线观看| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠躁躁| 自线自在国产av| 他把我摸到了高潮在线观看 | av免费在线观看网站| 一二三四社区在线视频社区8| 大型av网站在线播放| 国产一区二区在线观看av| 两个人看的免费小视频| 我要看黄色一级片免费的| 女人被躁到高潮嗷嗷叫费观| 少妇被粗大的猛进出69影院| 国产有黄有色有爽视频| 热99re8久久精品国产| 最近最新中文字幕大全电影3 | 热re99久久精品国产66热6| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区| 亚洲人成伊人成综合网2020| 亚洲av成人一区二区三| 乱人伦中国视频| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www | 日韩免费av在线播放| 国产一区二区激情短视频| 十分钟在线观看高清视频www| 亚洲成人手机| av在线播放免费不卡| 国产黄频视频在线观看| 国产成人精品久久二区二区免费| 精品国产亚洲在线| 亚洲av电影在线进入| 成年女人毛片免费观看观看9 | 久久人妻av系列| 在线观看人妻少妇| 久久久久国内视频| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 色综合欧美亚洲国产小说| 高清欧美精品videossex| 啦啦啦免费观看视频1| 午夜福利免费观看在线| 亚洲一区二区三区欧美精品| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 十八禁高潮呻吟视频| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 精品一区二区三区av网在线观看 | 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| 久久天堂一区二区三区四区| 国产精品 国内视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区久久| 国产在线观看jvid| 一级,二级,三级黄色视频| 国产av国产精品国产| 丁香六月天网| 视频在线观看一区二区三区| 岛国毛片在线播放| 性少妇av在线| 手机成人av网站| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 一级毛片女人18水好多| 久久久精品区二区三区| 国产午夜精品久久久久久| 性少妇av在线| 欧美激情久久久久久爽电影 | 不卡一级毛片| 亚洲,欧美精品.| 又大又爽又粗| 国产精品一区二区在线不卡| 黄色成人免费大全| 国产免费av片在线观看野外av| 老鸭窝网址在线观看| 午夜久久久在线观看| 水蜜桃什么品种好| 考比视频在线观看| 久久精品成人免费网站| 亚洲欧洲精品一区二区精品久久久| 欧美精品亚洲一区二区| 两个人免费观看高清视频| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 激情在线观看视频在线高清 | 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 成年版毛片免费区| 日韩精品免费视频一区二区三区| 亚洲国产精品一区二区三区在线| 正在播放国产对白刺激| 侵犯人妻中文字幕一二三四区| av在线播放免费不卡| 久久精品91无色码中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产一区二区精华液| 建设人人有责人人尽责人人享有的| 高清视频免费观看一区二区| av网站在线播放免费| 亚洲欧美激情在线| 五月开心婷婷网| 国产精品美女特级片免费视频播放器 | 国产91精品成人一区二区三区 | 亚洲五月色婷婷综合| 国产高清激情床上av| 久久亚洲真实| 国产日韩一区二区三区精品不卡| 日本黄色视频三级网站网址 | 在线观看免费视频网站a站| 中国美女看黄片| 高潮久久久久久久久久久不卡| 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 亚洲国产欧美网| 国产在线观看jvid| 两性夫妻黄色片| 亚洲av片天天在线观看| 自线自在国产av| 国产一区二区三区在线臀色熟女 | 韩国精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲专区国产一区二区| 一个人免费在线观看的高清视频| 中文字幕最新亚洲高清| 日韩成人在线观看一区二区三区| 亚洲人成电影观看| 色播在线永久视频| 1024香蕉在线观看| 中文字幕色久视频| 嫩草影视91久久| 一边摸一边抽搐一进一小说 | 一级毛片女人18水好多| av欧美777| 亚洲第一欧美日韩一区二区三区 | www.自偷自拍.com| av网站免费在线观看视频| 天堂8中文在线网| 免费少妇av软件| bbb黄色大片| 亚洲中文字幕日韩| 十八禁网站网址无遮挡| 国产成人免费观看mmmm| 少妇 在线观看| 亚洲九九香蕉| 怎么达到女性高潮| 久久亚洲精品不卡| 99热网站在线观看| 每晚都被弄得嗷嗷叫到高潮| 超色免费av| www日本在线高清视频| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 999久久久国产精品视频| 欧美激情高清一区二区三区| 国产99久久九九免费精品| 欧美激情 高清一区二区三区| 2018国产大陆天天弄谢| 日本黄色视频三级网站网址 | 热99久久久久精品小说推荐| 最新在线观看一区二区三区| 国产在线一区二区三区精| 最近最新免费中文字幕在线| 国精品久久久久久国模美| 国产在线观看jvid| 中文欧美无线码| 成人永久免费在线观看视频 | 91精品国产国语对白视频| 丁香欧美五月| 香蕉国产在线看| 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网| 中文欧美无线码| 欧美成人午夜精品| 老司机影院毛片| 欧美精品av麻豆av| 日本五十路高清| 国产黄色免费在线视频| 99久久99久久久精品蜜桃| 午夜福利一区二区在线看| 视频区图区小说| 黄色成人免费大全| 精品久久久久久久毛片微露脸| 免费在线观看日本一区| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 777久久人妻少妇嫩草av网站| 成人影院久久| 在线观看一区二区三区激情| 亚洲人成电影免费在线| 国产精品一区二区精品视频观看| 黑丝袜美女国产一区| 精品一区二区三区av网在线观看 | 亚洲精品一二三| 国产男女内射视频| 亚洲精品在线观看二区| 最新的欧美精品一区二区| 亚洲成人手机| 在线永久观看黄色视频| 91麻豆av在线| 日韩成人在线观看一区二区三区| 精品免费久久久久久久清纯 | 久久精品国产99精品国产亚洲性色 | 成人黄色视频免费在线看| 欧美国产精品va在线观看不卡| 天堂动漫精品| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 嫁个100分男人电影在线观看| 老司机深夜福利视频在线观看| 日本黄色日本黄色录像| 午夜成年电影在线免费观看| 99久久人妻综合| 日本av免费视频播放| 手机成人av网站| 黄色视频,在线免费观看| 91老司机精品| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久国产电影| 电影成人av| a级毛片黄视频| 免费观看av网站的网址| 久久精品国产综合久久久| 五月开心婷婷网| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 我的亚洲天堂| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 久久亚洲精品不卡| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 电影成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 美女国产高潮福利片在线看| 99国产精品一区二区蜜桃av | 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 五月天丁香电影| 69av精品久久久久久 | 国产精品av久久久久免费| 色综合婷婷激情| 成人免费观看视频高清| 我的亚洲天堂| 99re6热这里在线精品视频| 久久热在线av| 亚洲第一青青草原| 国产日韩一区二区三区精品不卡| 国产免费av片在线观看野外av| 亚洲avbb在线观看| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 视频区图区小说| 午夜精品国产一区二区电影| 欧美成狂野欧美在线观看| 一边摸一边做爽爽视频免费| 久久久久国内视频| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 国产精品熟女久久久久浪| 久久中文字幕一级| 精品国产国语对白av| 成在线人永久免费视频| 咕卡用的链子| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 极品教师在线免费播放| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久 成人 亚洲| 亚洲精品国产精品久久久不卡| 久久久久久久久免费视频了| 黄片小视频在线播放| 最近最新中文字幕大全电影3 | 国产伦理片在线播放av一区| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 午夜福利在线观看吧| 黑人操中国人逼视频| 80岁老熟妇乱子伦牲交| 中文字幕色久视频| 日韩欧美国产一区二区入口| 久久久久国内视频| 9热在线视频观看99| 天天操日日干夜夜撸| 下体分泌物呈黄色| 天天操日日干夜夜撸| 成年版毛片免费区| 一级片免费观看大全| 国产精品久久久久久精品电影小说| 高清黄色对白视频在线免费看| 女性被躁到高潮视频| 精品福利永久在线观看|