• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The various substrates of Usnea aurantiaco-atra and its algal sources in the Fildes Peninsula, Antarctica

    2015-02-06 07:16:39CAOShunanZHENGHongyuanLIUChuanpengTIANHuiminZHOUQimingZHANGFang
    Advances in Polar Science 2015年4期

    CAO Shunan, ZHENG Hongyuan, LIU Chuanpeng, TIAN Huimin, ZHOU Qiming,5* & ZHANG Fang*

    1 SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China;

    2 College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;

    3 School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China;

    4 Medical Faculty of Chifeng University, Chifeng 024000, China;

    5 Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

    1 Introduction

    Lichen is a typical symbiotic association, comprising the lichenized fungus (mycobiont) and its photosynthetic partner(alga or cyanobacterium, photobiont). In this symbiosis,the photobiont provides carbon sources, such as polybasic alcohol (green algae) or glucose (cyanobacteria) by photosynthesis activity[1–3], and the mycobiont protects its photosynthetic partner from strong radiation and desiccation by enveloping the algae cells. In the lichen thallus, the sexual reproduction of the photobiont is inhibited[4]or suppressed[5].However, the mycobiont has various ways of reproducing,such as by vegetative propagation (soredia or segment of the thallus), by a sexual procedure (the ascospores), or by an asexual method (the conidiospores). The ascospores of fungi must meet and recognize their compatible photobiont partner before they form a stabilized relationship developing into lichen thalli. This process is known as “l(fā)ichenization”.The sources of lichenized algae have attracted considerable attention because free photobionts are very rare in nature[6].

    About 17500 lichenized fungi have been identified[7],but only 200 photosynthetic partners have been reported based on morphological studies (100 green algae and 100 cyanobacteria)[8]. This means that many different lichens must harbor the same photobiont. Conversely, some lichenized fungi may incorporate different algae as their photobionts[9-10],and it is believed that the mycobionts are able to adapt to various environments in this way[11-12].

    There are two ぼowering plants, 104 mosses and about 427 lichens in Antarctica[13]. In the Fildes Peninsula, where the Great Wall Station is located, about 120 lichens have been reported (http://www.aari.aq/kgi/Vegetation/lst_lichens.html), of which the most dominant species is the fruticose lichenUsnea aurantiaco-atra(Jacq.) Bory. Most individuals of this species grow on rock, have erect and strong thalli,and apothecia; the minority grow with mosses, have thin and flattened thalli, and without apothecia.Umbilicaria antarcticaFrey & I. M. Lamb, whose diameter could reach 20 cm, was the most abundant foliose lichen in this area.Lichen substrates provide the micro-environment for their survival and have some specificity[14]. For example, all species in the genusUmbilicariaHoffm. were found to grow on rocks exceptU. yunnana(Nyl.) Hue; besides, wood is rarely also the substrate for someUmbilicarialichens under harsh environmental conditions[15-16].

    Antarctica is an ideal area for the study of the recognition and association between mycobionts and photobionts. During the 27th and 28th Chinese National Antarctic Research expeditions (CHINARE), a fewUsnea aurantiaco-atraindividuals were found growing on the lichenUmbilicaria antarcticaand on wood. This provides a new insight in understanding the lichenization process.

    ITS rDNA is one of the most widely used molecular markers in taxonomy, systematics and phylogenetics[17–19], and has been used as a DNA barcodes marker[20]. ITS rDNA was used to identify and analyze the phylogenetics of symbionts fromUmbilicaria antarcticaandUsnea aurantiaco-atrain Fildes Peninsula, Antarctica. Our study clarified the algal source in lichenization, and revealed the ecological function of the substratum preference.

    2 Materials and Methods

    2.1 Materials

    2.1.1 Sampling

    During the 27th and 28th CHINAREs, seven typicalUsnea aurantiaco-atraindividuals (two growing on rock, two on wood, two with moss and one onUmbilicaria antarctica)and sevenUmbilicaria antarcticaindividuals (Table 1)were collected in the Fildes Peninsula and Ardley Island,Antarctica. Fragments of thalli (200–500 mg) from 280 (on rock) and 104 (with moss) individuals ofUsnea aurantiacoatrawere gathered for molecular phylogenetic analysis. The sampling sites were marked using Google Earth 7.1.2.2041(Google Inc., USA) (Figure 1).

    2.2 Methods

    2.2.1 Morphology

    Typical individuals ofUsnea aurantiaco-atra(with wellgrown thalli and clear features such as apothecia or soredia)and the special individuals (growing on other substrates such as woods or other lichens), together withUmbilicaria antarcticaindividuals, were photographed and collected. The morphological features were investigated using a SMZ–168 stereo zoom microscope (Motic China Group Co., LTD.) in the Scientific Research Building of the Great Wall Station.

    Table 1 Samples used in this study

    Figure 1 Map of sampling locations.: Usnea aurantiaco-atra thalli fragments;: U. aurantiaco-atra on rock;: U. aurantiaco-atra on moss;: U. aurantiaco-atra on wood;: U. aurantiaco-atra on thallus of Umbilicaria antarctica;: Umbilicaria antarctica.

    2.2.2 Extraction of total DNA

    Total DNA was extracted using a modified CTAB Method[21]from the 14 morphologically inspected samples (sevenUmbilicaria antarcticaand sevenUsnea aurantiaco-atra)and 384U. aurantiaco-atracollected with a small amount of their thalli

    2.2.3 ITS rDNA Amplification

    The primer pairs ITS5 (5′–GGAAGTAAAAGTCGTAACAA GG–3′)/ITS4 (5′–TCCTCCGCTTAT TGATATGC–3′)[22]and nrSSU–1780–5′(5′–CTGCGGAAGGATCATTGATTC–3′) /nr LSU–0012–3′ (5′–AGTTCAGCGGGTGGTCTTG–3′)[4]were used to amplify ITS rDNA regions from the mycobiont and photobiont, respectively. PCR reactions were performed in a 50 μL reaction volume (100 ng of DNA template, 200 nM of each primer, 400 nMdNTP, 1×buffer,1 U of rTaq) as follows: an initial denaturation at 95°C for 5 min, followed by 33 cycles of 95°C for 30 s, 52°C for 30 s, 72°C for 2 min, and completed with an extra extension at 72°C for 10 min.

    2.2.4 Gel electrophoresis

    The PCR product of each sample was detected in 1.2%agarose gel electrophoresis with DL2000 DNA Marker(Takara Biotechnology Co., Ltd., Dalian, China) as the marker.

    2.2.5 Sequencing of the PCR product

    PCR products were purified using E.Z.N.A.?Gel Extraction Kit (Omega Bio-tek Inc., USA). The products for those listed in Table 1 were bi-directionally sequenced using ABI3730XL. The PCR products from those samples collected in small amounts were digested with Sau3AI and detected by electrophoresis. Based on the electrophoresis results,products from 27 mycobionts and 24 photobionts were selected arbitrarily and sequenced.

    2.2.6 Alignment and phylogenetic analysis

    Sequences were assembled with Lasergene SeqMan Pro(DNASTAR, Inc., USA) and corrected manually, and then aligned using ClustalW in Mega 5.10[23-24]. The phylogenetic analysis was executed with Mega 5.10 software, and the Kimura-2 parameter was selected as the nucleotide substitution model. The maximum likelihood (ML)method was used to construct the phylogenetic tree and the reliability of the inferred tree was tested by 1000 bootstrap replications[25].

    3 Results

    3.1 Morphology and attachment

    Usnea aurantiaco-atraindividuals growing on rock(Figure 2a), with moss (Figures 2b, 2c), on wood (Figure 2d)or onUmbilicaria antarctica(Figure 2e–2f) were inspected,and specimens were stored in the Resource-sharing Platform of Polar Samples (BIRDS) (Table 1). In general, apothecia were observed on the thalli of those attached to rocks(Figure 2a). Rare apothecia could be observed from those associated with mosses, both those growing on spalls beneath mosses (Figure 2b), and the others with moss but without any attachment (Figure 2c). Specially, there were no apothecia on thoseUsnea aurantiaco-atraindividuals growing on wood (Figure 2d) or on the lichenUmbilicaria antarctica(Figure 2e–2f).

    Figure 2Usnea aurantiaco-atra on different substrates. a, on rock; b, with moss, growing on spall; c, with moss, no attachment; d, on wood; e–f, on Umbilicaria antarctica thallus.

    3.2 ITS Sequences analysis

    The ITS rDNA region of sevenUsnea aurantiaco-atraand sevenUmbilicaria antarcticawas sequenced and submitted to GenBank (Table 1). PCR-RFLP (restriction fragment length polymorphism) was used to analyze the genotypes for 384Usnea aurantiaco-atraindividuals (280 on rock,104 with moss) distributed around the Fildes Peninsula.The electrophoresis result showed that the genotypes for mycobionts or photobionts fromUsnea aurantiacoatrawere identical (result not shown here). Therefore, 27 mycobiont PCR products (F01-F27, GenBank Accession Nos. KR053321–KR053347) and 24 photobiont PCR products (A01–A24, GenBank Accession Nos. KR053362–KR053385) were selected randomly to be sequenced.

    Based on the phylogenetic analysis of the mycobiont ITS rDNA, there were minimum differences withinUsnea aurantiaco-atraorUmbilicaria antarctica. The ML tree based on mycobiont ITS rDNA sequences showed these two lichen species were supported well with high bootstrap values (96%forUsnea aurantiaco-atraand 99% forUmbilicaria antarctica)(Figure 3a).Usnea aurantiaco-atraindividuals were unable to form monophyletic groups based on their substrates. For the photobiont, all the samples were clustered withTrebouxia jamesii(Hildreth & Ahmadjian) G?rtner (Figure 3b) by a bootstrap value of 99%, which meant that all photobionts in our study wereT. jamesii. The results also demonstrated that some photobionts fromUsnea aurantiaco-atraandUmbilicaria antarcticacould share the same genotype. For example, ITS genotypes of AG282, AG236 and AG247 (fromUsnea aurantiaco-atra) and those of AG041 and AG035 (fromUmbilicaria antarctica) were identical (Figure 3b).

    Figure 3 ML trees based on ITS rDNA sequences of mycobiont (a) and photobiont (b). The numbers in each node represent bootstrap support values. Only bootstrap values higher than 50% are indicated. : on rock; ■: on moss;▲: on wood; : on thallus of Umbilicaria antarctica. Italic font indicates the sequences obtained by the authors.

    4 Discussion

    As the dominant organism in extreme terrestrial environments,lichen is able to adapt to various harsh conditions[26–28]. The symbiotic relationship between mycobiont and photobiont plays an important role in lichen’s adaptability. Hence the key process allowing lichen to spread to novel habitats,especially for those dispersing by ascospores, is the obtaining by the mycobiont of its compatible photobiont.

    Nearly 20%–40% of bare ground (not covered by permanent snow) in the Fildes Peninsula, Antarctica, is covered by lithophilousUsnea aurantiaco-atra[26], classified in theUsneasubgenusNeuropogon. During the investigation at the Great Wall Station, we found that some individuals ofU. aurantiaco-atracould grow on wood, and even on other lichen thalli. The species provided the ideal materials to reveal the sources of the photobiont in lichenization. Generally,the substrate ofU. aurantiaco-atrawas rock[27], but our researches suggested that this lichen species was not strictly substrate-dependent (Figures 2d–2f). Two growth forms were reported forU. aurantiaco-atra[29]: Individuals of form I grew on rock and had erect branches and apothecia (Figure 2a);those of form II grew with mosses and had prostrate branches,but noapothecia (Figure 2b–2c). The individuals growing with mosses were attached to spalls beneath the mosses in most cases, and those without connection to spalls(Figure 2c) were thought to have been split away from rocks.At the Great Wall Station, it was recorded that the annual mean wind speed was 7.3 m·s-1, there were 137 d with galeforce winds and the fastest wind speed reached 35 m·s-1[30].Individuals belonging to forms I or II would have had to adapt to the windy environment of Fildes Peninsula through attaching to either rocks or to mosses, to prevent them from being blown away to drift into the ocean.

    TwoUsneaspecies had been reported from this region,U. aurantiaco-atrahaving apothecia but no soredia, andU.antarcticaDu Rietz having soredia but no apothecia[31-32].Recently, phylogenetic study suggested thatU. aurantiacoatraandU. antarcticacannot be distinguished at molecular level as they share the same ITS genotype, and thatU.antarcticashould be treated a synonym ofU. aurantiacoatra[33]. Therefore,U. aurantiaco-atraandU. antarcticawere not treated as separate species in present study.

    PCR-RFLP was performed in our study in addition to morphological identification. The results showed that the difference for the ITS rDNA region among mycobionts or photobionts ofU. aurantiaco-atrawas very small, so only a minority of PCR products (27 for mycobionts and 24 for photobionts) were sequenced, representing 384 samples collected in a small amount. The sequencing results showed that there were 0–4 bps discrepancy among mycobionts and 0–10 polymorphism sites in photobiont sequences. The unique sequence suggested that randomly sequenced PCR products could have reぼected the local genetic background ofU. aurantiaco-atrain this region.

    TheU. aurantiaco-atraindividuals growing on wood and on lichen thalli (Figure 2d–2f) were observed during the 27th and 28th CHINAREs at the Great Wall Station.No distinction was detected at molecular level among some individuals growing on lichenUmbilicaria antarctica(AG282), on wood (AG235, AG236) and on rock (AG251,AG297, F01-F27) according to the mycobiont ITS rDNA analysis (Figure 3a). The photobionts ofUsnea aurantiacoatraandUmbilicaria antarcticaall belonged to the same algal speciesT. jamesii(Figure 3b). BecauseUsnea aurantiaco-atrawas the dominant lichen in the Fildes Peninsula, the dominant photobiont species wasT. jamesiihere. The same photobiont genotype was observed forU. aurantiaco-atragrowing on different substrates; furthermore,U. aurantiaco-atraandUmbilicaria antarcticacould share the same photobiont genotype, which indicated that there was an algae pool from which lichenized fungi could obtain their photobionts.

    The algae pool suggests one lichen could capture its photobiont from the thallus of another lichen. SomeUsnea aurantiaco-atrahas the same photobiont as those inUmbilicaria antarctica, which confirmed that these two lichen species shared the same algae pool. Molecular data showed that the ITS rDNA sequences of the mycobionts fromUmbilicaria antarctica(AG017, AG019, AG023, AG024,AG038 and AG041) were identical, and their photobionts were all from the same species,T. jamesii, although a few variance sites existed in the ITS rDNA region. The result was fully consistent with that of the latest pyrosequencing of Antarctic lichens[34]. It could be inferred that the photobiont ofUmbilicaria antarctica, on whose thallusUsnea aurantiacoatra(AG282) was growing, should also be the same as that of AG282. However, theUmbilicaria antarcticaindividual had died, and so information from its photobiont could not be obtained directly. Ascospores fromUsnea aurantiacoatrawere able to germinate on the thallus ofUmbilicaria antarctica, capture its photobiont and finally form a lichen thallus. Individuals ofUsnea aurantiaco-atragrowing on wood might undergo a similar progress. Free-living photobionts are very rare in nature, but the photobionts could be released from vegetation fragments and survive for a short time[35]. Our research implied that free-living photobiont was present in the Fildes Peninsula, especially on wood surfaces,because no other lichens were observed on the wood.

    Meanwhile,Usnea aurantiaco-atragrowing with mosses, was the dominant organism in the Ardley Island.More attention should be paid to the mosses growing withU. aurantiaco-atrato elucidate the process of succession between these two organisms, and to examine whether there is a specific relationship between lichen and moss.

    Our findings, especially the discovery ofU. aurantiacoatragrowing onUmbilicaria antarctica, provided evidence for photobionts transferring directly between lichens. TheUsnea aurantiaco-atrafound on wood also confirmed there was free-livingT. jamesiiin the Fildes Peninsula, because there were no other lichens on the wood. There is a possibility that the thalli ofU. aurantiaco-atraon wood or other lichens were from vegetable structures such as soredia, and this could not be excluded completely. However, the unique fungal ITS genotypes for AG238 (on wood) and AG282 (onUmbilicaria antarctica) strongly implied that they had passed through a process of sexual reproduction so that their fungal ITS sequences were not in accordance to those growing on rocks.This meant that ascospores had captured the algal partner on substrates other than rocks.

    There are multiple algal species in the Fildes Peninsula,but only one species was found accompanying the dominant lichen speciesUsnea aurantiaco-atra. This indicates that this algal species has adapted to the micro-environment,becoming the preponderant lichenized algae. The various substrates ofU. aurantiaco-atraindicated that the sources of its photobiont were not unique; the alga in a new thallus could be obtained from the parental thallus, from other lichens or from the environment. Some works have demonstrated that the decrease in selectivity of the mycobiont to its photobiont may be helpful for lichen surviving in extreme environments because mycobionts could form a lichen thallus with a broad range of photobionts to survive[10,13,36]. However, the decreased selectivity ofU. aurantiaco-atrato the substrates is also a strategy to survive in harsh environments. For example, some lichens belonging to the genusUmbilicaria, found growing on rocks, can also inhabit wood[37].

    In summary, morphology and molecular analysis demonstrated the available photobiont sources, and confirmed that there was an algae pool in this area. This provides real insight into the growth ofUsnea aurantiaco-atraon various substrates, which in turn will help us to understand the distribution of photobionts, photobiont transfer mechanisms and the process of lichenization.

    AcknowledgementOur research was facilitated by the Resource-sharing Platform of Polar Samples (http://birds.chinare.org.cn/) where information on lichens and data are stored. We are grateful to the Chinese Arctic and Antarctic Administration for its help in carrying out the project in the Great Wall Station during the 27th and 28th CHINAREs. This research was supported by State Oceanic Administration, P. R. China (Grant nos. 10/11 GW06, 2011GW12016), and the National Natural Science Foundation of China (Grant nos. 31000010, 31270118, 41206189).

    1 Smith D C, Douglas A E. The biology of symbiosis. London, UK:Edward Arnold, 1987

    2 Feige G B, Jensen M. Basic carbon and nitrogen metabolism of lichens//Reisser W. Algae and symbioses: plants, animals, fungi,viruses, interactions explored. Bristol, UK: Biopress, 1992: 277–299

    3 Nash T H III. Lichen biology. 2nd edn. Cambridge UK: Cambridge University Press, 2008

    4 Piercey-Normore M D, DePriest P T. Algal switching among lichen symbioses. Am J Bot, 2001, 88(8): 1490–1498

    5 Sanders W B, Moe R L, Ascaso C. The intertidal marine lichen formed by the pyrenomycete fungusVerrucaria tavaresiae(Ascomycotina)and the brown algaPetroderma maculiforme(Phaeophyceae): thallus organization and symbiont interaction. Am J Bot, 2004, 91(4): 511–522

    6 Back A, Friedl T, Rambold G. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol, 1998, 139(4): 709–720

    7 Kirk P M, Cannon P F, Minter D W, et al. Dictionary of the Fungi.10th edn. Wallingford, UK: CAB International, 2008

    8 Tschermak-Woess E. The algal partner//Galun M. CRC handbook of lichenology. Florida, USA: CRC Press, 1988: vol. I

    9 Yahr R, Vilgalys R, DePriest P T. Geographic variation in algal partners ofCladonia subtenuis(Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol, 2006, 171(4): 847–860

    10 Muggia L, Pérez-Ortega S, Kopun T, et al. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot, 2014, 114(3): 463–475

    11 Kosugi M, Shizuma R, Moriyama Y, et al. Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol, 2014, 166(1): 337–348

    12 Werth S, Sork V L. Ecological specialization inTrebouxia(Trebouxiophyceae) photobionts ofRamalina menziesii(Ramalinaceae) across six range-covering ecoregions of western North America. Am J Bot,2014, 101(7): 1127–1140

    13 Engelen A, Convey P, Ott S. Life history strategy ofLepraria borealisat an Antarctic inland site, Coal Nunatak. Lichenologist, 2010, 42(3):339–346

    14 Wang L Y, Wang H, Xu R S, et al. Analysis on lichen studies history of Anhui Province. Res Environ Yangtze Basin, 2014, 23(8): 1072–1080 (in Chinese)

    15 S?chting U. Lignicolous species of the lichen genusCaloplacafrom Svalbard. Opera Bot, 1989, 100: 241–257

    16 Vondrák J, Li?ka J. Changes in distribution and substrate preferences of selected threatened lichens in the Czech Republic. Biologia, 2010,65(4): 595–602

    17 Beiggi S, Piercey-Normore M D. Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species ofCladoniasect.Cladonia(Cladoniaceae, Ascomycotina). J Mol Evol, 2007, 64(5): 528–542

    18 Fernández-Mendoza F, Domaschke S, García M A, et al. Population structure of mycobionts and photobionts of the widespread lichenCetraria aculeata. Mol Ecol, 2011, 20(6): 1208–1232

    19 Werth S, Sork V L. Identity and genetic structure of the photobiont of the epiphytic lichenRamalina menziesiion three oak species in southern California. Am J Bot, 2010, 97(5): 821–830

    20 Kelly L J, Hollingsworth P M, Coppins B J, et al. DNA barcoding of lichenized fungi demonstrates high identification success in a ぼoristic context. New Phytol, 2011, 191(1): 288–300

    21 Zhou Q M, Guo S Y, Huang M R, et al. A study of the genetic variability ofRhizoplaca chrysoleucausing DNA sequences and secondary metabolic substances. Mycologia, 2006, 98(1): 57–67

    22 White T J, Bruns T, Lee S S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis M A, Gelfand D H, Sninsky J J. PCR protocols: a guide to methods and applications. London: Academic Press, Inc., 1990: 315–322

    23 Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17(12):1244–1245

    24 Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28(10): 2731–2739

    25 Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4): 783–791

    26 Casanovas P, Lynch H J, Fagan W F, et al. Understanding lichen diversity on the Antarctic Peninsula using parataxonomic units as a surrogate for species richness. Ecology, 2013, 94(9): 2110

    27 ?vstedal D O, Smith R I L. Lichens of Antarctica and South Georgia:a guide to their identification and ecology. Cambridge UK: Cambridge University Press, 2001

    28 Pérez-Ortega S, Ortiz-álvarez R, Allan Green T G, et al. Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol, 2012,82(2): 429–448

    29 Chen J B. Lichens from Fildes Peninsula, King George Island,Antarctica I. the genusUsneasubgenusNeuropogon. Acta Mycol Sin,1996, 15(1): 21–25 (in Chinese)

    30 Yang Q H, Zhang L, Wang X Q. Analysis and forecasting of the gale weather at Great Wall Station, Antarctica. Mar Forecasts, 2007, 24(4):1–12 (in Chinese)

    31 Kim J H, Ahn I Y, Hong S G, et al. Lichen ぼora around the Korean Antarctic Scientific Station, King George Island, Antarctic. J Microbiol, 2006, 44(5): 480–491

    32 Lee J S, Lee H K, Hur J S, et al. Diversity of the lichenized fungi in King George Island, Antarctica, revealed by phylogenetic analysis of partial large subunit rDNA sequences. J Microbiol Biotechnol, 2008,18(6): 1016–1023

    33 Seymour F A, Crittenden P D, Wirtz N, et al. Phylogenetic and morphological analysis of Antarctic lichen-formingUsneaspecies in the groupNeuropogon. Antarct Sci, 2007, 19(1): 71–82

    34 Park C H, Kim K M, Elvebakk A, et al. Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol, 2015, 62(2): 196–205

    35 Ahmadjian V. The lichen algaTrebouxia: does it occur free-living?Plant Syst Evol, 1988, 158(2): 243–247

    36 Guzow-Krzemi?ska B. Photobiont flexibility in the lichenProtoparmeliopsis muralisas revealed by ITS rDNA analyses. Lichenologist,2006, 38(5): 469–476

    37 Davydov E A. Lichens from the family Umbilicariaceae on bark and wood//The fourth IAL symposium, progress and problems in lichenology at the Turn of the Millennium. Barcelona: Universitat de Barcelona, 2000

    性色avwww在线观看| 亚洲七黄色美女视频| 久久精品国产自在天天线| 免费观看在线日韩| 精品人妻一区二区三区麻豆 | 色综合婷婷激情| 国产亚洲欧美98| 嫩草影院入口| 一级毛片久久久久久久久女| 毛片女人毛片| 99九九线精品视频在线观看视频| 日本爱情动作片www.在线观看 | 18禁在线播放成人免费| 国产一区二区激情短视频| 免费高清视频大片| 欧美性猛交╳xxx乱大交人| 欧美性猛交╳xxx乱大交人| 日韩欧美一区二区三区在线观看| 国产主播在线观看一区二区| 日本 av在线| 美女大奶头视频| 欧美区成人在线视频| 全区人妻精品视频| 国产亚洲精品久久久com| 日日干狠狠操夜夜爽| 国产成人福利小说| 波多野结衣高清作品| 午夜免费成人在线视频| 日本成人三级电影网站| 精品国内亚洲2022精品成人| 欧美极品一区二区三区四区| 国产中年淑女户外野战色| 能在线免费观看的黄片| 久久亚洲真实| 亚洲av成人av| 丰满的人妻完整版| 国产精品无大码| 永久网站在线| 一个人看的www免费观看视频| 可以在线观看毛片的网站| 人妻久久中文字幕网| 精品欧美国产一区二区三| 久久亚洲真实| 国产黄色小视频在线观看| 久久久久久久午夜电影| 久久精品国产亚洲av香蕉五月| 日韩欧美国产一区二区入口| 日韩欧美 国产精品| 又粗又爽又猛毛片免费看| 精品福利观看| 国产成人一区二区在线| 在线播放无遮挡| 日日摸夜夜添夜夜添小说| 欧美国产日韩亚洲一区| 国产v大片淫在线免费观看| 亚洲人与动物交配视频| 免费观看的影片在线观看| 久久6这里有精品| 九九热线精品视视频播放| 国产精品一及| 91久久精品国产一区二区成人| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久精品电影| 亚洲成人中文字幕在线播放| 欧美又色又爽又黄视频| 国产午夜福利久久久久久| 精品福利观看| 日韩,欧美,国产一区二区三区 | 蜜桃亚洲精品一区二区三区| 国产真实乱freesex| 一区二区三区免费毛片| 欧美一区二区亚洲| 琪琪午夜伦伦电影理论片6080| 亚洲av免费在线观看| 色噜噜av男人的天堂激情| 久久国产乱子免费精品| 精品人妻1区二区| ponron亚洲| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线观看免费| 天天一区二区日本电影三级| 日韩欧美在线乱码| 人人妻人人看人人澡| 精品国内亚洲2022精品成人| av黄色大香蕉| 如何舔出高潮| 一级av片app| 日本黄色片子视频| xxxwww97欧美| 麻豆精品久久久久久蜜桃| 日韩 亚洲 欧美在线| 久99久视频精品免费| 人妻少妇偷人精品九色| 99精品久久久久人妻精品| 欧美色视频一区免费| 久久久久国内视频| 久久午夜福利片| 啪啪无遮挡十八禁网站| 欧美在线一区亚洲| 两个人视频免费观看高清| 嫩草影院新地址| 一级毛片久久久久久久久女| 亚洲精品国产成人久久av| 久久精品影院6| 国产精品人妻久久久影院| 亚洲av.av天堂| 婷婷六月久久综合丁香| 亚洲欧美日韩无卡精品| 国产男靠女视频免费网站| 成人av一区二区三区在线看| 久久精品91蜜桃| 国产精品1区2区在线观看.| 国产免费男女视频| 天天一区二区日本电影三级| 欧美激情在线99| 九九热线精品视视频播放| 琪琪午夜伦伦电影理论片6080| 欧美黑人欧美精品刺激| 久久久久久久久久黄片| 婷婷六月久久综合丁香| 久久99热这里只有精品18| eeuss影院久久| 亚洲成人精品中文字幕电影| 精品人妻1区二区| 午夜福利在线在线| 日本免费一区二区三区高清不卡| 国产探花在线观看一区二区| 九九爱精品视频在线观看| 午夜精品在线福利| 国产欧美日韩一区二区精品| 丝袜美腿在线中文| 欧美zozozo另类| 搡老妇女老女人老熟妇| 欧美日韩乱码在线| 制服丝袜大香蕉在线| 超碰av人人做人人爽久久| 深爱激情五月婷婷| 深爱激情五月婷婷| 我要搜黄色片| 亚洲av熟女| 欧美成人一区二区免费高清观看| 国产成人aa在线观看| 中文字幕免费在线视频6| 久久久久久久久久成人| 国产免费男女视频| 婷婷亚洲欧美| 国产精品亚洲一级av第二区| 国产高清视频在线播放一区| 亚洲精品一区av在线观看| www日本黄色视频网| 亚洲av.av天堂| 欧美性猛交黑人性爽| 亚洲av一区综合| 性插视频无遮挡在线免费观看| 国产69精品久久久久777片| 日韩大尺度精品在线看网址| 成人永久免费在线观看视频| 亚洲最大成人中文| 免费在线观看影片大全网站| 亚洲成人中文字幕在线播放| 国产精品日韩av在线免费观看| 一边摸一边抽搐一进一小说| 一进一出抽搐动态| 国产av一区在线观看免费| 亚洲无线观看免费| 永久网站在线| 日韩欧美国产一区二区入口| 亚洲一级一片aⅴ在线观看| 淫秽高清视频在线观看| 亚洲精华国产精华精| 日韩 亚洲 欧美在线| 亚洲第一电影网av| 国产精品99久久久久久久久| 国产亚洲精品久久久久久毛片| 欧美又色又爽又黄视频| 国产欧美日韩精品亚洲av| 亚洲va在线va天堂va国产| 国产v大片淫在线免费观看| 天堂av国产一区二区熟女人妻| 婷婷亚洲欧美| 国产精品亚洲一级av第二区| 婷婷精品国产亚洲av在线| 日韩精品青青久久久久久| 免费电影在线观看免费观看| 色综合站精品国产| 性插视频无遮挡在线免费观看| 乱系列少妇在线播放| 婷婷丁香在线五月| 淫妇啪啪啪对白视频| 不卡视频在线观看欧美| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| 97人妻精品一区二区三区麻豆| 精品久久久久久久久av| 99久久无色码亚洲精品果冻| 成年人黄色毛片网站| 精品日产1卡2卡| 免费在线观看日本一区| 少妇高潮的动态图| 国产精品亚洲一级av第二区| 日韩精品青青久久久久久| 精品一区二区免费观看| 国产一区二区三区在线臀色熟女| 毛片一级片免费看久久久久 | 能在线免费观看的黄片| 美女高潮的动态| 成人美女网站在线观看视频| 伦精品一区二区三区| 女同久久另类99精品国产91| 日本免费一区二区三区高清不卡| 亚洲自拍偷在线| 亚州av有码| 夜夜爽天天搞| 欧美xxxx性猛交bbbb| 免费黄网站久久成人精品| 国产激情偷乱视频一区二区| 看十八女毛片水多多多| 国产爱豆传媒在线观看| 亚洲国产精品sss在线观看| 色综合亚洲欧美另类图片| a级毛片免费高清观看在线播放| 亚洲aⅴ乱码一区二区在线播放| 精品人妻熟女av久视频| 久久精品人妻少妇| 熟妇人妻久久中文字幕3abv| 麻豆成人av在线观看| 国产午夜精品久久久久久一区二区三区 | 色哟哟哟哟哟哟| 亚洲美女黄片视频| 国产精品免费一区二区三区在线| 琪琪午夜伦伦电影理论片6080| 欧美成人a在线观看| 国产成人av教育| 亚洲美女搞黄在线观看 | 国产在线精品亚洲第一网站| 亚洲成av人片在线播放无| 黄色一级大片看看| 国产女主播在线喷水免费视频网站 | 成人午夜高清在线视频| 成人性生交大片免费视频hd| 亚洲国产精品久久男人天堂| 亚洲av中文字字幕乱码综合| 亚洲第一区二区三区不卡| 国产不卡一卡二| 天美传媒精品一区二区| 可以在线观看的亚洲视频| 国产av一区在线观看免费| 日韩欧美 国产精品| 97超视频在线观看视频| 99九九线精品视频在线观看视频| 久久久久九九精品影院| 99热6这里只有精品| 亚洲国产精品久久男人天堂| 亚洲三级黄色毛片| 伊人久久精品亚洲午夜| 国产午夜福利久久久久久| 五月伊人婷婷丁香| 男女边吃奶边做爰视频| 久久亚洲真实| aaaaa片日本免费| 十八禁国产超污无遮挡网站| 国产精品99久久久久久久久| 三级国产精品欧美在线观看| 一区福利在线观看| 亚洲性夜色夜夜综合| 午夜福利视频1000在线观看| 99热这里只有是精品在线观看| 亚洲人成网站高清观看| 熟女电影av网| 日本色播在线视频| 深夜精品福利| 毛片一级片免费看久久久久 | 久久久久久久久久久丰满 | 一区二区三区高清视频在线| 国产成人福利小说| 国产黄色小视频在线观看| 日韩亚洲欧美综合| 精品99又大又爽又粗少妇毛片 | 亚洲自偷自拍三级| 亚洲av熟女| 很黄的视频免费| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 国产男靠女视频免费网站| 97超视频在线观看视频| 免费搜索国产男女视频| 欧美3d第一页| 91在线观看av| 久久热精品热| 在线免费观看的www视频| 色播亚洲综合网| 亚洲精品456在线播放app | 亚州av有码| 99在线视频只有这里精品首页| 内射极品少妇av片p| 免费不卡的大黄色大毛片视频在线观看 | 看片在线看免费视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲美女视频黄频| 成年人黄色毛片网站| 中文字幕高清在线视频| 成人国产一区最新在线观看| 狂野欧美激情性xxxx在线观看| 男插女下体视频免费在线播放| 色av中文字幕| 中文资源天堂在线| 日本免费一区二区三区高清不卡| 国产精品免费一区二区三区在线| 欧美黑人巨大hd| 干丝袜人妻中文字幕| 中文字幕av在线有码专区| 国产极品精品免费视频能看的| 国产主播在线观看一区二区| 免费观看人在逋| 国内精品宾馆在线| 日本在线视频免费播放| 亚洲欧美日韩东京热| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 中文字幕人妻熟人妻熟丝袜美| 内射极品少妇av片p| 深夜a级毛片| а√天堂www在线а√下载| 免费看av在线观看网站| 在线播放无遮挡| 国产精品福利在线免费观看| 欧美+亚洲+日韩+国产| 97超视频在线观看视频| 亚洲av熟女| 校园春色视频在线观看| 欧美激情久久久久久爽电影| 美女黄网站色视频| 在线免费十八禁| 啦啦啦观看免费观看视频高清| 久久热精品热| 天堂动漫精品| 午夜精品久久久久久毛片777| av在线老鸭窝| 999久久久精品免费观看国产| 国国产精品蜜臀av免费| 国产亚洲欧美98| 91狼人影院| 搡老岳熟女国产| 制服丝袜大香蕉在线| 女人被狂操c到高潮| 特级一级黄色大片| 国产精品福利在线免费观看| 久久久精品欧美日韩精品| 午夜激情欧美在线| 日韩在线高清观看一区二区三区 | 国产精品98久久久久久宅男小说| av国产免费在线观看| 日本a在线网址| 啦啦啦啦在线视频资源| 国产伦一二天堂av在线观看| 2021天堂中文幕一二区在线观| 久久久久久大精品| 国内精品久久久久久久电影| 亚洲精华国产精华液的使用体验 | 亚洲欧美精品综合久久99| 午夜日韩欧美国产| 99热网站在线观看| 成年免费大片在线观看| 久久久久久久久久成人| 深夜a级毛片| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 一a级毛片在线观看| 色播亚洲综合网| 久久久久久久久久久丰满 | 久久人人精品亚洲av| 中文字幕熟女人妻在线| 国产视频内射| 免费看光身美女| 在线观看一区二区三区| 国产精品久久久久久av不卡| 国内久久婷婷六月综合欲色啪| 精品不卡国产一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美成人一区二区免费高清观看| 级片在线观看| 成年女人看的毛片在线观看| 国产男人的电影天堂91| 国产精品一区www在线观看 | 88av欧美| 欧美色视频一区免费| 国产在线男女| 自拍偷自拍亚洲精品老妇| 午夜亚洲福利在线播放| 校园春色视频在线观看| 又紧又爽又黄一区二区| 亚洲av免费在线观看| 99精品久久久久人妻精品| 亚洲在线观看片| 日韩人妻高清精品专区| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 欧美+日韩+精品| avwww免费| 亚洲欧美清纯卡通| 联通29元200g的流量卡| 成人国产一区最新在线观看| 亚洲狠狠婷婷综合久久图片| 欧美中文日本在线观看视频| 国内精品一区二区在线观看| 国产免费av片在线观看野外av| 久久久久九九精品影院| 成人一区二区视频在线观看| 97碰自拍视频| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 成人特级黄色片久久久久久久| 天堂√8在线中文| 久久久久性生活片| 欧美激情国产日韩精品一区| 深夜精品福利| 人妻久久中文字幕网| 免费在线观看影片大全网站| 搡老妇女老女人老熟妇| 久久精品国产亚洲av天美| 人妻夜夜爽99麻豆av| 午夜亚洲福利在线播放| 级片在线观看| 婷婷精品国产亚洲av在线| 两个人视频免费观看高清| 观看免费一级毛片| 国内精品美女久久久久久| 亚洲性夜色夜夜综合| 亚洲不卡免费看| 国产高潮美女av| 制服丝袜大香蕉在线| 亚洲av成人精品一区久久| 精品人妻视频免费看| 国产成人影院久久av| 麻豆一二三区av精品| 久久亚洲精品不卡| 可以在线观看的亚洲视频| 伊人久久精品亚洲午夜| 色吧在线观看| 在线看三级毛片| 波野结衣二区三区在线| 亚洲18禁久久av| 欧美3d第一页| 在线天堂最新版资源| 听说在线观看完整版免费高清| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 99热这里只有是精品50| 免费看a级黄色片| 日本 欧美在线| 亚洲精华国产精华液的使用体验 | 国产精品综合久久久久久久免费| 国产午夜福利久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| videossex国产| 成人欧美大片| 色吧在线观看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 欧美日韩综合久久久久久 | 欧美色欧美亚洲另类二区| 午夜日韩欧美国产| 日韩一本色道免费dvd| 久久6这里有精品| 国产精品电影一区二区三区| 黄色女人牲交| 欧美成人免费av一区二区三区| 精品人妻1区二区| 久久国内精品自在自线图片| 国产精品亚洲美女久久久| 精品久久久久久久久av| 免费黄网站久久成人精品| 午夜福利18| 午夜爱爱视频在线播放| 免费观看在线日韩| 最近最新免费中文字幕在线| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久,| 成人二区视频| 精品一区二区三区视频在线观看免费| 免费大片18禁| 黄色欧美视频在线观看| 久久精品国产自在天天线| 久久久国产成人免费| 国产白丝娇喘喷水9色精品| 欧美精品国产亚洲| 成熟少妇高潮喷水视频| 身体一侧抽搐| 亚洲国产精品成人综合色| 亚洲av中文字字幕乱码综合| 久久婷婷人人爽人人干人人爱| 99热6这里只有精品| av.在线天堂| 岛国在线免费视频观看| 成人一区二区视频在线观看| 国产主播在线观看一区二区| 午夜激情欧美在线| av.在线天堂| 欧美激情在线99| 日韩在线高清观看一区二区三区 | 舔av片在线| 九色国产91popny在线| 亚洲国产精品sss在线观看| 1024手机看黄色片| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 免费观看精品视频网站| 黄片wwwwww| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 一区二区三区四区激情视频 | 五月玫瑰六月丁香| 亚洲不卡免费看| 国产精品福利在线免费观看| 麻豆国产av国片精品| 免费av不卡在线播放| 免费看美女性在线毛片视频| 99热精品在线国产| 日日撸夜夜添| 中文字幕免费在线视频6| 婷婷精品国产亚洲av在线| 日本欧美国产在线视频| 国语自产精品视频在线第100页| 18禁在线播放成人免费| 日日摸夜夜添夜夜添小说| 免费电影在线观看免费观看| 女的被弄到高潮叫床怎么办 | 国产欧美日韩一区二区精品| 全区人妻精品视频| 99riav亚洲国产免费| 99视频精品全部免费 在线| 一本久久中文字幕| 亚洲成人免费电影在线观看| 亚洲黑人精品在线| 日韩国内少妇激情av| 五月玫瑰六月丁香| 免费在线观看成人毛片| 国产极品精品免费视频能看的| 狂野欧美激情性xxxx在线观看| 久久草成人影院| 99国产极品粉嫩在线观看| 午夜爱爱视频在线播放| 精品一区二区三区视频在线观看免费| 一区二区三区免费毛片| 少妇熟女aⅴ在线视频| 黄色视频,在线免费观看| av专区在线播放| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 一进一出好大好爽视频| 久久精品国产鲁丝片午夜精品 | 国产精品美女特级片免费视频播放器| av.在线天堂| 亚洲av免费高清在线观看| 日本黄大片高清| 久久久色成人| 欧美日韩黄片免| 亚洲va在线va天堂va国产| .国产精品久久| 中亚洲国语对白在线视频| 人妻制服诱惑在线中文字幕| 亚洲av第一区精品v没综合| 天天一区二区日本电影三级| 天美传媒精品一区二区| 国产免费男女视频| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 天堂动漫精品| 亚洲在线观看片| 五月玫瑰六月丁香| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 级片在线观看| 久久久成人免费电影| 久久久国产成人精品二区| 久久人人精品亚洲av| 韩国av在线不卡| 欧美+亚洲+日韩+国产| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看| 日韩 亚洲 欧美在线| 午夜福利高清视频| 可以在线观看的亚洲视频| 22中文网久久字幕| 韩国av在线不卡| 亚洲精品日韩av片在线观看| 桃色一区二区三区在线观看| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 成人av一区二区三区在线看| 国产美女午夜福利| 深夜a级毛片| 欧美高清性xxxxhd video| 久久精品国产清高在天天线| 免费观看精品视频网站| 久久久久久大精品| 在线观看舔阴道视频| 欧美性猛交╳xxx乱大交人| 在线观看舔阴道视频| 婷婷精品国产亚洲av在线| 可以在线观看的亚洲视频| 黄片wwwwww| 老师上课跳d突然被开到最大视频| 色综合站精品国产| 老熟妇乱子伦视频在线观看| 99在线视频只有这里精品首页| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 波多野结衣高清作品| 伦精品一区二区三区|