• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Methodological approach to the isolation of functionally active proteins from the tissues of marine hydrobionts:an example of Adamussium colbecki

    2015-02-06 07:16:45NataliiaRakshaDmytroGladunOleksiiSavchukLydmilaOstapchenko
    Advances in Polar Science 2015年4期

    Nataliia Raksha*, Dmytro Gladun, Oleksii Savchuk & Lydmila Ostapchenko

    Educational and Scientific Center ‘Institute of Biology’, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., Kyiv 01601, Ukraine

    1 Introduction

    Proteases constitute an important class of hydrolytic enzymes that are found in all life forms. They are involved in the production of hormones and pharmacologically-active peptides as well as in various cellular functions. These functions include protein digestion, protein turnover, cell division, blood clotting cascade and signal transduction.Nowadays proteases are the most important group of industrial enzymes. They have wide range of applications in diverse fields such as detergent manufacture, leather processing, silk degumming, food and dairy, baking,pharmaceutical industries, waste management and others[1-3]. Enzymes can be obtained from various sources and the nature of the source determines the availability, the cost and the ease of processing. Marine organisms have attracted the attention of scientists as potential objects for biochemical studies as well as for industrial purposes. The importance of marine hydrobionts (spongesD.arenaria,S.microspinosa,S. mirabilis,P. angulospiculatus, molluscsC. farreri, C. purpurascens, crabT. tridentatus, sea urchinA. membranaceus, sea cucumbersA. japonicus,L. grisea,Antarctic krillE. superba, anemonesC. gigantean, A. sulcata,jellyfishR. esculentumet al.) as sources of structurally diverse bioactive compounds is growing rapidly[4-7]. Because they live in challenging environmental conditions, hydrobionts from the Antarctic region are characterized by considerable structural and functional diversity of biologically active compounds, and the presence of enzymes with unique structures and activities. So enzymes produced by coldadapted hydrobionts display a greater proteolytic activity towards native protein substrates, lower activation energy for catalysis, and often have high catalytic activity at low temperatures[8-9]. Furthermore, the relatively low thermal stability at elevated temperatures often observed in enzymes in cold adaptive organisms, may also be beneficial in some applications as these enzymes can be efficiently and sometime selectively inactivated by moderate heat input.The ability to heat-inactivate cold-active enzymes has particular relevance to the food industry where it is important to prevent any modification of the original heat-sensitive substrates and product[2,10]. In molecular biology, heat-labile enzymes are advantageous to obtain irreversible enzyme inactivation by mild heat treatment without interference with subsequent reaction[9,11]. Due to their unique properties,cold-adaptive enzymes represent a valuable model for fundamental research into molecular mechanisms of enzyme catalysis.

    Most enzymes from aquatic hydrobionts can be also found in terrestrial organisms. However, some differences in molecular weight, amino acid composition, pH optimum,temperature optimum, stability, inhibition characteristics and kinetic properties have been observed[12-15]. Considering these differences the optimization of methodological approaches for extraction and purification of metabolites from aquatic hydrobionts is an important task of modern biochemistry.

    The main goal of the present work, therefore, was to optimize conditions for maximum extraction of salt- and water-soluble proteins from tissue of marine hydrobionts while preserving their functional activities. Special attention was paid to testing different hydrolytic activities in the resultant extracts of hydrobiont tissue. In our work we used specimens of a marine hydrobiont from the Antarctic region—Adamussium colbecki(the Antarctic scallop). The endemic scallopA. colbeckiis one of the most common bivalves in Antarctica which is widely spread not only along the coast,but also can be found at depths from 3 m to nearly 1500 m down into the ocean[16]. This hydrobiont appears to be a very important species of the Antarctic benthic marine ecosystems,mainly in relation to its functional role in the transfer of energy from the water column to the benthos[17]and because of its ability to accumulate of xenobiotics and metals[18].

    2 Material and methods

    The specimens ofA. colbecki(n= 35) were collected near the island Galindez (65°15′ S, 64°15′ W) of the Argentine Islands archipelago. The materials were collected by the XVII and XVIII Ukrainian Antarctic expeditions on March 2012 — April 2013, March 2013 — April 2014 respectively.After collection the scallops were immediately frozen in liquid nitrogen to prevent enzyme deterioration and stored at-80°C. The samples were brought to the laboratory frozen.The mass of hydrobiont was measured and the samples were homogenized with sequential addition of liquid nitrogen and an extraction buffer of 0.1 M Na-phosphate containing 0.15 M NaCl, 0.15 mM EDTA, pH 7.4. In order to prevent enzymatic degradation of proteins, the serine protease inhibitor PMSF was added to the samples. All procedures were performed at 4°C. We used the detergent Triton X-100 to provide more complete extraction, in particular the release of membrane-bound molecules. Samples were homogenized for 5 min and then centrifuged at 10000 g for 60 min at 4°C. Supernatants from this process (the first supernatants)were selected, packaged in bottles and lyophilized. At the second phase of extraction, 1 M acetic acid in the ratio of 1:5 was added to the precipitates. The suspensions were kept at room temperature for 1 h with continuous stirring.Then the suspensions were placed in a water bath at 90°C for 45 min. It should be noted that heating of the samples may be an additional step of purification of the extracts from ballast heat sensitive proteins and polypeptides. After cooling the samples were centrifuged at 10000 g for 45 min.The precipitates were discarded and the supernatants were re-centrifuged at 10000 g for 60 min at 4°C. These second supernatants were also lyophilized. The lyophilizates can be stored for a long time at a temperature of -20°C without losing the functional properties of the proteins and peptides.For the determination of enzymatic activity the lyophilizates were dissolved in 0.05 M Tris-HCl buffer (pH 7.4) and used as an enzyme source after gel filtration chromatography with using as a chromatographic matrix Sephadex G-25 (BioLogic LP, Bio Rad, USA). The method of Bradford was used for quantitative determination of proteins[19]. Bovine serum albumin was used as a standard in these determinations.Sodium dodecyl sulfate-polyacrylamaide gel electrophoresis(SDS-PAGE) of both extracts was carried out using 5%(w/v) stacking gel and 10% (w/v) separating gel[20]. SDSPAGE was performed using Mini-Protean Tetra System(Bio Rad, USA). Zymography was done according to the method of Ostapchenko et al.[21]. Separating (12% w/v) gel was polymerized in the presence of gelatin (1 mg·ml-1).Areas of gelatin digestion were visualized as non-staining areas in the gel. The resultant electrophorograms were analyzed with the help of the TotalLab 2.04 program. The electrophorograms presented in Figure 1 are typical for the series of repeated experiments (at least three in each series).Total proteolytic activity was determined using 1% casein as a substrate and monitored at a wavelength of 280 nm as described in Munilla-Moran and Stark[22]. Collagenolytic activity was assessed with help of native collagen type I following the method described by Moore and Stein[23].The released amino acids from collagen were detected. The liberated amino acids were measured in relation to L-leucine in the presence of ninhydrine. Trypsin-like amidase activity was measured usingN-α-benzoyl-L-Arg-p-nitroanilide(L-BApNA, 0.3 mM) as substrate[24]. The basis of this assay is the colorimetric estimation of the amount ofp-nitroaniline released as a result of enzymatic hydrolysis of L-BApNA.For the determination of esterase activityN-α-p-tosyl-LArg methyl ester (L-TAME; 1 mM) was used[24]. Amylolytic activity was estimated using 1% starch as substrate. In each experiment (n= 4) all samples were tested in triplicate.Results are expressed as means ± SE.

    3 Results and discussion

    At the first stage of our work we optimized conditions for effective extraction of native proteins from the tissue ofAdamussium colbecki. Currently, a large number of methods are available to extract proteins from biological materials but most of them are based on using polar organic solvents[25-28].Taking into account that organic solvents can cause irreversible protein denaturation and loss of functional properties we did not apply any solvents at the first stage of extraction. On the basis of the literature[29]and the results of our previous work[30]about the presence in the tissues of hydrobionts of salt- and water-soluble protein fractions, we used 0.1 M Na-phosphate buffer, pH 7.4, as the extraction medium. However, some percentages of proteins (5%—15%)may be very tightly associated with the post-extraction cellular debris, and may thus not be extractable at all[31]. So,the leftover precipitate can be a rich source of biologically active substances, and in particular peptides. Marinederived polypeptides have shown numerous bioactivities such as antihypertensive, antioxidative, anticoagulant and antimicrobial[32]. Hence, we used the crude precipitates that remained after the first extraction stage to obtain protein and peptide fractions. We applied the method based on the use of acetic acid aqueous solution as an extractant[33]. This method works quite well for the isolation of proteins from plants[34].Under these conditions the extraction of mainly acid-soluble peptides occurs. It enabled fractions enriched by peptides to be obtained. On the other hand, as most polysaccharides,steroids, ぼavonoids, vitamins and glycosides are practically insoluble in acetic acid aqueous solution, it also serves as an additional factor that helps to obtain relatively pure protein and peptide fractions.

    SDS-PAGE analysis was performed to estimate the efficiency of the extraction procedure and to obtain information about the protein and peptide composition in tissue ofA. colbecki. A typical electrophorogram is shown in Figure 1. The results of electrophoretic protein separation of both investigated extracts revealed the presence of proteins with molecular weights ranging from 20 to 115 kDa. To establish the exact molecular weights of identified protein fractions the electrophorograms were analyzed using the TotalLab 2.04 program. The analysis identified 10 protein bands (with molecular weights of 22, 49, 67, 78, 90, 97, 99,101, 105, 121 kDa) and 9 protein bands (with molecular weights of 20, 27, 37, 43, 58, 64, 71, 76, 83 kDa) in the first and the second extract respectively. Despite a similar number of fractions, the molecular-weight composition of proteins in the analyzed extracts was different. From our observations it can be concluded that the second extract was characterized by a lower number of high-molecular weight protein bands compared with the first extract which had a considerable number of high-molecular weight fraction proteins. A considerable portion of middle-molecular fractions in the second extract can be explained by the hydrolysis of proteins during the second stage of extraction.

    Figure 1 Typical electrophorogram of protein separation: a,molecular weight markers; b, the second extract of A. colbecki; c,the first extract of A. colbecki

    The variety of proteins with different molecular weights suggests the presence of functionally active molecules in the analyzed extracts. As marine organisms are characterized by high enzyme content, in particular hydrolases, we tested our samples for the presence of enzymatic activity. For the identification of proteolytic active enzymes and the determination of their apparent molecular weights we applied the zymography technique which is described[21]as a simple,sensitive, quantifiable and functional assay to analyze active enzymes in biological samples. It should be noted that preparation of separating gel in the presence of gelatin allows identification of enzymes belonging to the proteases family,in particular serine proteases as well as metalloproteases.The appearance in gelatin zymogram clear areas (Figure 2)indicates the presence of active proteolytic enzymes in the both extracts ofA. colbecki.

    Figure 2 Typical zymogram of protein separation: a, molecular weight markers; b, the first extract of A. colbecki; c, the second extract of A. colbecki

    Three active enzymes were revealed in the first extract(Figure 2, line b). It should be emphasized that despite the use of highly aggressive treatment (heating at 90°C in acetic acid) for obtaining the second extract, one active area was still detected in gelatin zymogram (Figure 2, line c). The estimated molecular weights of the enzymes are approximately 94, 86 and 31 kDa for the first extract and 95 kDa for the second extract. Based on the coincidence of molecular weights and visual similarity of active area in region of 95 kDa in both extracts we suggest that these are due to the same enzyme.Our data about molecular weight and thermo stability of the revealed protease are consistent with other observations[35].

    In accordance with the modern concept of adaptive strategies for low temperature functioning[36], improved catalytic efficiency in cold active enzymes is accompanied by loss of structural stability that results in limited thermal stability and rapid denaturation by mild heat treatment. From this position, our observation about the presence of a thermo stable enzyme in the second extract ofA. colbeckiis quite interesting. Further research to identify and characterize this enzyme is recommended.

    In order to obtain information about the composition of enzymes present in tissues ofA. colbecki, and considering the presence of enzymatic activity in the second extract, we tested our samples for the presence of the main types of digestive activities. At first, we determined caseinolytic activity which mediated by different types of proteases and therefore can be regarded as a total protease activity. Our results (Table 1)revealed significant caseinolytic activity in the first extract ofA. colbecki. Slight total proteolytic activity was also identified in the second extract.

    Because the total activity is mediated by a number of digestive enzymes working together, the proteases fromA. colbeckiextracts were further characterized using different substrates. Two synthetic substrates, the amide L-BApNA and the ester L-TAME, were used to identify the presence of trypsin-like proteases. Highest enzymatic activity was observed when L-TAME was used as substrate,which may indicate the presence of trypsin-like enzymes with the predominant substrate specificity due to esters rather than amides. No esterase or amidase trypsin-like activity was detected in the second extract. Taking this into account, coupled with the presence of expressed enzymaticactivity towards collagen, we speculate that the active area(95 kDa) in the zymogram of the second extract is mediated by collagenases belonging to a group of metalloproteases but not serine collagenolytic proteases. As known from the literature, the molecular weight range of collagenolyticserine proteases is approximately 24—36 kDa whereas metallocollagenases have molecular weights from 30 to 150 kDa[14]. It should be noted that among three types of digestive activities, the collagenolytic activity was highest in both extracts. Unexpectedly, we identified some amylolytic activity in the second extract ofA. colbecki, the value of which was 0.4±0.011 Units/mg protein. Further studies of purification and characterization of individual enzymes from tissue of marine hydrobionts, using different substrates and specific inhibitors, are in progress.

    Table 1 Enzymatic activity in the extracts of A. colbecki

    4 Conclusion

    Our results demonstrate an efficient protein extraction procedure. Our method of two-stage extraction is characterized by using inexpensive reagents, a small number of isolation stages and a lack of critical parameters.Application of this method for extraction of proteins from tissue of hydrobionts is suitable for obtaining molecules with a wide range of molecular weights and with preserving their functional activity at both stages of extraction which was confirmed in our studies an example of other marine hydrobionts[37-38].

    AcknowledgementsThis research was supported by National Antarctic Scientific Center of Ukraine Ministry of Education and Science of Ukraine.

    1 Newman D J, Cragg G M. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod,2004, 67(8): 1216–1238

    2 Margesin R, Feller G. Biotechnological applications of psychrophiles.Environ Technol, 2010, 31(8-9): 835–844

    3 Joshi S, Satyanarayana T. Biotechnology of cold-active proteases.Biology, 2013, 2(2): 755–783

    4 Newman D J, Cragg G M, Snader K M. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod, 2003, 66(7):1022–1037

    5 Byun H G, Lee J K, Park H G, et al. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochem,2009, 44(8): 842–846

    6 Pedpradab P, Molex W, Nukoolkarn V, et al. Biological activities of extracts from Andaman Sea sponges, Thailand. Eur Asian J BioSci,2010, 4: 63–69

    7 Ngo D H, Wijesekara I, Vo T S, et al. Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview.Food Res Int, 2011, 44(2): 523–529

    8 Siddiqui K S, Cavicchiol R. Cold-adapted enzymes. Annu Rev Biochem, 2006, 75: 403-433

    9 Feller G. Psychrophilic enzymes: from folding to function and biotechnology. Scientifica, 2013, 2013: 512840

    10 Gerday C, Aittaleb M, Bentahir M, et al. Cold-adapted enzymes:from fundamentals to biotechnology. Trends Biotechnol, 2000, 18(3):103–107

    11 Kobori H, Sullivan C W, Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end-labeling of nucleic acids. Proc Natl Acad Sci U S A, 1984, 81(21): 6691–6695

    12 Saborowski R, Sahling G, Navarette del Toro M A, et al. Stability and effects of organic solvents on endopeptidases from the gastric ぼuid of the marine crab Cancer pagurus. J Mol Catal B: Enzym, 2004,30(3-4): 109–118

    13 Lane A L, Moore B S. A sea of biosynthesis: marine natural products meet the molecular age. Nat Prod Rep, 2011, 28(2): 411–428

    14 Salamonea M, Cuttittab A, Seiditac G, et al. Characterization of collagenolytic/proteolytic marine enzymes. Chem Engin Trans, 2012,27: 1–6

    15 Genta-Jouve G, Thomas O P. Biosynthesis in marine sponges: the radiolabelling strikes back. Phytochem Rev, 2013, 12(3): 425–434

    16 Schiaparelli S, Linse K. A reassessment of the distribution of the common Antarctic scallop Adamussium colbecki (Smith, 1902).Deep-Sea Res II, 2006, 53(8-10): 912–920

    17 Cerrano C, Calcinai B, Bertolino M, et al. Epibionts of the scallop Adamussium colbecki (Smith, 1902) in the Ross Sea, Antarctica.Chem Ecol, 2006, 22(S1): S235–S244

    18 Bonacci S, Corsi I, Focardi S. Cholinesterase activities in the adductor muscle of the Antarctic scallop Adamussium colbecki. Antarct Sci,2006, 18(1): 15–22

    19 Bradford M M. A rapid and sensitive method for quantities of utilizing the principle of protein binding. Analyt Biochem, 1976, 86: 193–200

    20 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259): 680–685

    21 Ostapchenko L, Savchuk O, Burlova-Vasilieva N. Enzyme electrophoresis method in analysis of active components of haemostasis system. Adv Biosci Biotechnol, 2011, 2(1): 20–26

    22 Munilla-Moran R, Stark J R. Protein digestion in early turbot larvae,Scophthalmus maximus (L.). Aquaculture, 1989, 8(3-4): 315–327

    23 Moore S, Stein W H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem, 1954, 211(2): 907–913

    24 Xavier L P, Almeida Oliveira M G, Guedes R N C, et al. Trypsinlike activity of membrane-bound midgut proteases from Anticarsia gemmatalis (Lepidoptera: Noctuidae). Eur J Entomol, 2005, 102(2):147–153

    25 Mitra S K, Walters B T, Clouse S D, et al. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes. J Proteome Res, 2009, 8(6): 2752–2767

    26 Barbin D F, Natsch A, Müller K. Improvement of functional properties of rapeseed protein concentrates produced via alcoholic processes by thermal and mechanical treatments. J Food Process Pres,2011, 35(3): 369–375

    27 Kim E Y, Kim D G, Kim Y R, et al. An improved method of protein isolation and proteome analysis with Saccharina japonica(Laminariales) incubated under different pH conditions. J Appl Phycol, 2011, 23(1): 123–130

    28 Zhen Y, Shi J S. Evaluation of sample extraction methods for proteomic analysis of coniferous seeds. Acta Physiol Plant, 2011,33(5): 1623–1630

    29 McCloud T G. High throughput extraction of plant, marine and fungal specimens for preservation of biologically active molecules.Molecules, 2010, 15(7): 4526–4563

    30 Savchuk A N, Gladun D B, Grebinik D N, et al. Marine hydrobionts as an alternative source of protein molecules of directed action. J Biopharmaceut, 2014, 6: 12–17 (in Russian)

    31 Nguyen R T, Harvey H R. Preservation of protein in marine systems:Hydrophobic and other noncovalent associations as major stabilizing forces. Geochim Cosmochim Acta, 2001, 65(9): 1467–1480

    32 Kim S K, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods, 2010,2(1): 1–9

    33 Skripnikov A Y, Anikanov N A, Kazakov V S. The search for and identification of peptides from the moss Physcomitrella patens. Russ J Bioorg Chem, 2011, 37(1): 95–104

    34 Shvab O V, Trishkin S V, Shepel’ E N, et al. Analysis of peptides from animal and plant tissues. Bioorg Khim, 1999, 25(1): 20–24 (in Russian)

    35 Fukuda M, Hasegawa Y. Protease activity of a 90-kDa protein isolated from scallop shells. Turk J Fish Aquat Sci, 2014, 14(1): 247–254

    36 D’Amico S, Claverie P, Collins T, et al. Molecular basis of cold adaptation. Philosoph Trans Roy Soc London B Biol Sci, 2002,357(1423): 917–925

    37 Gladun D V, Raksha N G, Savchuk O M, et al. Hydrolytic enzymes of marine organisms as an instrument for investigation of protein–protein interaction. FEBS J, 2015, 282(1):

    38 Raksha N G, Gladun D V, Savchuk O M, et al. Collagenolytic activity in tissue extract of parborlasia corrugatus from antarctic region.Biomed Res Ther, 2015, 2: 21

    在线观看免费视频日本深夜| 免费少妇av软件| 一区二区日韩欧美中文字幕| 俄罗斯特黄特色一大片| 老司机午夜十八禁免费视频| xxx96com| 欧美不卡视频在线免费观看 | 精品国产亚洲在线| 黑人巨大精品欧美一区二区mp4| 久久久久国产精品人妻aⅴ院| 亚洲精品久久午夜乱码| 在线观看午夜福利视频| 啦啦啦免费观看视频1| 欧美乱色亚洲激情| 欧美日韩一级在线毛片| 老鸭窝网址在线观看| 长腿黑丝高跟| 日本欧美视频一区| 久久久久国产一级毛片高清牌| 久久久国产成人精品二区 | 午夜日韩欧美国产| 国产成人精品久久二区二区免费| 欧美久久黑人一区二区| 精品国产乱子伦一区二区三区| 日韩精品中文字幕看吧| 久久人人精品亚洲av| 亚洲片人在线观看| 久久亚洲真实| 亚洲国产中文字幕在线视频| 一边摸一边抽搐一进一出视频| 又紧又爽又黄一区二区| 国产成人一区二区三区免费视频网站| 精品卡一卡二卡四卡免费| 国产黄a三级三级三级人| 巨乳人妻的诱惑在线观看| 国产精品影院久久| 好男人电影高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 999久久久国产精品视频| 亚洲精品国产一区二区精华液| 中文字幕最新亚洲高清| 日日摸夜夜添夜夜添小说| 男男h啪啪无遮挡| 曰老女人黄片| 超碰97精品在线观看| 国产无遮挡羞羞视频在线观看| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 亚洲精品在线观看二区| 亚洲欧美日韩另类电影网站| 又黄又爽又免费观看的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合欧美亚洲国产小说| 长腿黑丝高跟| 18禁国产床啪视频网站| 在线看a的网站| 亚洲人成电影免费在线| 窝窝影院91人妻| 亚洲中文字幕日韩| 欧美一区二区精品小视频在线| 在线观看一区二区三区激情| 久久人人精品亚洲av| 亚洲五月色婷婷综合| 欧美人与性动交α欧美软件| 国产高清国产精品国产三级| www国产在线视频色| 欧美成人免费av一区二区三区| 午夜日韩欧美国产| 波多野结衣高清无吗| 精品国产美女av久久久久小说| 99国产精品免费福利视频| 黄色女人牲交| 99在线人妻在线中文字幕| 大型黄色视频在线免费观看| 日韩大尺度精品在线看网址 | 欧美日本中文国产一区发布| 国产免费av片在线观看野外av| 中文字幕人妻丝袜一区二区| 99riav亚洲国产免费| www.精华液| 国产精品国产高清国产av| 美女大奶头视频| 国产精品av久久久久免费| 多毛熟女@视频| 91老司机精品| 91九色精品人成在线观看| 一本大道久久a久久精品| xxxhd国产人妻xxx| 久久久久久久久免费视频了| 欧美人与性动交α欧美精品济南到| 十八禁人妻一区二区| 女生性感内裤真人,穿戴方法视频| 人人妻人人爽人人添夜夜欢视频| cao死你这个sao货| 国产激情久久老熟女| 成人18禁在线播放| 老司机亚洲免费影院| av天堂在线播放| 天堂√8在线中文| 久久久久久久精品吃奶| 夜夜爽天天搞| 高清毛片免费观看视频网站 | 夜夜看夜夜爽夜夜摸 | 午夜老司机福利片| 日韩高清综合在线| 在线播放国产精品三级| 精品久久久精品久久久| 神马国产精品三级电影在线观看 | 亚洲国产精品sss在线观看 | 高清av免费在线| 亚洲一区二区三区欧美精品| 国产成人影院久久av| 亚洲精品国产一区二区精华液| 亚洲一区二区三区不卡视频| 一级a爱视频在线免费观看| 曰老女人黄片| 精品国产国语对白av| 三级毛片av免费| 51午夜福利影视在线观看| 在线天堂中文资源库| 长腿黑丝高跟| 日本wwww免费看| 久久精品国产综合久久久| 最好的美女福利视频网| 91成年电影在线观看| 久久天躁狠狠躁夜夜2o2o| 日本撒尿小便嘘嘘汇集6| 久久久国产成人精品二区 | 欧美中文日本在线观看视频| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| av片东京热男人的天堂| 色老头精品视频在线观看| 在线观看免费视频网站a站| 亚洲av第一区精品v没综合| 亚洲精品中文字幕一二三四区| 亚洲av成人av| 一二三四在线观看免费中文在| 精品日产1卡2卡| 亚洲欧美一区二区三区黑人| 99热只有精品国产| 色哟哟哟哟哟哟| 国产伦一二天堂av在线观看| 欧美日韩瑟瑟在线播放| 精品人妻1区二区| 午夜福利一区二区在线看| 啦啦啦 在线观看视频| 亚洲欧美一区二区三区黑人| 精品一区二区三区四区五区乱码| 人人妻人人添人人爽欧美一区卜| 亚洲精品一卡2卡三卡4卡5卡| 黄色 视频免费看| 国产三级在线视频| 美女高潮到喷水免费观看| 欧美日本中文国产一区发布| a级片在线免费高清观看视频| 不卡一级毛片| 久久久久国产一级毛片高清牌| 中亚洲国语对白在线视频| 国产成人精品在线电影| 久久人妻福利社区极品人妻图片| 大型av网站在线播放| 在线观看日韩欧美| 亚洲欧洲精品一区二区精品久久久| 国产av一区在线观看免费| 亚洲成国产人片在线观看| 久久精品亚洲熟妇少妇任你| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 岛国在线观看网站| 亚洲av成人av| 人妻久久中文字幕网| 欧美精品亚洲一区二区| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 热99国产精品久久久久久7| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片 | 欧美日韩乱码在线| 热99re8久久精品国产| 国产成+人综合+亚洲专区| 亚洲国产看品久久| 久久午夜亚洲精品久久| 9色porny在线观看| av天堂在线播放| 大型av网站在线播放| 精品久久蜜臀av无| 9色porny在线观看| 免费日韩欧美在线观看| 妹子高潮喷水视频| 亚洲欧美激情在线| 亚洲一区二区三区色噜噜 | 国产成人欧美| 免费少妇av软件| 国产一区二区在线av高清观看| 久久99一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 三上悠亚av全集在线观看| 黄色视频,在线免费观看| 老司机福利观看| 日韩中文字幕欧美一区二区| 女性生殖器流出的白浆| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 亚洲自拍偷在线| 欧美激情极品国产一区二区三区| 中文字幕人妻丝袜制服| 午夜福利在线免费观看网站| 欧美成人性av电影在线观看| 三级毛片av免费| 国产av一区在线观看免费| 女人爽到高潮嗷嗷叫在线视频| 手机成人av网站| 欧美av亚洲av综合av国产av| 嫁个100分男人电影在线观看| 免费一级毛片在线播放高清视频 | 国产精品国产高清国产av| 99久久久亚洲精品蜜臀av| 黄网站色视频无遮挡免费观看| 免费看a级黄色片| 久久狼人影院| 久久精品人人爽人人爽视色| 久久中文字幕人妻熟女| av福利片在线| e午夜精品久久久久久久| 一夜夜www| 亚洲五月天丁香| 热re99久久精品国产66热6| 超碰成人久久| 国产成人免费无遮挡视频| 国产在线精品亚洲第一网站| 十分钟在线观看高清视频www| 国产精华一区二区三区| 亚洲国产欧美一区二区综合| 亚洲精品在线观看二区| 丰满迷人的少妇在线观看| 国产精品一区二区免费欧美| 50天的宝宝边吃奶边哭怎么回事| 搡老乐熟女国产| 欧美丝袜亚洲另类 | www国产在线视频色| 熟女少妇亚洲综合色aaa.| 在线观看免费高清a一片| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 99精国产麻豆久久婷婷| 99精品久久久久人妻精品| 热99re8久久精品国产| 午夜老司机福利片| 成熟少妇高潮喷水视频| 欧美成人性av电影在线观看| 久久精品91无色码中文字幕| 久久99一区二区三区| 男女床上黄色一级片免费看| 日本免费a在线| 青草久久国产| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| 亚洲国产毛片av蜜桃av| 日本黄色日本黄色录像| 免费在线观看影片大全网站| 免费av毛片视频| 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看 | 正在播放国产对白刺激| 99久久99久久久精品蜜桃| av免费在线观看网站| 久久婷婷成人综合色麻豆| 我的亚洲天堂| 久久影院123| 国产亚洲精品久久久久久毛片| 另类亚洲欧美激情| 国产色视频综合| 91老司机精品| 精品少妇一区二区三区视频日本电影| 99re在线观看精品视频| 亚洲九九香蕉| 国产精品九九99| 国产精品免费一区二区三区在线| 国产色视频综合| 色播在线永久视频| 久久国产精品男人的天堂亚洲| 69av精品久久久久久| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 国产成人一区二区三区免费视频网站| 又黄又粗又硬又大视频| 悠悠久久av| 长腿黑丝高跟| 国产成人av教育| 欧美国产精品va在线观看不卡| 欧美在线黄色| 久久久国产成人免费| 免费在线观看视频国产中文字幕亚洲| 在线视频色国产色| 日日干狠狠操夜夜爽| 国内久久婷婷六月综合欲色啪| 99久久人妻综合| 精品国产乱码久久久久久男人| 亚洲精品国产色婷婷电影| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 久久青草综合色| 精品久久久久久,| 久久久久久久久久久久大奶| 日本三级黄在线观看| 亚洲国产欧美日韩在线播放| 男女床上黄色一级片免费看| 在线av久久热| 美国免费a级毛片| 男女做爰动态图高潮gif福利片 | 一区二区日韩欧美中文字幕| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添小说| 国产在线观看jvid| 久久久久九九精品影院| 91在线观看av| 国产蜜桃级精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 欧美 亚洲 国产 日韩一| 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| 午夜福利,免费看| 色婷婷av一区二区三区视频| 老司机在亚洲福利影院| 久久精品aⅴ一区二区三区四区| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 女生性感内裤真人,穿戴方法视频| 女人被狂操c到高潮| 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 欧美日韩黄片免| 国产免费现黄频在线看| 国产高清videossex| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 91大片在线观看| 午夜免费成人在线视频| 亚洲av熟女| 国产成人av激情在线播放| av天堂在线播放| 国产成人影院久久av| 一级毛片精品| 村上凉子中文字幕在线| 如日韩欧美国产精品一区二区三区| 黑人操中国人逼视频| 国产不卡一卡二| 99在线视频只有这里精品首页| 免费搜索国产男女视频| 大码成人一级视频| 亚洲人成网站在线播放欧美日韩| 女性生殖器流出的白浆| 免费久久久久久久精品成人欧美视频| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 操出白浆在线播放| 欧美精品啪啪一区二区三区| 国产精品国产av在线观看| 国产极品粉嫩免费观看在线| 丝袜美足系列| 亚洲片人在线观看| 国产精华一区二区三区| 亚洲欧洲精品一区二区精品久久久| 黄片小视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 91在线观看av| 美女大奶头视频| 免费看十八禁软件| 亚洲国产欧美网| 欧美人与性动交α欧美软件| 在线观看免费高清a一片| 无限看片的www在线观看| 99re在线观看精品视频| 午夜免费激情av| 成人永久免费在线观看视频| 日韩欧美一区视频在线观看| bbb黄色大片| 黄色成人免费大全| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 岛国在线观看网站| 日韩欧美一区二区三区在线观看| 后天国语完整版免费观看| 韩国av一区二区三区四区| 精品一区二区三区视频在线观看免费 | 国产成人精品无人区| 国产高清videossex| 三上悠亚av全集在线观看| 极品教师在线免费播放| 久久精品国产99精品国产亚洲性色 | 亚洲第一av免费看| 亚洲av日韩精品久久久久久密| 日韩一卡2卡3卡4卡2021年| 女性被躁到高潮视频| 深夜精品福利| 欧美一级毛片孕妇| 亚洲一区二区三区色噜噜 | 国产av精品麻豆| 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 久久久久久久午夜电影 | 欧美精品啪啪一区二区三区| 一级a爱片免费观看的视频| 男人的好看免费观看在线视频 | 久久草成人影院| 亚洲精品一卡2卡三卡4卡5卡| 日韩人妻精品一区2区三区| 看黄色毛片网站| 国产精品免费一区二区三区在线| 人人妻人人澡人人看| 亚洲中文日韩欧美视频| 激情视频va一区二区三区| 久热这里只有精品99| 麻豆国产av国片精品| 欧美国产精品va在线观看不卡| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 国产精品野战在线观看 | 波多野结衣一区麻豆| 成人永久免费在线观看视频| 国产免费现黄频在线看| 亚洲一区二区三区不卡视频| 欧美在线一区亚洲| 女同久久另类99精品国产91| 制服诱惑二区| 久久欧美精品欧美久久欧美| 久久精品亚洲av国产电影网| 国产精品 国内视频| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 免费人成视频x8x8入口观看| 成人18禁高潮啪啪吃奶动态图| 亚洲少妇的诱惑av| 99国产精品一区二区蜜桃av| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 天堂影院成人在线观看| 99在线人妻在线中文字幕| 男男h啪啪无遮挡| 国产一区二区三区在线臀色熟女 | 国产精品一区二区三区四区久久 | 国产精品国产高清国产av| 久久久久久久午夜电影 | 三上悠亚av全集在线观看| 欧美日韩av久久| 少妇裸体淫交视频免费看高清 | 亚洲男人的天堂狠狠| 一级a爱片免费观看的视频| 老司机午夜十八禁免费视频| 久久精品91蜜桃| 亚洲av电影在线进入| 最新美女视频免费是黄的| 在线视频色国产色| 精品一区二区三区四区五区乱码| 精品福利观看| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 18禁观看日本| 国产成人精品在线电影| av福利片在线| av电影中文网址| 成人三级黄色视频| 亚洲av熟女| 久久99一区二区三区| 身体一侧抽搐| 亚洲成人国产一区在线观看| a级毛片在线看网站| 亚洲欧美精品综合久久99| 午夜激情av网站| 美女午夜性视频免费| 满18在线观看网站| 精品欧美一区二区三区在线| 欧美日韩瑟瑟在线播放| 在线观看一区二区三区激情| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| 色哟哟哟哟哟哟| 一边摸一边抽搐一进一小说| 亚洲一区中文字幕在线| 51午夜福利影视在线观看| 在线观看舔阴道视频| 琪琪午夜伦伦电影理论片6080| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 精品久久久久久成人av| 巨乳人妻的诱惑在线观看| 操美女的视频在线观看| 天天躁夜夜躁狠狠躁躁| 操出白浆在线播放| 三上悠亚av全集在线观看| 热99re8久久精品国产| 天天影视国产精品| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看 | 中国美女看黄片| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 天堂影院成人在线观看| 亚洲精品久久成人aⅴ小说| e午夜精品久久久久久久| 黄色 视频免费看| 最近最新免费中文字幕在线| 午夜91福利影院| 91精品三级在线观看| 法律面前人人平等表现在哪些方面| 18禁观看日本| 国产黄色免费在线视频| 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 91精品国产国语对白视频| 日本黄色日本黄色录像| 无限看片的www在线观看| 亚洲一区二区三区欧美精品| 大型黄色视频在线免费观看| 91成人精品电影| 熟女少妇亚洲综合色aaa.| www.999成人在线观看| 亚洲午夜理论影院| 中亚洲国语对白在线视频| 一进一出抽搐gif免费好疼 | 日韩免费av在线播放| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 午夜福利在线观看吧| 欧美日韩瑟瑟在线播放| 精品免费久久久久久久清纯| 男男h啪啪无遮挡| 1024香蕉在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| 人人妻人人澡人人看| 999精品在线视频| 18美女黄网站色大片免费观看| 变态另类成人亚洲欧美熟女 | 亚洲精品国产精品久久久不卡| 人人妻人人添人人爽欧美一区卜| 日韩欧美免费精品| 一区二区三区激情视频| 国产97色在线日韩免费| 99热只有精品国产| 又黄又粗又硬又大视频| 欧美乱妇无乱码| 欧美av亚洲av综合av国产av| 人人澡人人妻人| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲一级av第二区| 精品无人区乱码1区二区| 美女大奶头视频| 亚洲avbb在线观看| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面| 免费少妇av软件| 性欧美人与动物交配| 嫩草影视91久久| 麻豆国产av国片精品| 欧美亚洲日本最大视频资源| 超色免费av| 亚洲精品成人av观看孕妇| 久久久久国内视频| 激情在线观看视频在线高清| 99国产精品一区二区蜜桃av| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 亚洲五月色婷婷综合| 色婷婷av一区二区三区视频| 亚洲第一青青草原| 中文字幕精品免费在线观看视频| 成年人黄色毛片网站| 国产精品久久久av美女十八| 一级毛片女人18水好多| 久久精品人人爽人人爽视色| 国产熟女xx| 一夜夜www| 老司机亚洲免费影院| 黄色视频不卡| 亚洲中文日韩欧美视频| 亚洲中文av在线| 可以在线观看毛片的网站| 19禁男女啪啪无遮挡网站| 日韩大尺度精品在线看网址 | 天天影视国产精品| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| 亚洲精品美女久久久久99蜜臀| 久久久久国产精品人妻aⅴ院| 操出白浆在线播放| 国产免费av片在线观看野外av| 韩国av一区二区三区四区| 成人手机av| 999久久久国产精品视频| 亚洲成a人片在线一区二区| 国产xxxxx性猛交| 久久久久精品国产欧美久久久| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 99国产精品免费福利视频| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 色综合婷婷激情| 久久中文字幕人妻熟女| 欧美日韩瑟瑟在线播放| 一级片免费观看大全|