勞楊駿徐濤濤楊笑奇吳承亮
(1.浙江中醫(yī)藥大學骨傷研究所,浙江杭州310053;2.浙江中醫(yī)藥大學附屬第一醫(yī)院,浙江杭州310053;3.浙江省骨傷研究所,浙江杭州310053;4.浙江中醫(yī)藥大學第一臨床醫(yī)學院,浙江杭州310053)
·綜述·
小鼠椎間盤退變模型的構建策略*
勞楊駿1,3,4徐濤濤1,3,4楊笑奇2,4吳承亮1,3△
(1.浙江中醫(yī)藥大學骨傷研究所,浙江杭州310053;2.浙江中醫(yī)藥大學附屬第一醫(yī)院,浙江杭州310053;3.浙江省骨傷研究所,浙江杭州310053;4.浙江中醫(yī)藥大學第一臨床醫(yī)學院,浙江杭州310053)
椎間盤退變模型構建動物實驗
椎間盤退變是臨床上造成腰腿痛的主要原因[1],由于目前其發(fā)病機制尚未闡明,臨床上的治療手段相對單一,治療效果不甚理想。動物模型是為生物醫(yī)學研究和闡明人類疾病的病因、病機和探尋治療方法而制作的實驗動物。目前,能準確模擬人類椎間盤退變的動物模型尚不多見,選擇和建立一種理想的椎間盤退變動物模型是研究其發(fā)病機制的關鍵。
小鼠是品種最多,用途最廣,研究最詳盡的實驗動物,擁有生長周期短,飼養(yǎng)管理方便,容易達到標準化等特點。理想的腰椎間盤退變及突出的動物模型應包括以下幾個方面:1)能再現(xiàn)椎間盤退變及突出的病理變化過程;2)有良好的可重復性;3)擁有較高的造模成功率;4)所選動物的解剖生理特點盡可能與人類接近。與此同時,還應考慮實驗周期以及可操作性、經(jīng)濟性等因素。另外,已有研究表明,小鼠腰椎和尾椎椎間盤與人類椎間盤結構最為相似[1],力學特性最為相似[2],從準確易用的角度來講,小鼠是一種理想的用于椎間盤退變相關研究的模型動物。
人類椎間盤是由外周的纖維環(huán)、中央的髓核和上下軟骨終板構成的。纖維環(huán)由同心膠原纖維層組成,每層內(nèi)膠原平行排列,間層纖維交錯排列,與椎間盤平面呈30°夾角,外層纖維環(huán)主要是Ⅰ型膠原組成,向內(nèi)提供約束力;纖維環(huán)內(nèi)是透明凝膠狀的髓核,主要是由Ⅱ型膠原和聚集蛋白聚糖構成,這保證了髓核的高含水量,從而抵抗脊柱軸向負載。正常成人的椎間盤沒有血管分布,是全身最大的無血供器官,新陳代謝主要依靠擴散作用與軟骨終板的毛細血管床完成物質(zhì)交換,因此極容易發(fā)生退變。
引起椎間盤退變的原因可分為基因因素和環(huán)境因素?;蛞蛩厥怯捎诘任换虻亩鄳B(tài)性,造成了不同個體間的表現(xiàn)差異,導致相應功能紊亂,從而引起椎間盤退變的發(fā)生[3]。環(huán)境因素主要是指某些個體生活或工作的環(huán)境對其椎間盤造成的影響,如:長期抬舉重物[4]、長時間駕駛[5]、椎間盤損傷[6]、缺乏體育鍛煉[7]、長期吸煙[4-5,8-9]等因素??偟膩砜矗祟愖甸g盤退變發(fā)生的原因有:脊柱縱向應力改變;物理性損傷;椎間盤自身代謝紊亂;基因多態(tài)性。因此在構建動物模型時,也應緊緊圍繞以上幾點進行動物模型的構建。
2.1應力改變型椎間盤退變模型應力改變模型的建立常常通過改變小鼠的體態(tài)或活動方式,使其脊柱特定節(jié)段椎間盤受力方式或大小發(fā)生改變,從而導致椎間盤退變的發(fā)生。Lotz等[10]發(fā)現(xiàn)持續(xù)地脊柱非生理性負載造成椎間盤細胞的死亡。Court等[11]通過對小鼠尾部椎間盤施加異常彎曲應力,發(fā)現(xiàn)增強的彎曲應力造成纖維環(huán)細胞的死亡,聚集蛋白聚糖表達減少。Arigga等[12]研究發(fā)現(xiàn)靜態(tài)的力學刺激造成小鼠離體培養(yǎng)的椎間盤細胞凋亡。Hsieh等[13]發(fā)現(xiàn)持續(xù)的力學負載誘導金屬基質(zhì)蛋白酶2的激活,從而使椎間盤基質(zhì)降解,促使椎間盤退變的發(fā)生。Court等[14]采用兩根鋼針分別鉆入小鼠第9、第10尾椎,并用采用自制的可調(diào)節(jié)夾子,使其固定在一個特定的角度,造成異常的力學負載。Papuaa等[15]在小鼠第7、第10尾椎插入2枚0.028英寸的鈦針,使相應的脊柱節(jié)段始終呈特定角度彎曲而造成椎間盤應力改變來得到椎間盤退變模型。最近,Sakai等[16]通過外科手術的方法,用0.8 mm的不銹鋼絲將小鼠第5和第13尾椎固定起來,形成一個環(huán),制成了一種新型的椎間盤退變的應力改變模型。該模型在同一只小鼠尾巴上可同時獲得不同程度應力改變的椎間盤,大大減少了模型動物的使用量。小鼠尾椎間盤是一個本身在軸向并不受力的結構,而人類腰椎間盤卻是負載著人類一部分體質(zhì)量的重要結構。以上模型的建立都是通過對小鼠特定脊柱節(jié)段活動度的改變,使得椎間盤受到非生理的力學刺激,從而導致椎間盤退變的發(fā)生,能較成功地獲得椎間盤退變模型。但是上述動物實驗的研究者都是采用彎曲小鼠尾椎的方法來提供給椎間盤異常應力,而并沒有真正提高兩段椎骨間的軸向作用力,因此此類模型并不能很好地模擬人類椎間盤退變的發(fā)生發(fā)展過程。
2.2物理損傷型椎間盤退變模型針刺誘導椎間盤退變模型是主要物理損傷模型,通過對椎間盤的針刺,誘導椎間盤退變的發(fā)生。雖然多數(shù)研究者認為針刺椎間盤可建立較為理想的小鼠椎間盤退變模型[17-20],但是采用此方法獲得模型的研究者較少,且小鼠椎間盤本身很小,在針刺過程中很難保證針刺的精度,且針刺是否可誘導椎間盤退變還存在著一定的分歧。為了驗證針刺小鼠椎間盤會導致生物分子化學的改變,Yang等[21]采用31 G在顯微鏡下對小鼠尾椎間盤進行針刺,通過椎間盤高度、組織學分級、糖胺聚糖的定量分析,細胞外基質(zhì)基因水平和蛋白水平的分析,發(fā)現(xiàn)其椎間盤的退變和人類椎間盤退變的方式存在一定的相似性,都存在短暫的從脊索細胞轉(zhuǎn)化成軟骨樣細胞,最終轉(zhuǎn)變?yōu)槔w維軟骨細胞的過程。有趣的是,Martin等[22]研究發(fā)現(xiàn)通過粗針頭(26 G)對小鼠尾椎間盤的針刺,其力學特性立即改變,且在8周后椎間盤高度下降37%,髓核糖胺聚糖含量下降41%,髓核總膠原含量下降45%,而采用細針頭(29 G)進行針刺的小鼠椎間盤卻沒有觀察到顯著的結構和成分變化,因此,他們認為只用細針頭對椎間盤的針刺并不能導致椎間盤退變的發(fā)生。物理損傷型椎間盤退變模型,是模擬人類在日?;顒又袑ψ甸g盤產(chǎn)生的各種微損傷,對于更大型的動物如大鼠、兔、犬來說比較合適,應用也比較廣泛,但小鼠的椎間盤本身較小,針刺會直接導致其椎間盤結構的破壞,操作過程非常精細,且不能控制每一只小鼠針刺的位置和深度,模型可重復性較差。
2.3基因敲除模型近年來隨著生物技術的發(fā)展,基因敲除技術在日??蒲兄械氖褂靡苍絹碓綇V泛。通過基因敲除技術建立的椎間盤退變小鼠模型在椎間盤退變的機制研究中逐漸被運用。就小鼠的體型來講,通過手術等方法獲得椎間盤退變模型數(shù)量少,偏差大,而基因敲除小鼠椎間盤模型具有數(shù)量多,可控性強等優(yōu)點,其優(yōu)勢也逐步體現(xiàn)。目前報道的基因敲除椎間盤退變小鼠模型主要是對椎間盤的結構決定性相關基因敲除,如:Col9a1[23-24]、雙糖鏈蛋白聚糖[25-26]、COL2[27]這些基因的缺失對軟骨結構和功能造成直接損害從而誘導椎間盤退變的發(fā)生和發(fā)展;此外,也可通過對影響椎間盤正常代謝過程的相關基因進行敲除,如:核苷酸切除修復交叉互補基因[28-29]、骨保護素[30]、Smad3[31]、胰島素樣生長因子[32]、白細胞介素-1受體拮抗劑[33]等。利用基因工程獲得的椎間盤模型可控性強、數(shù)量多、可穩(wěn)定遺傳,一旦模型可穩(wěn)定持續(xù)地獲得,對以后椎間盤退變相關機制和防治藥物的研制和開發(fā)都有著非常積極的作用。雖然基因敲除小鼠有著非常廣闊的應用前景,但是在獲得敲除相關基因的純合子動物之前,飼養(yǎng)動物和相關基因的鑒定需要花費大量的時間和精力,基因鑒定相關引物和試劑也是一筆巨大的開銷。
人類是動物界唯一長期直立行走的動物,長期的直立行走導致脊柱受力的大小和方式不同于自然界中自身體重基本由四肢承擔的的動物,這一點使得人類椎間盤更容易發(fā)生退變且更難在自然界中獲得能夠模擬人類椎間盤特征的動物模型。雖然脊柱的負載增加可能會導致椎間盤退變發(fā)生的風險增大,但是在研究宇航員椎間盤退變的高發(fā)病率時研究人員發(fā)現(xiàn),處于微重力條件下的小鼠椎間盤糖胺聚糖的合成減少,金屬基質(zhì)蛋白酶-3合成增加,椎間盤細胞凋亡增加,表明處于微重力條件下可能會誘導椎間盤退變的發(fā)生[34]。在15 d的航天飛行后,可以觀察到小鼠椎間盤高度的下降和力學性能的降低[35]。這說明脊柱的負載同時也是一個維持椎間盤正常生理的重要因素,太大或者太小的負載都會導致椎間盤退變的發(fā)生。
與人類表現(xiàn)相同的是,老年小鼠椎間盤也出現(xiàn)椎間盤退變的表現(xiàn)。研究表明隨著年齡的增加,小鼠椎間盤細胞合成蛋白多糖的能力下降[36],纖維蛋白的羰基化增加[37],造成纖維彈蛋白彈性喪失,單核細胞趨化蛋白和金屬基質(zhì)蛋白酶的表達增加[38],髓核祖細胞數(shù)目減少[39],髓核細胞的生成速度小于凋亡速度,造成椎間盤結構和功能逐漸喪失。同時,也有研究者為了模擬慢性吸煙人群,將小鼠暴露于可直接吸入香煙的環(huán)境中[40-41],檢測到吸煙導致小鼠髓核細胞的衰老、聚集蛋白聚糖的裂解增加、蛋白聚糖合成減少等一系列椎間盤退變的表現(xiàn)。
臨床上腰腿痛是常見的疾病,椎間盤退變是引起局部炎癥、骨贅、椎管狹窄從而導致腰腿痛癥狀產(chǎn)生的主要原因,嚴重影響了一部分人的生活質(zhì)量。目前對椎間盤退變產(chǎn)生的病因病機缺乏明確的認識。動物模型是現(xiàn)代科學研究中的重要方法和手段,有助于闡明椎間盤退變發(fā)生的病因及機理和研制相應的治療手段。而值得注意的是,雖然上述模型均能在一定程度上模擬椎間盤退變的發(fā)生與發(fā)展,但都只是對單一因素進行研究,而在人類椎間盤退變的過程中,上述致病因素往往相互結合,致使椎間盤退變的變得復雜而多變。因此針對單一致病因素構建的椎間盤退變模型不能滿足模擬人類復雜退變機制的要求,且目前尚未見能準確模擬人類椎間盤退變過程的動物模型。因此,在今后的科研中,應考慮多種機制的存在,建立多因素并存的椎間盤退變動物模型是將來椎間盤退變模型構建的方向。
[1]Millecamps M,Tajerian M,Naso L,et al.Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice[J].Pain,2012,153(6):1167-1179.
[2]Showalter BL,Beckstein JC,Martin JT,et al.Comparison of animal discs used in disc research to human lumbar disc:torsion mechanics and collagen content[J].Spine,2012,37(15):E900-907.
[3]Kepler CK,Ponnappan RK,Tannoury CA,et al.The molecular basis of intervertebral disc degeneration[J].The spine journal:official journal of the North American Spine Society,2013,13(3):318-330.
[4]Deyo RA,Bass JE.Lifestyle and low-back pain.The influence of smoking and obesity[J].Spine,1989,14(5):501-506.
[5]Kelsey JL,Githens PB,O′Conner T,et al.Acute prolapsed lumbar intervertebral disc.An epidemiologic study with special reference to driving automobiles and cigarette smoking[J]. Spine,1984,9(6):608-613.
[6]Videman T,Battie MC.The influence of occupation on lumbar degeneration[J].Spine,1999,24(11):1164-1168.
[7]Elfering A,Semmer N,Birkhofer D,et al.Risk factors for lumbar disc degeneration:a 5-year prospective MRI study in asymptomatic individuals[J].Spine,2002,27(2):125-134.
[8]Wang D,Nasto LA,Roughley P,et al.Spine degeneration in a murine model of chronic human tobacco smokers[J].Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society,2012,20(8):896-905.
[9]Pye SR,Reid DM,Adams JE,et al.Influence of weight,body mass index and lifestyle factors on radiographic features of lumbar disc degeneration[J].Annals of the rheumatic diseases,2007,66(3):426-427.
[10]Lotz JC,Chin JR.Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading[J].Spine,2000,25(12):1477-83.
[11]Court C,Colliou OK,Chin JR,et al.The effect of static in vivo bending on the murine intervertebral disc[J].The spine journal:official journal of the North American Spine Society,2001,1(4):239-45.
[12]Ariga K,Yonenobu K,Nakase T,et al.Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs:an ex vivo study[J].Spine,2003,28(14):1528-33.
[13]Hsieh AH,Lotz JC.Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs[J]. Spine,2003,28(16):1781-8.
[14]Court C,Chin JR,Liebenberg E,et al.Biological and mechanical consequences of transient intervertebral disc bending[J].European spine journal:official publication of the European Spine Society,the European Spinal Deformity Society,and the European Section of the Cervical Spine Research Society,2007,16(11):1899-906.
[15]Papuga MO,Kwok E,You Z,et al.TNF is required for the induction but not the maintenance of compression-induced BME signals in murine tail vertebrae:limitations of anti-TNF therapy for degenerative disc disease[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2011,29(9):1367-1374.
[16]Sakai D,Nishimura K,Tanaka M,et al.Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse:a pilot study[J].The spine journal:official journal of the Noth American Spine Society,2015,15(6):1356-1365.
[17]Yang F,Leung VY,Luk KD,et al.Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells[J].Molecular therapy:the journal of the American Society of Gene Therapy,2009,17(11):1959-1966.
[18]Tam V,Rogers I,Chan D,et al.A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2014,32(6):819-825.
[19]Ohta R,Tanaka N,Nakanishi K,et al.Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice[J].European spine journal:official publication of the European Spine Society,the European Spinal Deformity Society,and the European Section of the Cervical Spine Research Society,2012,21(9):1748-1757.
[20]Liang H,Ma SY,F(xiàn)eng G,et al.Therapeutic effects of adenovirus-mediated growth and differentiation factor-5 in a mice disc degeneration model induced by annulus needle puncture[J].The spine journal:official journal of the North American Spine Society,2010,10(1):32-41.
[21]Yang F,Leung VY,Luk KD,et al.Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse[J].The Journal of pathology,2009,218(1):113-121.
[22]Martin JT,Gorth DJ,Beattie EE,et al.Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration[J].Journal of orthopaedic research,official publication of the Orthopaedic Research Society,2013,31(8):1276-82.
[23]Boyd LM,Richardson WJ,Allen KD,et al.Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in typeⅨcollagen[J].Arthritis and rheu-matism,2008,58(1):164-71.
[24]Allen KD,Griffin TM,Rodriguiz RM,et al.Decreased physical function and increased pain sensitivity in mice deficient for typeⅨcollagen[J].Arthritis and rheumatism,2009,60(9):2684-2693.
[25]Furukawa T,Ito K,Nuka S,et al.Absence of biglycan accelerates the degenerative process in mouse intervertebral disc[J].Spine,2009,34(25):E911-917.
[26]Marfia G,Campanella R,Navone SE,et al.Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration:a preliminary study on biglycan-deficient murine model of chronic disc degeneration[J].Arthritis research&therapy,2014,16(5):457.
[27]Chen M,Li S,Xie W,et al.Col2CreER(T2),a mouse model for a chondrocyte-specific and inducible gene deletion[J]. European cells&materials,2014,28:236-245.
[28]Vo N,Seo HY,Robinson A,et al.Accelerated aging of intervertebral discs in a mouse model of progeria[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2010,28(12):1600-1607.
[29]Nasto LA,Robinson AR,Ngo K,et al.Mitochondrial-derived reactive oxygen species(ROS)play a causal role in aging-related intervertebral disc degeneration[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2013,31(7):1150-1157.
[30]Liang QQ,Li XF,Zhou Q,et al.The expression of osteoprotegerin is required for maintaining the intervertebral disc endplate of aged mice[J].Bone,2011,48(6):1362-1369.
[31]Li CG,Liang QQ,Zhou Q,et al.A continuous observation of the degenerative process in the intervertebral disc of Smad3 gene knock-out mice[J].Spine,2009,34(13):1363-1369.
[32]Li B,Zheng XF,Ni BB,et al.Reduced expression of insulinlike growth factor 1 receptor leads to accelerated intervertebral disc degeneration in mice[J].International journal of immunopathology and pharmacology,2013,26(2):337-347.
[33]Phillips KL,Jordan-Mahy N,Nicklin MJ,et al.Interleukin-1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration[J].Annals of the rheumatic diseases,2013,72(11):1860-1867.
[34]Jin L,F(xiàn)eng G,Reames DL,et al.The effects of simulated microgravity on intervertebral disc degeneration[J].The spine journal:official journal of the North American Spine Society,2013,13(3):235-242.
[35]Bailey JF,Hargens AR,Cheng KK,et al.Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice[J].Journal of biomechanics,2014,47(12):2983-2988.
[36]Venn G,Mason RM.Changes in mouse intervertebral-disc proteoglycan synthesis with age.Hereditary kyphoscoliosis is associated with elevated synthesis[J].The Biochemical journal,1986,234(2):475-479.
[37]Scharf B,Clement CC,Yodmuang S,et al.Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification[J].Chemistry&biology,2013,20(7):922-934.
[38]Fujita K,Ando T,Ohba T,et al.Age-related expression of MCP-1 and MMP-3 in mouse intervertebral disc in relation to TWEAK and TNF-alpha stimulation[J].Journalof orthopaedic research:official publication of the Orthopaedic Research Society,2012,30(4):599-605.
[39]Sakai D,Nakamura Y,Nakai T,et al.Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc[J].Nature communications,2012,3:1264.
[40]Wang D,Nasto LA,Roughley P,et al.Spine degeneration in a murine model of chronic human tobacco smokers[J].Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society,2012,20(8):896-905.
[41]Nasto LA,Ngo K,Leme AS,et al.Investigating the role of DNA damage in tobacco smoking-induced spine degeneration[J].The spine journal:official journal of the North American Spine Society,2014,14(3):416-23.
R681.5+3
A
1004-745X(2015)10-1783-04
10.3969/j.issn.1004-745X.2015.10.032
2015-05-30)
國家自然科學基金資助項目(81273770);浙江省中西醫(yī)結合骨關節(jié)病研究科技創(chuàng)新團隊(2011R50022);浙江省骨關節(jié)疾病中醫(yī)藥干預技術研究重點實驗室(2013E10024)
(電子郵箱:wu.cl@163.com)
·綜述·