李云濤 陳謙學(xué)★ 吳庭楓 邵靈敏
·綜述·
Rho激酶在膠質(zhì)瘤侵襲調(diào)控中作用的研究進(jìn)展
李云濤陳謙學(xué)★吳庭楓邵靈敏
膠質(zhì)瘤是最常見的原發(fā)性中樞神經(jīng)系統(tǒng)腦腫瘤,起源于神經(jīng)膠質(zhì),約占成人惡性中樞神經(jīng)系統(tǒng)腫瘤的80%。其具有局部高侵襲力、高核分裂活性、血管生成和局部壞死等特點(diǎn)。膠質(zhì)母細(xì)胞瘤(GBM,WHO Ⅳ級(jí))是惡性程度最高的膠質(zhì)瘤,其中位生存期僅14.6個(gè)月,5年生存率僅為9.8%。膠質(zhì)瘤較少會(huì)轉(zhuǎn)移到中樞神經(jīng)系統(tǒng)之外,但在腦實(shí)質(zhì)中有較高的侵襲性。而且,無(wú)論何種級(jí)別的膠質(zhì)瘤均表現(xiàn)出較高的侵襲性,提示在膠質(zhì)瘤發(fā)生的早期即存在這種惡性表現(xiàn)[1]。到目前為止,仍無(wú)針對(duì)膠質(zhì)瘤有效的治療方法,膠質(zhì)瘤患者的預(yù)后亦無(wú)明顯改善,且經(jīng)放、化療后腫瘤復(fù)發(fā)較明顯。而且,放化療等臨床治療手段會(huì)促進(jìn)膠質(zhì)瘤的侵襲能力[2]。所以,掌握膠質(zhì)瘤發(fā)生發(fā)展中侵襲的分子機(jī)制可能為膠質(zhì)瘤患者提供新的臨床治療方案。
Rho激酶通過(guò)調(diào)節(jié)細(xì)胞骨架肌動(dòng)蛋白的活性來(lái)影響細(xì)胞移行。正常細(xì)胞中,Rho激酶有正常的表達(dá)和調(diào)控,而在膠質(zhì)瘤細(xì)胞中,Rho激酶過(guò)度表達(dá),活性異常增高。同時(shí),Rho激酶下游蛋白已被證明可提高膠質(zhì)瘤的侵襲和生存能力。因此,對(duì)Rho激酶相關(guān)信號(hào)通路的研究將在膠質(zhì)瘤治療中發(fā)揮重要的作用。
Rho激酶家族屬于Ras大家族。目前已有20種已知的哺乳動(dòng)物Rho蛋白成員,分為Rac、Cdc42、Rho、Rnd、RhoD、RhoF、RhoH和RhoBTB八個(gè)亞家族,而Rac被認(rèn)為是整個(gè)家族的起源[3]。Rho激酶通過(guò)以無(wú)活性的GDP結(jié)合狀態(tài)或者有活性的GTP結(jié)合狀態(tài),和其下游分子相互作用。而調(diào)節(jié)這種活性平衡的有三類細(xì)胞因子:鳥苷酸交換因子(GEFs),GTP 酶激活蛋白(GAPs),GDP 解離抑制因子(GDIs)。GEFs促進(jìn)GTP和GDP交換使Rho激酶激活,Rho GEFs有一個(gè)催化GDP和GTP交換的DH結(jié)構(gòu)域,其后面pH結(jié)構(gòu)域結(jié)合磷酸肌醇調(diào)節(jié)Rho GEFs的亞細(xì)胞定位[4]。研究表明,GEFs的活性在氮端序列移除后才得以表現(xiàn),氮端序列可能扮演著自動(dòng)抑制DH結(jié)構(gòu)域作用的角色,這種抑制作用可能通過(guò)氮端的磷酸化而解除[4]。目前GEFs發(fā)揮作用的信號(hào)通路機(jī)制仍無(wú)較明確的數(shù)據(jù)支持。GAPs促進(jìn)GTP水解,使Rho激酶恢復(fù)至無(wú)活性的GDP結(jié)合狀態(tài);GDIs阻止GDP與Rho蛋白的分離。最近研究表明Rho激酶可以受泛素化酶調(diào)節(jié)降解[5],同時(shí)通過(guò)GDIs阻止Rho蛋白降解來(lái)調(diào)控體內(nèi)Rho蛋白平衡[6]。
目前,Rho家族中RhoA、Rac和Cdc42這3個(gè)成員,被認(rèn)為是和收縮性肌動(dòng)球蛋白細(xì)絲和外周肌動(dòng)蛋白網(wǎng),包括板狀偽足和絲狀偽足等有關(guān)。同時(shí),Rho家族成員之間存在著相互作用:Cdc42可以活化Rac;RhoA和Rac1存在著相互抑制的作用[3];RhoG是Rac1的上游調(diào)節(jié)因子,并以此來(lái)促進(jìn)細(xì)胞運(yùn)動(dòng)[7]。RhoA在細(xì)胞邊緣激活,RhoA信號(hào)通過(guò)下游效應(yīng)器p160 ROCK促進(jìn)肌球蛋白輕鏈的磷酸化[8],影響肌球蛋白收縮性。Rac刺激肌動(dòng)蛋白驅(qū)動(dòng)突起,同時(shí)協(xié)調(diào)Cdc42整合細(xì)胞外定向因素來(lái)調(diào)節(jié)細(xì)胞極性與運(yùn)動(dòng)[9]。
研究發(fā)現(xiàn),膠質(zhì)瘤細(xì)胞中Rho激酶的表達(dá)和膠質(zhì)瘤惡性程度高度相關(guān)[10]。Rac1的表達(dá)水平和膠質(zhì)瘤等級(jí)呈正相關(guān),Rac1能提高膠質(zhì)瘤細(xì)胞侵襲性[11]。Rac1促進(jìn)膠質(zhì)瘤細(xì)胞侵襲是通過(guò)多種受體和效應(yīng)器實(shí)現(xiàn)的。目前已有研究證明,Rac1在腫瘤壞死因子樣微弱凋亡誘導(dǎo)因子(TWEAK)誘導(dǎo)激活A(yù)kt和NF-κB信號(hào)通路中有重要的作用,成纖維細(xì)胞生長(zhǎng)誘導(dǎo)因子受體14(Fn14)信號(hào)通過(guò)Rac1提高細(xì)胞侵襲性,抵抗細(xì)胞毒性治療引起的凋亡[11,12]。值得一提的是,TWEAK-Fn14誘導(dǎo)的Rac1依賴于Cdc42的存在,而Rac1降解卻與TWEAK誘導(dǎo)激活的Cdc42無(wú)關(guān)[13]。TWEAKFn14信號(hào)通過(guò)TNF受體相關(guān)因子2 (TRAF2)依賴的SGEF和RhoG活性使Rac1激活。
Rac1和侵襲偽足的形成有重要關(guān)系。侵襲偽足作為細(xì)胞膜的一個(gè)結(jié)構(gòu),可以降解細(xì)胞外基質(zhì),促進(jìn)腫瘤細(xì)胞侵襲。Rac1的效應(yīng)器突觸伸蛋白2(SYNJ2) 在侵襲偽足中亦是高表達(dá),SYNJ2的消耗會(huì)導(dǎo)致侵襲偽足形成的減少和膠質(zhì)瘤細(xì)胞侵襲能力的降低[14]。Rac1在膠質(zhì)瘤細(xì)胞膜上的激活受香葉烯基轉(zhuǎn)移酶調(diào)控和RLIP76泛素化調(diào)節(jié)[15]。Cdc42在TWEAK-Fn14信號(hào)誘導(dǎo)的Rac1激活中有不可替代的作用,Cdc42的消耗使膠質(zhì)瘤細(xì)胞遷移和侵襲能力減弱[13]。在細(xì)胞極性和細(xì)胞移行功能中Cdc42和RhoG是Rac1的上游信號(hào)分子[16]。而在神經(jīng)肽處理的膠質(zhì)瘤細(xì)胞中,Rac1和Cdc42盡管共同激活,但是關(guān)于他們相互之間的關(guān)系,仍無(wú)明確的數(shù)據(jù)支持。RhoG在膠質(zhì)瘤中高表達(dá),其能刺激板狀偽足的形成,并能使Rac1激活[7,16]。在TWEAK-Fn14信號(hào)中,RhoG迅速激活,進(jìn)而提高Rac1活性。在膠質(zhì)母細(xì)胞瘤中,RhoG作為EGF信號(hào)通路的下游被激活,提高膠質(zhì)瘤細(xì)胞的遷移能力[16]。RhoA的活性和膠質(zhì)瘤細(xì)胞遷移能力呈負(fù)相關(guān)[11]。RhoA受體ROCK的抑制導(dǎo)致Ra c1的激活,進(jìn)而增強(qiáng)膠質(zhì)瘤細(xì)胞侵襲性。RhoA對(duì)膠質(zhì)瘤的作用是通過(guò)改變細(xì)胞形態(tài)實(shí)現(xiàn)的。熒光能量共振轉(zhuǎn)移實(shí)驗(yàn)證明大鼠腦實(shí)質(zhì)中,Rac1和Cdc42的活性高,而在血管周圍區(qū)域中RhoA活性高,同時(shí)Rac1和Cdc42均有降低[17]。因此,RhoA影響著膠質(zhì)瘤細(xì)胞在不同的基質(zhì)中的侵襲能力。
GAPs家族中部分蛋白在膠質(zhì)瘤中存在異常表達(dá)。IQGAP1是Rac1調(diào)節(jié)膠質(zhì)瘤細(xì)胞侵襲信號(hào)通路激活的重要調(diào)節(jié)因子。IQGAP1和Rac1結(jié)合,使Rac1保持GTP結(jié)合狀態(tài),從而調(diào)節(jié)膠質(zhì)瘤細(xì)胞侵襲。IQGAP1的缺失和高級(jí)別膠質(zhì)瘤患者的長(zhǎng)期預(yù)后有重要聯(lián)系[18]。GEFs家族部分成員在膠質(zhì)瘤中高表達(dá)。如在高侵襲的膠質(zhì)瘤組織中吞噬遷移因子1(ELMO1)和胞質(zhì)分裂作用因子1(Dock180),明顯高于周圍正常組織,同時(shí)在膠質(zhì)瘤細(xì)胞系和人正常星形膠質(zhì)細(xì)胞中有相同結(jié)論。研究亦證明了ELMO1/Dock180抑制劑能抑制膠質(zhì)瘤侵襲[19]。此外,其余三種GEFs:Trio,Ect2和Vav3在膠質(zhì)母細(xì)胞瘤細(xì)胞中的表達(dá)高于低級(jí)膠質(zhì)瘤細(xì)胞,并且與患者預(yù)后有重要聯(lián)系。Trio和Ect2的降解能抑制膠質(zhì)瘤細(xì)胞生長(zhǎng)[20]。
腫瘤侵襲和藥物抵抗密切關(guān)聯(lián),他們通過(guò)共同的信號(hào)通路一起促進(jìn)疾病進(jìn)程,并導(dǎo)致治療失敗。例如,膠質(zhì)瘤細(xì)胞化療抵抗作用的提高來(lái)自于Bcl-2家族上游Rac1依賴的Akt2激活,由此提高腫瘤細(xì)胞生存能力。Akt2的激活導(dǎo)致MMP-9表達(dá)量的升高,促進(jìn)膠質(zhì)瘤細(xì)胞的遷移和侵襲。對(duì)膠質(zhì)瘤細(xì)胞的放射性照射會(huì)增強(qiáng)其侵襲性。TRAF2是TWEAK-Fn14軸SGEF-RhoG-Rac1促侵襲信號(hào)的上游,當(dāng)其在膠質(zhì)瘤細(xì)胞中減少時(shí)會(huì)抑制細(xì)胞生長(zhǎng),并賦予膠質(zhì)瘤細(xì)胞放療敏感性[21]。TRAF2傳導(dǎo)的信號(hào)不僅提高NF-κB信號(hào)通路的活性,還促進(jìn)JNK/SAPK激活,腫瘤炎性反應(yīng)、細(xì)胞遷移和放化療抵抗[22]。
在膠質(zhì)瘤發(fā)生發(fā)展過(guò)程中,相關(guān)信號(hào)通路會(huì)失調(diào)。Rho激酶是膠質(zhì)瘤侵襲過(guò)程中重要的調(diào)控因子,同時(shí)Rho激酶在膠質(zhì)瘤發(fā)生發(fā)展等環(huán)節(jié)中均有促進(jìn)作用。因此,Rho激酶可以作為膠質(zhì)瘤臨床靶向治療的作用靶點(diǎn)。選擇性的抑制Rac活性可以誘導(dǎo)膠質(zhì)瘤凋亡,但對(duì)正常星形膠質(zhì)細(xì)胞無(wú)影響[23],為針對(duì)Rac抑制的臨床藥物治療方案提供了理論依據(jù)。而且,以Rho激酶通路抑制劑作為膠質(zhì)瘤臨床藥物治療手段將會(huì)有較大前景。
1 Louis D N. Molecular pathology of malignant gliomas. Annu Rev Pathol, 2006, 1:97~117.
2 Zhai G G, Malhotra R, Delaney M, et al. Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol, 2006, 76(3): 227~237.
3 Boureux A, Vignal E, Faure S, et al. Evolution of the Rho family of ras~like GTPases in eukaryotes. Mol Biol Evol, 2007, 24(1): 203~216.
4 Rossman K L, Der C J, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 2005, 6(2): 167~180.
5 Ding F, Yin Z, Wang H R. Ubiquitination in Rho signaling. Curr Top Med Chem, 2011, 11(23): 2879~2887.
6 Boulter E, Garcia-Mata R, Guilluy C, et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol, 2010,12(5): 477~483.
7 Katoh H, Negishi M. RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature, 2003, 424(6947): 461~464.
8 Machacek M, Hodgson L, Welch C, et al. Coordination of Rho GTPase activities during cell protrusion. Nature, 2009, 461(7260): 99~103.
9 Etienne-Manneville S, Hall A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell,2001, 106(4): 489~498.
10 Nutt C L, Mani D R, Betensky R A, et al. Gene expression~based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res, 2003, 63(7): 1602~1607.
11 Tran N L, McDonough W S, Savitch B A, et al. Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res, 2006, 66(19): 9535~9542.
12 Tran N L, McDonough W S, Savitch B A, et al. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem, 2005, 280(5): 3483~3492.
13 Fortin S P, Ennis M J, Schumacher C A, et al. Cdc42 and the guanine nucleotide exchange factors Ect2 and trio mediate Fn14-induced migration and invasion of glioblastoma cells. Mol Cancer Res, 2012,10(7): 958~968.
14 Chuang Y Y, Tran N L, Rusk N, et al. Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res, 2004, 64(22): 8271~8275.
15 Wang Q, Wang J Y, Zhang X P, et al. RLIP76 is overexpressed in human glioblastomas and is required for proliferation, tumorigenesis and suppression of apoptosis. Carcinogenesis, 2013, 34(4): 916~926.
16 Kwiatkowska A, Didier S, Fortin S, et al. The small GTPase RhoG mediates glioblastoma cell invasion. Mol Cancer, 2012, 11:65.
17 Hirata E, Yukinaga H, Kamioka Y, et al. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J Cell Sci, 2012, 125(Pt 4):858~868.
18 McDonald K L, O'Sullivan M G, Parkinson J F, et al. IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J Neuropathol Exp Neurol, 2007, 66(5): 405~417.
19 Jarzynka M J, Hu B, Hui K M, et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res, 2007, 67(15): 7203~7211.
20 Salhia B, Tran N L, Chan A, et al. The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am J Pathol, 2008, 173(6): 1828~1838.
21 Zheng M, Morgan-Lappe S E, Yang J, et al. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res, 2008, 68(18): 7570~7578.
22 Natoli G, Costanzo A, Ianni A, et al. Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science, 1997, 275(5297): 200~203.
23 Senger D L, Tudan C, Guiot M C, et al. Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Cancer Res, 2002, 62(7): 2131~2140.
國(guó)家自然科學(xué)基金(81372683)
430060武漢大學(xué)人民醫(yī)院神經(jīng)外科