楊文彬, 耿玉清,*, 王冬梅
1 北京林業(yè)大學(xué)林學(xué)院, 北京 100083 2 北京林業(yè)大學(xué)水土保持學(xué)院, 北京 100083
漓江水陸交錯帶不同植被類型的土壤酶活性
楊文彬1, 耿玉清1,*, 王冬梅2
1 北京林業(yè)大學(xué)林學(xué)院, 北京 100083 2 北京林業(yè)大學(xué)水土保持學(xué)院, 北京 100083
水陸交錯帶是內(nèi)陸水生生態(tài)系統(tǒng)與陸地生態(tài)系統(tǒng)之間的功能界面區(qū),其包含了高地到低地直到水體的區(qū)域,是土壤有機質(zhì)源、匯和轉(zhuǎn)換器。土壤中有機物的分解以及營養(yǎng)物質(zhì)的轉(zhuǎn)化不僅影響到植物的生長,也對水體質(zhì)量產(chǎn)生間接影響。土壤酶幾乎參與土壤中有機物質(zhì)的分解與合成的全過程,直接或間接影響著土壤一系列的生物化學(xué)反應(yīng),對生態(tài)系統(tǒng)的物質(zhì)循環(huán)產(chǎn)生重要影響。不少學(xué)者圍繞農(nóng)田土壤、林地土壤以及濕地土壤探討了不同植被下酶活性的變異。水陸交錯帶植被種類豐富,周期性的淹水條件加劇了土壤性質(zhì)變異的復(fù)雜性。但目前水陸交錯帶不同植被類型土壤酶活性差異的研究不多。以漓江水陸交錯帶土壤為研究對象,對苔蘚、草本和灌叢3種植被類型下的土壤溶解性化學(xué)成分、4種土壤水解酶即糖苷酶、幾丁質(zhì)酶、亮氨酸氨基肽酶和磷酸酶以及2種氧化還原酶即酚氧化酶和過氧化物酶的活性,以及土壤性質(zhì)與酶活性之間的關(guān)系進行了研究。結(jié)果表明,苔蘚植被下土壤的糖苷酶和酚氧化酶活性顯著高于草本和灌叢,草本植被下土壤的過氧化物酶活性顯著高于苔蘚和灌叢,灌叢植被下土壤幾丁質(zhì)酶活性顯著高于苔蘚和草本,但不同植被類型的土壤亮氨酸氨基肽酶活性無顯著差異。相關(guān)分析表明,土壤水分含量與糖苷酶和酚氧化酶活性呈顯著正相關(guān),而與幾丁質(zhì)酶和堿性磷酸酶活性呈顯著負相關(guān)。土壤有機碳和易氧化碳均與糖苷酶和酚氧化酶活性呈極顯著負相關(guān),與幾丁質(zhì)酶活性呈顯著正相關(guān)。土壤溶解性有機碳與亮氨酸氨基肽酶和酚氧化酶呈顯著正相關(guān)。綜合認為,水陸交錯帶不同種類土壤酶在不同植被類型間的差異有別,土壤水分含量和土壤有機碳顯著影響土壤酶活性的變化。不同植被類型土壤酶活性的差異不僅與植被類型有關(guān),與水陸交錯帶微地形以及土壤性質(zhì)的空間異質(zhì)性也有密切關(guān)系,需運用長期控制試驗手段開展研究。
水陸交錯帶; 土壤水解酶; 土壤氧化還原酶; 土壤水分含量; 溶解性有機碳; 溶解性有機氮
水陸交錯帶也稱“河岸帶”,是處于水域生態(tài)系統(tǒng)和陸地生態(tài)系統(tǒng)共同作用的重要環(huán)境界面區(qū)[1-2],對維持生物多樣性、攔截污染物以及改善水體質(zhì)量有重要作用[3-4]。但人為對植被的破壞,不僅影響到水陸交錯帶的景觀,更重要的是影響到水體的質(zhì)量[5]。土壤是維持植被生長的介質(zhì),土壤中有機物的分解以及營養(yǎng)物質(zhì)的轉(zhuǎn)化不僅影響到植物生長的養(yǎng)分途徑,也對水質(zhì)產(chǎn)生間接影響[6]。
土壤酶是催化土壤有機物質(zhì)分解的蛋白質(zhì),主要來源于微生物、植物根系及動物的分泌釋放。它參與土壤中有機物質(zhì)轉(zhuǎn)化的全過程,直接或間接影響著土壤一系列的生物化學(xué)反應(yīng)[7-8],對生態(tài)系統(tǒng)的物質(zhì)循環(huán)產(chǎn)生重要影響[9-10]。植被可通過凋落物和根系分泌物對土壤酶活性產(chǎn)生影響[11]。已有不少學(xué)者圍繞農(nóng)田土壤[12-13]、林地土壤[14-15]以及濕地土壤[16-17]探討了不同植被下土壤酶活性的變異。水陸交錯帶土壤具有特殊的周期性淹水特征,在陸地和水域環(huán)境條件的交替作用下進行水陸生態(tài)系統(tǒng)間的物質(zhì)轉(zhuǎn)移和轉(zhuǎn)換[7-18],是土壤有機質(zhì)的源、匯和轉(zhuǎn)換器[19]。但是針對水陸交錯帶的不同植被類型下土壤酶活性變異的研究卻鮮有報道。
本文以漓江水陸交錯帶土壤為研究對象,主要探究不同植被類型下土壤酶活性的差異以及土壤因子對酶活性的影響。不同植被類型土壤,是基于自然植被種類的選擇,是長期適應(yīng)立地環(huán)境的結(jié)果。在水陸交錯帶,高程梯度的變化能直觀反映地形梯度以及土壤基本性質(zhì)的變異[20]。土壤酶種類豐富,本研究選取4種水解酶和2種氧化還原酶。其中糖苷酶(EC 3.2.1.21)能水解纖維素,是與土壤有機碳轉(zhuǎn)化密切相關(guān)的酶,且國外研究較普遍;幾丁質(zhì)酶(EC3.2.1.52)與有機碳和氮的轉(zhuǎn)化密切相關(guān),其功能是催化幾丁質(zhì)轉(zhuǎn)化為氨基糖;亮氨酸氨基肽酶(EC 3.4.11.1),參與土壤蛋白質(zhì)的水解,其作用是從肽鏈的末端水解, 形成氨基酸如亮氨酸和丙氨酸;堿性磷酸酶(EC3.1.3.1)在堿性土壤中占優(yōu)勢,參與土壤有機磷的轉(zhuǎn)化,可將磷酸脂類水解形成磷酸及其他產(chǎn)物[21]。多酚氧化酶(EC 1.10.3.2)和過氧化物酶(EC 1.11.1.7)均為氧化還原酶,它們參與木質(zhì)素的分解和芳香族化合物的氧化,影響土壤碳的積累[22]。本研究結(jié)果可為水陸交錯帶環(huán)境條件下土壤有機質(zhì)轉(zhuǎn)化過程的研究提供理論依據(jù),同時也可進一步豐富我國土壤酶的研究內(nèi)容。
研究區(qū)域位于漓江桂林至陽朔河段,地處 E 109°45′—110°40′、N 24°18′—25°41′之間[23]。氣候?qū)僦衼啛釒駶櫦撅L(fēng)氣候,全年光照充足,平均氣溫17.8—19.1 ℃,年降雨量1 814—1 941 mm,年蒸發(fā)量1 377—1 857 mm,雨熱基本同期;年徑流量豐富但全年分布不均,水位在豐水期和枯水期有顯著的不同。由于人為對原生植被的干擾破壞,目前植物區(qū)系為次生性質(zhì)[24]?,F(xiàn)存的植被種類主要有楓楊(Pterocaryatonkinensis)、水楊梅(Geumaleppicum)、黃荊(Vitexnegundo)和一葉萩(Securinegasuffruticosa)等木本植物;草本植被主要有狗牙根(Cynodondactylon)、水蓼(PolygonumhydropiperL.)和葎草(Humulusscandens)等。在地勢低洼或靠近江水的區(qū)域主要是以地錢(Marchantiapolymorpha)、葫蘆蘚(Funariahygrometrica)為主的苔蘚植物。水陸交錯帶地形破碎,經(jīng)過江水的持續(xù)沖刷以及土壤的淤積,土層厚度分布不均,一般在10—20 cm左右,厚的地方可達50 cm。
2.1 樣品采集
研究樣地位于桂林市雁山區(qū)拓木鎮(zhèn)龍門村,地處E 110°24′19″、N 25°10′50″,海拔高度145 m。據(jù)資料顯示,漓江流域于9月至次年2月為枯水期,水陸交錯帶的寬度范圍一般10—30 m[20]。經(jīng)過野外踏查發(fā)現(xiàn),水陸交錯帶存在比較明顯的植被梯度變化。距離水邊近、地勢較低洼的地方植被多為苔蘚;距離水邊稍遠、地勢平坦的地方植被主要是草本;而遠離水邊地勢較高的地方植被類型為灌叢,在灌叢中有呈零星分布的喬木。其中苔蘚植被以地錢為主,也有零星分布的狗牙根,其平均高度為3 cm,土層厚度5—10 cm;草本植被以狗牙根為主,葎草和水蓼分布不均勻,植被平均高度為20 cm,土層厚度10—20 cm;灌叢植被則以水楊梅和一葉秋為主,其間有楓楊,土層厚度15—70 cm。
水陸交錯帶不同類型的植被呈零散分布。在2012年11月按照相近的原則,分別劃定苔蘚、草本和灌叢3種植被類型的樣地,其面積分別為2 m×2 m,5 m×5 m和5 m×5 m。每種類型的樣地按照植物蓋度和多樣性相似的原則設(shè)有6次重復(fù)。對于苔蘚和草本植被類型樣地,首先除去地上部分,然后采集0—10 cm土層的土壤樣本3份,混合成一個分析樣本;對于灌叢植被類型樣地,在植物附近采集0—10 cm土層的土壤樣本3份,混合成一個分析樣本。采集后的土樣經(jīng)除去石塊和根系后,一部分裝入布袋,經(jīng)風(fēng)干后磨細,供土壤理化性質(zhì)分析(表1);另一部分裝于聚乙烯自封袋,并放置于冰盒中帶回實驗室,供溶解性化學(xué)成分和酶活性分析。
表1 樣地基本概況
2.2 研究方法
土壤水解酶活性的測定均采用對硝基苯酚(pNP)法[27-28]。分別以對硝基苯-β-D-吡喃葡萄糖苷、對硝基苯酚乙酰基氨基葡萄糖苷、L-亮氨酸-4-硝基苯胺和對硝基苯磷酸二鈉為底物測定糖苷酶、幾丁質(zhì)酶、亮氨酸氨基肽酶以及磷酸酶的活性。多酚氧化酶和過氧化物酶的測定分別以左旋多巴(DOPA)和DOPA加過氧化氫(H2O2)為底物[27],吸光系數(shù)用酪氨酸酶進行校正[29]。依據(jù)研究土壤 pH值的范圍,本研究選擇pH值為7.5的Tris緩沖液。在土壤酶測定的同時分別做無土空白試驗和無底物對照試驗。土壤有機碳是土壤研究的通用指標(biāo),基于有機碳基表示的酶活性可以反映微生物群落的特征,這一表示方法在國外也普遍應(yīng)用[30-31]。在本研究中,水解酶活性以每小時每克有機碳催化產(chǎn)生的對硝基苯酚的微摩爾濃度(μmol g-1有機碳h-1)來表示。氧化還原酶采用每小時每克有機碳氧化底物的微摩爾濃度(μmol g-1有機碳h-1)表示。
2.3 數(shù)據(jù)處理
所有數(shù)據(jù)使用Excel軟件進行整理,應(yīng)用SPSS for windows 軟件19.0對數(shù)據(jù)進行分析。其中,土壤性質(zhì)和土壤酶活性的差異顯著性采用One-way ANOVA分析,土壤性質(zhì)參數(shù)對土壤酶活性的相關(guān)分析采用Pearson法。
3.1 不同植被類型土壤水分含量的差異
圖1 不同植被類型下水分含量的差異
土壤水分的梯度變化是水陸交錯帶的主要特征之一。從圖1來看,不同植被類型之間土壤水分含量的存在顯著差異。其中苔蘚植被下土壤水分含量為33.60%,顯著高于草本植被下以及灌叢植被下的土壤水分含量(P<0.05)。草本植被土壤水分含量為30.11%,比灌叢植被下土壤水分含量高17.48%。
3.2 不同植被類型土壤有機質(zhì)和易氧化碳的差異
土壤有機碳是反映土壤質(zhì)量的重要指標(biāo),在不同植被類型間的差異十分顯著(P<0.05)。從表2可知,灌叢植被土壤中土壤有機碳含量為13.09 g/kg,比草本植被高43.85%,比苔蘚植被高99.24%。土壤易氧化碳的變化趨勢與土壤有機碳一致,即灌叢植被土壤中含量最高,為726 mg/kg,而苔蘚植被土壤含量最低為706 mg/kg。
3.3 不同植被類型土壤溶解性化學(xué)成分的基本性質(zhì)
土壤溶解性化學(xué)成分是最活躍的組分,對營養(yǎng)元素的生物地球化學(xué)過程以及微生物的生長代謝過程有著重要的作用。從表3來看,不同植被類型之間土壤溶解性化學(xué)成分有一定的差異。苔蘚植被土壤溶解性有機碳83.90 mg/kg,雖比草本植被高12.69%,但二者差異不顯著。灌叢植被下土壤溶解性有機碳為48.14 mg/kg,顯著低于苔蘚和草本植被的溶解性有機碳含量。草本植被土壤溶解性總氮為5.85 mg/kg,顯著地高于灌叢和苔蘚植被;而苔蘚植被的溶解性總氮為4.18 mg/kg,顯著高于灌叢。土壤溶解性有機氮含量在不同植被類型間的差異與土壤溶解性總氮一致。灌叢植被土壤銨態(tài)氮含量顯著高于苔蘚植被土壤,但與草本植被土壤無顯著差異。灌叢植被土壤硝態(tài)氮含量為0.12 mg/kg,但與其它植被無顯著差異。
表2 不同植被類型下土壤有機碳的含量
表3 不同植被類型下土壤溶解性化學(xué)成分的基本性質(zhì)
3.4 不同植被類型土壤酶活性的差異
表4表明不同植被類型之間土壤酶活性有一定的差異。其中土壤糖苷酶活性在苔蘚植被土壤中最高,為13.38 μmolpNP g-1有機碳h-1,顯著高于草本和灌叢植被下的酶活性;但草本和灌叢植被下的酶活性差異未達到顯著水平。灌叢植被土壤幾丁質(zhì)酶活性為3.00 μmolpNP g-1有機碳h-1,顯著高于其它兩種植被類型土壤,而草本植被土壤幾丁質(zhì)酶活性比苔蘚植被并無顯著差異。三種植被類型的土壤亮氨酸氨基肽酶活性均無顯著性差異。就土壤堿性磷酸酶而言,苔蘚植被類型下的土壤堿性磷酸酶活性為3.66 μmolpNP g-1有機碳h-1,顯著低于草本和灌叢植被類型;但灌叢與草本植被類型土壤堿性磷酸酶活性差異不顯著。酚氧化酶活性在不同植被類型土壤中均有顯著性差異。其中苔蘚植被的酚氧化酶活性為7.50 μmolDOPA g-1有機碳h-1,是灌叢植被土壤酶活性的1.92倍;草本植被土壤酚氧化酶活性為5.43 μmolDOPA g-1有機碳h-1,顯著高于灌叢植被類型。就過氧化物酶而言,在草本植被類型中為11.07 μmolDOPA g-1有機碳h-1,顯著高于其它兩種植被類型,而苔蘚植被與草本植被下土壤過氧化物酶活性無顯著差異。
4.1 植被類型對土壤酶活性的影響
水陸交錯帶所形成的特定空間是眾多植物的棲息地,植物種類數(shù)量要明顯高于其它生態(tài)系統(tǒng)[32-33]。不同類型的植被通過凋落物和根系分泌物來影響土壤微生物,從而影響土壤酶活性的高低。Ekaterina發(fā)現(xiàn)草本植被下土壤糖苷酶、幾丁質(zhì)酶、磷酸酶、氨基肽酶和酚氧化酶活性高于在苔蘚和地衣[34]。劉存歧也發(fā)現(xiàn)草本植被土壤堿性磷酸酶活性和過氧化物酶活性高于藻類苔蘚帶[35]。劉艷等發(fā)現(xiàn)植被類型由草本演替為灌叢和喬木林,土壤酶活性也在發(fā)生顯著的變化[36]。綜合來看,不同植被對土壤酶活性的影響有顯著差異。
表4 不同植被類型下的土壤酶活性
本研究發(fā)現(xiàn),不同酶種類在不同植被類型間的差異有別,其中苔蘚植被下土壤的糖苷酶和酚氧化酶活性顯著高于草本和灌叢。這表明苔蘚植被有利于有機物質(zhì)的水解。表2中苔蘚植被土壤有機碳含量顯著低于灌叢植被,但表3中的土壤溶解性有機碳卻顯著高于灌叢植被。這充分說明苔蘚植被下,土壤微生物對有機碳的利用率高,進而對土壤復(fù)雜有機碳轉(zhuǎn)化的速度要高于灌叢土壤。由于幾丁質(zhì)酶和亮氨酸氨基肽酶均參與有機氮化合物的轉(zhuǎn)化,因此酶活性的高低可影響無機氮含量的變化。研究結(jié)果顯示灌叢植被下土壤幾丁質(zhì)酶活性顯著高于苔蘚和草本,但亮氨酸氨基肽酶活性與苔蘚和草本植被沒有顯著差異;另外,土壤溶解性化學(xué)成分的數(shù)據(jù)表明,灌叢植被的有機氮含量比其它植被類型低,但無機氮的含量與其它植被無顯著差異。這說明在灌叢植被土壤中有機氮的轉(zhuǎn)化速度快。因此,幾丁質(zhì)酶在灌叢土壤有機氮的轉(zhuǎn)化中的作用要高于亮氨酸氨基肽酶。
4.2 土壤性質(zhì)對酶活性的影響
土壤性質(zhì)可通過不同途徑影響土壤微生物的生長發(fā)育進而影響酶的分泌。在水陸交錯帶,由于地形以及水位的變化,使得土壤水分發(fā)生劇烈的變化。土壤水分被認為是影響酶活性的主要因子[37]。Hackl等認為土壤濕度與土壤水解酶呈顯著負相關(guān)關(guān)系[38];但Waldrop發(fā)現(xiàn)土壤水分的增加會降低部分酶的活性,其中酚氧化酶和過氧化物酶活性降低顯著,而水解酶活性變化不明顯[39]。因此,土壤水分對酶活性的影響是復(fù)雜的。本研究中糖苷酶和酚氧化酶活性是隨著水分含量的增加而升高的(表5),幾丁質(zhì)酶和堿性磷酸酶活性則是隨著水分含量的增加而降低,其它酶活性與水分含量并無相關(guān)性。
表5 土壤性質(zhì)參數(shù)與酶活性相關(guān)關(guān)系
土壤有機碳是土壤微生物的能源和營養(yǎng)源,土壤易氧化碳是有機碳中的活性部分,對土壤生物學(xué)性質(zhì)的影響較有機碳指標(biāo)敏感[40]。有學(xué)者認為較高的有機碳含量能促進糖苷酶、磷酸酶以及幾丁質(zhì)酶的合成[41-42,16],也有研究認為土壤有機碳與β-糖苷酶、幾丁質(zhì)酶和酚氧化酶不存在相關(guān)性[43]。這與有機碳是土壤長期積累的產(chǎn)物,而土壤酶活性受環(huán)境因素的影響而產(chǎn)生短時間的變化有關(guān)[44]。有關(guān)易氧化碳與酶活性的相關(guān)性的研究相對較少。有研究表明,磷酸酶與易氧化碳呈顯著正相關(guān)[16]。也有研究表明,易氧化碳與酚氧化酶呈正相關(guān),而與過氧化物酶呈負相關(guān)[45]。但本研究中土壤糖苷酶和酚氧化酶活性隨著有機碳和易氧化碳的增加而降低,幾丁質(zhì)酶活性隨著有機碳和易氧化碳的增加而增加,其它酶活性與有機碳和易氧化碳沒有相關(guān)性。
土壤溶解性碳氮的生物有效性可通過影響微生物來影響土壤酶活性[46-47];另一方面,土壤溶解性碳氮是復(fù)雜大分子如纖維素和蛋白質(zhì)經(jīng)酶催化的產(chǎn)物。從理論上推斷,土壤溶解性碳氮與酶活性存在一定的相關(guān)性。一些研究表明糖苷酶和酸性磷酸酶與溶解性有機碳有顯著正相關(guān)[16],但也有研究發(fā)現(xiàn)溶解性碳氮與酶活性并沒有顯著的相關(guān)性[44]。本研究表明,土壤溶解性有機碳與亮氨酸氨基肽酶呈極顯著的正相關(guān),與酚氧化酶呈顯著正相關(guān);溶解性有機氮與過氧化物酶均呈極顯著正相關(guān);但土壤溶解性碳氮與幾丁質(zhì)酶、糖苷酶和堿性磷酸酶相關(guān)性均不顯著。此外,除銨態(tài)氮與酚氧化酶有顯著負相關(guān)性外,無機氮與各種酶活性之間的關(guān)系均不顯著。
(1) 不同種類的酶活性在不同植被類型間的差異有一定的區(qū)別,但這種區(qū)別并沒有一致的規(guī)律。研究表明苔蘚植被下土壤的糖苷酶和酚氧化酶活性顯著高于草本和灌叢,這說明苔蘚植被土壤有利于有機碳的轉(zhuǎn)化。由于草本植被的過氧化物酶活性顯著高于苔蘚和灌叢,因此,草本植被可促進土壤有機碳的積累。灌叢植被下土壤幾丁質(zhì)酶活性顯著高于苔蘚和草本,這表明灌叢植被下土壤中幾丁質(zhì)酶水解的速度要高于其它植被類型。針對不同植物類型土壤影響有機質(zhì)轉(zhuǎn)化的差異,豐富植物的多樣性可加速土壤的生態(tài)過程。
(2) 不同植物類型間土壤酶活性的差異受土壤多因子的影響。本研究表明土壤水分含量是影響水陸交錯帶土壤酶活性的主要因素,它有利于糖苷酶和酚氧化酶活性的提高,但抑制幾丁質(zhì)酶和堿性磷酸酶活性。其次,土壤有機碳也影響著土壤酶活性的變化,但有機碳類型不同,影響的程度也不一致。土壤總有機碳和易氧化碳可以誘導(dǎo)幾丁質(zhì)酶的生成,但降低了糖苷酶、酚氧化酶的活性;而土壤溶解性有機碳的升高,可誘導(dǎo)亮氨酸氨基肽酶和酚氧化酶活性的提高。土壤溶解性有機氮則能提高過氧化物酶的活性,但對其它酶活性均無影響。
在漓江水陸交錯帶,由于水的沖刷引起地表微地形起伏不定,引起了土壤性質(zhì)的空間變異。土壤性質(zhì)的變異,又是影響酶活性的主要因素。因此不同植被類型之間酶活性的差異,不僅與植被類型有關(guān),也與微地形以及土壤性質(zhì)的空間異質(zhì)性有密切關(guān)系。對不同植被類型影響土壤酶活性的研究,需運用土壤控制試驗手段,開展長期研究。
[1] Holmes P M, Esler K J, Richardson D M, Witkowski E T F. Guidelines for improved management of riparian zones invaded by alien plants in South Africa. South African Journal of Botany, 2008, 74(3): 538-552.
[2] Hoffmann C C, Berg P, Dahl M, Larsen S E, Andersen H E, Andersen B. Groundwater flow and transport of nutrients through a riparian meadow-Field data and modeling. Journal of Hydrology, 2006, 331(1-2): 315-335.
[3] Theriota J M, Conkleb J L, Pezeshkic S R, DeLaune R D, White J R. Will hydrologic restoration of Mississippi River riparian wetlands improve their critical biogeochemical functions? Ecological Engineering, 2013, 60: 192-198.
[4] Lind L P D, Audet J, Tonderski K, Hoffmann C C. Nitrate removal capacity and nitrous oxide production in soil profiles of nitrogen loaded riparian wetlands inferred by laboratory microcosms. Soil Biology & Biochemistry, 2013, 60: 156-164.
[5] Andrews D M, Barton C D, Kolka R K, Rhoades C C, Dattilo A J. Soil and water characteristics in restored canebrake and forests riparian zones. Journal of the American water resources association, 2011, 47(4): 772-784.
[6] Kang H, Freeman C, Lee D, Mitsch W J. Enzyme activities in constructed wetlands: implication for water quality amelioration. Hydrobiologia, 1998, 368(1-3): 231-235.
[7] Hill B H, Elonen C M, Seifert L R, May A A, Tarquinio E. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecological Indicators, 2012, 18: 540-551.
[8] Shackle V, Freeman C, Reynolds B. Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands. Science of the Total Environment, 2006, 361(1-3): 18-24.
[9] Rutigliano F A, Castaldi S, D′Ascoli R, Papa S, arforaa A, Marzaioli R, Fiorettob A. Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment. Applied Soil Ecology, 2009, 43(1): 40-46.
[10] Freeman C, Liska G, Ostle N J, Lock M A, Hughes S, Reynolds B, Hudson J. Enzymes and biogeochemical cycling in wetlands during a simulated drought a simulated drought. Biogeochemistry, 1997, 39(2): 177-187.
[11] Waldrop M P, Harden J W, Turetsky M R, Petersen D G, McGuire A D, Briones M J I, Churchill A C, Doctor D H, Pruett L E. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska. Soil Biology and Biochemistry, 2012, 50: 188-198.
[12] 楊敏芳, 朱利群, 韓新忠, 顧克軍, 胡乃娟, 張振文, 卞新民. 耕作措施與秸稈還田對稻麥兩熟制農(nóng)田土壤養(yǎng)分、微生物生物量及酶活性的影響. 水土保持學(xué)報, 2013, 27(2): 272-275, 281-281.
[13] 顧美英, 徐萬里, 茆軍, 張志東, 唐光木, 葛春輝. 新疆綠洲農(nóng)田不同連作年限棉花根際土壤微生物群落多樣性.生態(tài)學(xué)報, 2012, 32(10): 3031-3040.
[14] Vasconcellos R L F, Bonfim J A, Andreote F D, Mendes L W, Baretta D, Cardoso E J B N. Microbiological indicators of soil quality in a riparian forest recovery gradient. Ecological Engineering, 2013, 53: 313-320.
[15] 孔愛輝, 耿玉清, 余新曉. 北京低山區(qū)栓皮櫟林和油松林土壤酶活性研究. 土壤, 2013, 45(2): 264-270.
[16] 萬忠梅, 宋長春, 郭躍東, 王麗, 黃靖宇. 毛苔草濕地土壤酶活性及活性有機碳組分對水分梯度的響應(yīng).生態(tài)學(xué)報, 2008, 28(12): 5980-5986.
[17] 吳俐莎, 唐杰, 羅強, 湯博, 聶遠洋, 王曉彤, 楊志榮, 孫群, 馮甦, 張杰. 若爾蓋濕地土壤酶活性和理化性質(zhì)與微生物關(guān)系的研究. 土壤通報, 2012, 43(1): 52-59.
[18] Fellows C S, Hunter H M, Eccleston C E A, Hayr R W D, Rassam D W, Beard N J, Bloesch P M. Denitrification potential of intermittently saturated floodplain soils from a subtropical perennial stream and an ephemeral tributary. Soil Biology and Biochemistry, 2011, 43(2): 324-332.
[19] Cabezas A, Comín FA. Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for their ecological restoration. Ecological Engineering, 2010, 36(5): 640-652.
[20] 李揚, 王冬梅, 信忠保. 漓江水陸交錯帶植被與土壤空間分異規(guī)律. 農(nóng)業(yè)工程學(xué)報, 2013, 29(6): 121-128.
[21] 耿玉清, 王冬梅. 土壤水解酶測定方法的研究進展. 中國農(nóng)業(yè)生態(tài)學(xué)報, 2012, 20(4): 387-394.
[22] Sinsabaugh R L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 2010, 42(3): 391-404.
[23] 劉金榮, 馮紅, 俞秀蘭, 宋桂金, 葉青. 歷史上漓江(桂江)水系名稱的變化淺議. 中國巖溶, 2003, 22(1): 77-82.
[24] 韋毅剛. 桂林漓江沿岸植物區(qū)系特點及其與景觀的關(guān)系. 廣西植物, 2004, 24(6): 508-514.
[25] Weil R R, Islam K R, Stine M A, Gruver J B, Samson-Liebig S E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 2003, 18(1): 3-17.
[26] Chen C R, Xu Z H, Keay P, Zhang S. L. Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation. Australian Journal of Soil Research, 2005, 43(4): 515-523.
[27] Sinsabaugh R L, Klug M J, Collins H P, Yeager P E, Petersen S O. Characterizing soil microbial communities //Robertson G P, Coleman D C, Bledsoe C S, Sollins P. Standard Soil Methods for Long-term Ecological Research. New York: Oxford University Press, 1999: 329-338.
[28] Verchot LV, Borelli T. Application ofpara-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 2005, 37(4): 625-633.
[29] AlisonS D, Vitousek P M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 2004, 36(3): 285-296.
[30] Sinsabaugh R L, Lauber C L, Weintraub M N, Ahmed B, Allison S D, Crenshaw C, Contosta A R, Cusack D, Frey S, Gallo M E, Gartner T B, Hobbie S E, Holland K, Keeler B L, Powers J S, Stursova M, Takacs-Vesbach C, Waldrop M P, Wallenstein M D, Zak D R, Zeglin L H. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264.
[31] McDaniel M D, Kaye J P, Kaye M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology and Biochemistry, 2013, 56: 90-98.
[32] Sturtevant B R. A model of wetland vegetation dynamics in simulated beaver impoundments. Ecological Modeling, 1998, 112(2-3): 195-225.
[33] Mander ü, Kuusemets V, L?hmus K, Mauring T. Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecological Engineering, 1997, 8(4): 299-324.
[34] Sedia E G, Ehrenfeld J G. Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biology and Fertility of Soils, 2006, 43(2): 177-189.
[35] 劉存歧, 陸健健, 李賀鵬. 長江口潮灘濕地土壤酶活性的陸向變化與環(huán)境因子的相關(guān)性. 生態(tài)學(xué)報, 2007, 27(9): 3663-3669.
[36] 劉艷, 馬風(fēng)云, 候龍魚, 崔曉東. 黃河三角洲沖積平原濕地土壤尿酶活性與養(yǎng)分通徑分析. 華中農(nóng)業(yè)大學(xué)學(xué)報, 2007, 26(3): 327-329.
[37] Brockett B F T, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 2012, 44(1): 9-20.
[38] Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology and Biochemistry, 2005, 37(4): 661-671.
[39] Waldrop M P, Firestone M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry, 2004, 67(2): 235-248.
[40] Mirsky S B, Lanyon L E, Needelman B A. Evaluating soil management using particulate and chemically labile soil organic matter fractions. Soil Science Society of America Journal, 2003, 72 (1): 180-185.
[41] Baldrian P, Tr?gl J, Frouz J. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, 2008, 40(9): 2107-2115.
[43] Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agro-ecosystems: Correlations with soil enzyme activity and carbon and nitrogen mineralization. Applied Soil Ecology, 2010, 46(3): 426-435.
[44] Shi W, Dell E, Bowman D, Iyyemperumal K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288(1-2): 285-296.
[45] Geng Y Q, Dighton J, Gray D. The effects of thinning and soil disturbance on enzyme activities under pitch pine soil in New Jersey Pinelands. Applied Soil Ecology, 2012, 62: 1-7.
[46] Rees R M, Parker J P. Filtration increases the correlation between water extractable organic carbon and soil microbial activity. Soil Biology and Biochemistry, 2005, 37(12): 2240-2248.
[47] Kalbitz K, Schmerwitz J, Schwesig D, Matzner E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 2003, 113(3/4): 273-291.
The activities of soil enzyme under different vegetation types in Li River riparian ecotones
YANG Wenbin1, GENG Yuqing1,*, WANG Dongmei2
1CollegeofForestry,BeijingForestryUniversity,Beijing100083,China2SchoolofSoilandWaterConservation,BeijingForestryUniversity,Beijing100083,China
“Riparian ecotone” refers to the functional-frontal-zone between an internal water-ecosystem and land-ecosystem, and riparian ecotones-as the sinks, sources or transformers of soil organic matter-contain the interference from the uplands, lowlands and aquatic zone. Riparian ecotones had played a critical role in regulating the conponents of chemical composition between terrestrial and aquatic zones. In addition, they have also had a significant effect on maintaining biodiversity, preventing pollutants from the land ecosystem entering the aquatic zone, and improving water quality or any other aspects. Soil offered essential nutrient substance for the growth of vegetation. The decomposition of organic matter and the transformation of nutrient substances in the soil have not only influenced the growth of vegetation but have also had an indirect effect on the quality of the water. The partial involvement of soil enzymes throughout process of soil organic matter decomposition and synthesis, has influenced all the biochemical reactions of soil, directly or indirectly, and has had a great impact on material circulation within the ecological system. Much debate has focused on the variation in soil enzyme activities with different vegetation types, e.g., farmland, forest land and wetland. Riparian ecotones have diverse vegetation types, complicated by the variation in soil properties aggravated by periodic flooding conditions. However, studies aimed at soil enzyme activity under different vegetation communities in riparian ecotones have been scare. In the riparian ecotones of the Lijiang River, soil water-soluble chemical composition, four types of soil hydrolase(glycosidase, chitinase, leucine aminopeptidase and phosphatase)and two types of oxidoreductase (phenol oxidase and peroxidase) were measured in relation to three vegetation types: mosses, herbs and shrubs. The relationship between the soil properties and enzyme activities was also studied. The results showed:(1) that the activity of soil glycosidase and phenol oxidase under mosses was significantly greater than that under herbaceous and shrubs;(2)that the soil glucosaminidase activity under shrubs was significantly higher than that under mosses and herbs;(3)that the peroxides activity under herbs was significantly higher than that under mosses and shrubs; and that there was no obvious difference in the activity of leucine amino peptidase among the three vegetation types. Among the six enzyme activities examined, soil water content was positively related to the activity of glucosidase and phenol oxidase, and negatively related to the activity of glucosaminidase and alkaline phosphatases. Soil organic carbon and readily oxidizable carbon were negatively associated with glucosidase and phenol oxidase, but positively associated with glucosaminidase. Dissolved organic carbon in soil was positively related to the activity of both glucosidase and phenol oxidase. In short, there were differences between different types of soil enzymes under different vegetation types in riparian ecotones, and soil water content and soil organic carbon significantly influenced the change in soil enzyme activities. In riparian ecotones enriching the plant diversity can accelerate soil ecological processes. The difference in soil enzyme activities under different vegetation communities was not only related to the vegetation types, but also to the micro-topography and spatial heterogeneity of the soil properties in riparian ecotones. Future research on soil enzyme activities under different kinds of vegetation types in the soil of riparian ecotones of the Lijiang River should incorporate long-term control-tests.
riparian ecotone; soil hydrolase; soil oxidoreductase; soil water content; dissolved organic carbon; dissolved organic nitrogen
國家“十二五”科技支撐計劃項目(2012BAC16B03)
2014-01-14;
2014-06-25
10.5846/stxb201401140107
*通訊作者Corresponding author.E-mail: gengyuqing@bjfu.edu.cn
楊文彬, 耿玉清, 王冬梅.漓江水陸交錯帶不同植被類型的土壤酶活性.生態(tài)學(xué)報,2015,35(14):4604-4612.
Yang W B, Geng Y Q, Wang D M.The activities of soil enzyme under different vegetation types in Li River riparian ecotones.Acta Ecologica Sinica,2015,35(14):4604-4612.