• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

    2015-01-16 01:21:19MingchoLiXinyuGuoJonthnShiZeioZhu
    Water Science and Engineering 2015年4期

    Ming-cho Li*,Xin-yu GuoJonthn Shi,Ze-io Zhu

    aState Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,PR China

    bCollege of Engineering,Louisiana State University,Baton Rouge,LA 70803,USA

    Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

    Ming-chao Lia,*,Xin-yu Guoa,Jonathan Shib,Ze-biao Zhua

    aState Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,PR China

    bCollege of Engineering,Louisiana State University,Baton Rouge,LA 70803,USA

    This study used the fnite element method(FEM)to analyze the stress feld and seepage feld of a roller-compacted concrete(RCC)dam,with an upstream impervious layer constructed with different types of concrete materials,including three-graded RCC,two-graded RCC,conventional vibrated concrete(CVC),and grout-enriched vibrated RCC(GEVR),corresponding to the design schemes S1 through S4.It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and food-check level.Stress feld analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel,the maximum compressive stress occurs near the dam toe,and the stress distributions in the four schemes can satisfy the stress control criteria.Seepage feld analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region,and that the calculated results of daily seepage fow under the steady seepage condition in these two schemes are about 30%-50%lower than those in the other two schemes,demonstrating that CVC and GEVR show better anti-seepage performance.The results provide essential parameters such as the uplift pressure head and seepage fow for physical model tests and anti-seepage structure selection in RCC dams. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    RCC gravity dam;Concrete partition;Impervious layer;FEM;Seepage feld;Stress feld

    1.Introduction

    A roller-compacted concrete(RCC)dam is constructed with the roller-compacted placement method in thin layers of dry lean concrete,composed of mixed sand aggregate and cement(USACE,1992).Its construction process is much simpler and faster than that of a conventional concrete dam (Yang and Shi,2010).At present,450 RCC dams over 30 m are operating in over 30 countries(Hansen,1997;Nagayama and Jikan,2003;Jia,2007).However,some RCC dams haveshown serious seepage problems,such as the Willow Creek RCC Gravity Dam,with a height of 56 m,which was built in 1982 in the USA(HWSTI,1987),and the Xibing RCC Gravity Dam,with a height of 63.5 m,which was built in 1985 in China(Ye et al.,2005).

    Although the permeability of RCC is very low and comparable to conventional concrete,the seepage features of an RCC dam is different from those of a conventional concrete dam(Banthia et al.,1992;Chai et al.,2005).Rolling and compacting dry lean concrete layer by layer causes the permeability of construction interfaces and joints to be relatively high,and seepage channels may even form in the dam body.In order to overcome this problem,an upstream impervious structure must be properly designed and constructed(Hong et al.,2014).Avariety of impervious structures have been used in RCC dams around the world.For example, some RCC dams were constructed with waterproofmembranes in the USA(Hansen,1997).In Japan,a layer of conventional vibrated concrete(CVC),used as an impervious layer,with a thickness of 2-3 m,has typically been poured on the upstream face of an RCC dam(Nagayama and Jikan, 2003).Polyvinyl chloride flms were used in the Trigomil Dam in Mexico and in the Copperfeld Dam in Australia (Jansen,1989).Grout-enriched vibrated RCC(GEVR)has been widely used in anti-seepage structures in RCC dams in China(Sun et al.,2004).

    Based on design functions,such as seepage control,crack resistance,and frost resistance,a gravity dam body can be partitioned into different parts(Zhou and Dang,2011),as shown in Fig.1.

    The fnite element method(FEM)is currently used to simulate complex geometrical shapes and boundary conditions,and two-dimensional(2D)or three-dimensional(3D) models are used to analyze the thermal stress and cracks in concrete dams.Luna and Wu(2000)developed a 3D fnite element program to simulate the temperature and stress changes in the construction process of an RCC gravity dam. Chen et al.(2003)conducted a 3D thermal stress analysis of a high RCC dam and predicted the internal temperature distribution of the dam body.Bayagoob et al.(2010)performed a thermal stress analysis of an RCC arch dam by taking into account the construction sequence,environmental temperature change,and wind speed.Gaspar et al.(2014)modeled the temperature feld of an RCC gravity dam based on FEM simulation.Some studies have been performed focusing on cracking analysis.Cervera et al.(2000)assessed the risk of tensile cracking through numerical simulation of the construction process of an RCC dam.Li et al.(2010)used a nonlinear FEM to obtain the crack length of the foundation surface of a gravity dam.Cao et al.(2012)simulated thermal cracks in a concrete overfow dam using the 3D FEM.Zhang et al.(2013)conducted a seismic cracking analysis of a concrete gravity dam based on an extended FEM.However, research on numerical analysis of the impervious layer in an RCC dam is limited.Chai et al.(2005)proposed a mathematical model for analysis of coupled seepage and stress felds in RCC dams.Xie and Chen(2005)used a 3D fnite element relocating mesh method to simulate the temperature feld of impervious layers of different thicknesses,constructed with different materials,in an RCC dam.

    In practice,there are some limitations in the design scheme of an upstream impervious layer determined by model experiments or analogies.The numerical simulation analysis method can help contrast and evaluate design schemes.The purpose of this research is to compute and evaluate the stress and seepage felds of different anti-seepage designs in an RCC dam.It covers the following issues:(1)analysis of concrete materials used in four different anti-seepage design schemes, (2)stress feld analysis of the four schemes,and(3)evaluation of the anti-seepage effect of the four schemes.

    2.Anti-seepage design schemes of RCC dam

    The Huangdeng RCC Gravity Dam,currently under construction and located on the Lancang River in Southwest China,was selected as a case study.Its maximum height is 203 m,and the crest length is 464 m.The dam body is divided into 20 sections,as shown in Fig.2,of which sections 1 through 7 and sections 12 through 15 are the retaining sections;sections 8 and 11 are designed for food discharge,with an outlet at the bottom in each section;sections 9 and 10 are also discharge sections;and sections 16 through 20 are the water intake sections.

    Four anti-seepage design schemes were studied for the project,as shown in Table 1.The concrete materials used in parts I,IV,V,and VI,were the same for each of the schemes, with the main difference lying in the concrete materials used in parts II and III.There was no special design for the impervious layer in scheme S1,and three-graded RCC were used in parts II and III.The impervious layer was specially designed in schemes S2,S3,and S4,in which two-gradedRCC,CVC,and GEVR were used,respectively.The parameters of different materials are listed in Table 2.

    Fig.1.Typical parts in RCC gravity dam body.

    Fig.2.Huangdeng RCC Gravity Dam.

    Table 1 Four anti-seepage design schemes using different concrete materials

    Table 2 Parameters of different concrete materials

    In order to evaluate the anti-seepage performance of the impervious layer in these design schemes,a typical retaining section(section 5)with a maximum height of 110 m and a discharge section(section 8)with a maximum height of 200 m were selected for stress and seepage analyses with FEM.

    3.Finite element simulation method

    3.1.Simulation of dam stress feld

    A gravity dam maintains its stability relying on its body weight,with a balance reached between the compressive stress induced by its weight and the tensile stress induced by the water pressure at the heel.It is important that the tensile stress meets the following requirements:(1)the distribution area of the frst principal tensile stress σ1in the foundation does not exceed the center line of the curtain;or(2)the total length of the tensile stress zone at the dam heel and toe does not exceed 10%of the bottom width of the dam(Zhou and Dang,2011; Zhou and Chang,2002).

    FEM is used under three basic assumptions(Rombach, 2011):(1)cracking may occur in thex,y,andzdirections; (2)if cracking occurs,the smeared crack model,a plastic concrete model,will be used;and(3)concrete is initially isotropic.

    The stress constitutive equation is constructed as a multilinear kinematic hardening plasticity model:

    where σcand εcare the compressive stress and strain of an element,respectively;fcis the peak pressure;and ε0and εcuare the peak strain and ultimate compressive strain, respectively.

    The displacement equation of an element is obtained through the generalized Hooke law and the virtual work principle as follows:

    where ueis the elementary displacement vector,N is the shape function matrix,and δ is the nodal displacement matrix.

    Any node of an element is subject to two forces:the internal load induced by element deformation and the external load.They are balanced if the composite force is zero. Therefore,the total equilibrium equation can be formulated as follows:

    where K is the global stiffness matrix,and P is the global nodal force matrix.

    Eq.(3)can be solved with the matrix inversion method,and the nodal displacement matrix is K-1P.The strain and stress at each element can be obtained by

    where B is the elementary strain matrix,D is the elementary elasticity modulus matrix,F is the elementary force matrix,k is the elementary stiffness matrix,and σ and ε are the elementary stress and strain vectors,respectively.

    3.2.Simulation of dam seepage feld

    Seepage fow can be simulated using ANSYS(ANSYS Inc.,2009).The goal is to determine the free surface of a seepage feld and a seepage channel by solving the water head function.Seepage analysis of RCC materials is based on Darcy's law(Freeze,1994):

    wherevis the average velocity,QSis the seepage fow,Ais the cross-sectional area,ksis the permeability coeffcient,his the piezometric head,lis the seepage path length,andJis the seepage gradient.

    The differential equation of a steady seepage feld is whereksx,ksy,andkszare the permeability coeffcients in thex,y,andzdirections.

    The boundary conditions are as follows:

    where Γ1and Γ2are the initially known boundaries for water head and fow analysis,respectively;f1(x,y,z)is the initial water head boundary condition at boundary Γ1;ksnis the permeability coeffcient in the normal direction of boundary Γ2;andf2(x,y,z)is the initial fow boundary condition at boundary Γ2.

    The computation is performed using the birth-death element technology and the self-adaptive mesh technique in ANSYS.The water head of a free surface is equal to the atmospheric pressure.Thus,the elements below the free surface are killed,and the elements above the free surface are activated.The birth or death features of elements are adjusted and recalculated until the expected accuracy is satisfed.

    4.Results and discussion

    4.1.Finite element model under loading condition

    The 3D fnite element model of the dam is shown in Fig.3. The meshes of the dam foundation were generated through uniform mapping.The meshes were divided using the sweeping method in the regular parts of the dam body,and free meshing was used in the irregular dam parts,including the non-overfow dam section with high varying rates of curvature. In addition,sparse meshes were used in the parts with low stress,such as the upper part of the dam and the part near the dam foundation,in order to reduce the computation time. However,at the bottom of the dam,especially at the toe and heel,the compressive and tensile stresses were high.Thus,the meshes there were refned to improve the accuracy.

    Fig.3.Three-dimensional mesh model.

    The main loads of the dam under two different conditions are as follows:for the condition at the normal water level,the loads include the gravity,hydrostatic pressure,uplift pressure, silt pressure,wave pressure,and temperature load;for the condition at the food-check level,hydrodynamic pressureoccurs in addition to the loads described above.The meshes of sections 5 and 8 are shown in Fig.4,where different colors refer to different materials,and lines with arrows show the direction and distribution of the hydrostatic pressure and uplift pressure.The hydrostatic pressure and uplift pressure are linearly distributed along the edge of the dam,as indicated in Fig.4.The degrees of freedom at the bottom are determined by the normal constraint condition.The mechanical parameters of the concrete materials are obtained from feld tests and analyses(Gu et al.,2010).

    4.2.Stress feld analysis

    Fig.4.Finite element models of retaining section 5 and discharge section 8 under loading condition.

    Fig.5.Stress distributions in retaining section 5 under different water levels in scheme S4.

    Fig.6.Stress distributions in discharge section 8 under different water levels in scheme S4.

    Figs.5 and 6 show the stress distributions in sections 5 and 8 under the normal water level and food-check level in scheme S4,where σ1and σ3are the frst and third principal stresses,respectively.It can be found that the maximum tensile stress occurs near the dam heel,as shown in Figs.5(a) and(b),and the maximum compressive stress occurs near the dam toe,as shown in Figs.5(c)and(d).The stress results of retaining section 5 and discharge section 8 in the four schemes under the normal water level and food-check level are listed in Tables 3 and 4,respectively,where σ1tpand σ3tpare the maximum values of the frst and third principal tensile stresses,respectively,σ1cpand σ3cpare maximum values of the frst and third principal compressive stresses,respectively, and the width ratio is the ratio of the total length of the tensile stress zone to the bottom width of the dam.From Tables 3 and 4,we can see that the maximum values in differentschemes are almost the same for the same water level,and these maximum values spread across a reasonable range according to engineering practice.Compared with the results under the normal water level,the stress distributions under the food-check level are similar but with higher values,as expected due to higher loads induced by higher water levels. The width ratios in Tables 3 and 4 show that the stress distributions in the four schemes can meet the stress control criteria given in Section 3.1.The stress results provide a basis for seepage analysis.

    Table 3 Stress results of retaining section 5 in different schemes.

    Table 4 Stress results of discharge section 8 in different schemes.

    4.3.Seepage feld analysis

    Since the results under the normal water level and foodcheck level are similar,the following analysis focuses on the results under the normal water level.The water head distributions in retaining section 5 and discharge section 8 under the steady seepage condition are shown in Figs.7 and 8,respectively.The uplift pressure head variations in two typical cutting planes in the four schemes are compared,as shown in Fig.9, where the horizontal axis means the distance from the upstream side along the transverse direction of the dam foundation.

    Without a special design of the impervious layer in scheme S1,the attenuation of water head along the transverse direction of the dam foundation is slow and linear,as shown in Figs.7(a)and 9.With seepage fow penetrating in the direction perpendicular to the equipotential line,water permeates the dam body,which may cause hydraulic fractures.Figs.7 and 8 show that the water head distributions in schemes S3 and S4 are almost the same,and the water head descends rapidly in the impervious layer in schemes S2 through S4.Compared with the impervious layer in scheme S1,the specially designed impervious layers in schemes S2 through S4 can experience higher water pressure,while the dam body suffers lower water head.In addition,the water head contour trend from S1 to S4 indicates that the direction of seepage fow will change from the direction parallel to the dam foundation to that perpendicular to the dam foundation,which is benefcial to dam safety.Considering that potential seepage channels occur when two-graded RCC is used in the impervious layer,CVC orGEVR ismore suitable forupstream anti-seepage structures.

    The computed daily seepage fows through retaining section 5 and discharge section 8 in the four schemes under the normal water level are listed in Table 5.The rate of seepage fow in scheme S1 is greater than those in the other three schemes,and the values in schemes S3 and S4 are very close and even lower than that in section S2,indicating that schemes S3 and S4 are more suitable for the upstream anti-seepage structure.

    Fig.7.Water head distributions in retaining section 5 under normal water level in different schemes.

    Fig.8.Water head distributions in discharge section 8 under normal water level in different schemes.

    Fig.9.Comparison of uplift pressure head curves in four schemes for retaining section 5 and discharge section 8.

    Table 5 Comparison of seepage fows through retaining section 5 and discharge section 8 under normal water level in four schemes.

    5.Conclusions

    Based on the concrete partitioning of a gravity dam,four schemes for the impervious layer in an RCC dam were designed using different concrete materials,which are threegraded RCC and two-graded RCC,CVC,and GEVR, respectively.

    Three-dimensional FEM was used to compute the stress and seepage felds of two typical dam sections under complex conditions,including one retaining section and one discharge section.The results of the stress feld analysis under the normal water level and food-check level show that the maximum tensile stress occurs near the dam heel,the maximum compressive stress occurs near the dam toe,and the stress distributions in the four design schemes can meet the stress control criteria of an RCC dam.However,according to the results of the water head distributions and seepage fows under the steady seepage condition,the imperviouslayer built with three-graded RCC shows a poor seepage control effect.The two-graded RCC layer can improve the anti-seepage performance but seepage channels may develop. The CVC and GEVR impervious layers show a better performance with rapidly descending water heads in the antiseepage region and lower rates of seepage fow.They are suitable for the upstream anti-seepage structure in an RCC dam.The results can provide useful information for selecting anti-seepage structures in RCC dams and for calibrating results from physical models.

    ANSYS Inc.,2009.ANSYS User's Guide,Release 12.1.ANSYS Inc., Canonsburg.

    Banthia,N.,Pigeon,M.,Marchand,J.,Boisvert,J.,1992.Permeability of roller compacted concrete.J.Mater.Civ.Eng.4(1),27-40.http:// dx.doi.org/10.1061/(ASCE)0899-1561(1992)4:1(27).

    Bayagoob,K.H.,Noorzaei,J.,Abdulrazeg,A.A.,Al-Karni,A.A.,Jaafar,M.S., 2010.Coupled thermal and structural analysis of roller compacted concrete arch dam by three-dimensional fnite element method.Struct.Eng.Mech. 36(4),401-419.http://dx.doi.org/10.12989/sem.2010.36.4.401.

    Cao,F.J.,Fang,G.H.,Ma,X.G.,Hu,Z.N.,2012.Simulation analysis of crack cause of concrete overfow dam for Hadashan Hydro Project by 3-D FEM. Syst.Eng.Procedia 2(3),48-54.http://dx.doi.org/10.1016/j.sepro.2011. 11.007.

    Cervera,M.,Oliver,J.,Prato,T.,2000.Simulation of construction of RCC dams,II:stress and damage.J.Struct.Eng.126(9),1062-1069.http:// dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1062).

    Chai,J.R.,Li,K.H.,Wu,Y.Q.,Li,S.Y.,2005.Coupled seepage and stress felds in roller compacted concrete dam.Commun.Numer.Methods Eng. 21(1),13-21.http://dx.doi.org/10.1002/cn m.722.

    Chen,Y.L.,Wang,C.J.,Li,S.Y.,Chen,L.J.,2003.The effect of construction designs on temperature feld of a roller compacted concrete dam:A simulation analysis by a fnite element method.Can.J.Civ.Eng.30(6), 1153-1156.http://dx.doi.org/10.1139/l03-076.

    Freeze,R.A.,1994.Henry Darcy and the fountains of Dijon.Ground Water 32(1),23-30.http://dx.doi.org/10.1111/j.1745-6584.1994.tb00606.x.

    Gaspar,A.,Lopez-Caballero,F.,Modaressi-Farahmand-Razavi,A.,Gomes-Correia,A.,2014.Methodology for a probabilistic analysis of an RCC gravity dam construction:Modelling of temperature,hydration degree and ageing degree felds.Eng.Struct.65,99-110.http://dx.doi.org/10.1016/ j.engstruct.2014.02.002.

    Gu,C.S.,Li,B.,Xu,G.L.,Yu,H.,2010.Back analysis of mechanical parameters of roller compacted concrete dam.Sci.China Technol.Sci.53(3), 848-853.http://dx.doi.org/10.1007/s11431-010-0053-0.

    Hansen,K.D.,1997.Current RCC dam activity in the USA.Hydropower Dams 4(5),62-65.

    Hong,Y.W.,Du,C.B.,Jiang,S.Y.,2014.Design Theory and Practice of High RCC Gravity Dam under Complex Conditions.Science Press,Beijing(in Chinese).

    HWS Technologies Inc.(HWSTI),1987.Annual Safety Inspection Report for Willow Creek Dam.HWS Technologies Inc.,Lincoln.

    Jansen,R.B.,1989.Advanced Dam Engineering for Design,Construction,and Rehabilitation.Springer,US,New York.

    Jia,J.S.,2007.New Progress on Roller Compacted Concrete Dams.China Water and Power Press,Beijing(in Chinese).

    Li,T.C.,Li,D.D.,Wang,Z.Q.,2010.Tensile reliability analysis for gravity dam foundation surface based on FEM and response surface method. Water Sci.Eng.3(2),233-240.http://dx.doi.org/10.3882/j.issn.1674-2370.2010.02.011.

    Luna,R.,Wu,Y.,2000.Simulation of temperature and stress felds during RCC dam construction.J.Constr.Eng.Manag.126(5),381-388.http:// dx.doi.org/10.1061/(ASCE)0733-9364(2000)126:5(381).

    Nagayama,I.,Jikan,S.,2003.30 years'history of roller-compacted concrete dams in Japan.In:Proceedings of 4th International Symposium on Roller Compacted Concrete.Madrid,pp.27-38.

    Rombach,G.A.,2011.Finite-element Design of Concrete Structures,second ed.ICE Publishing,London.

    Sun,G.Y.,Wang,S.Y.,Feng,S.R.,2004.High Roller Compacted Concrete Dams.China Electric Power Press,Beijing(in Chinese).

    U.S.Army Corps of Engineers(USACE),1992.Roller-compacted Concrete, Engineering Manual,No.1110-2-2006.U.S.Army Corps of Engineers, Washington,D.C.

    Xie,H.W.,Chen,Y.L.,2005.Determination of the type and thickness for impervious layer in RCC dam.Adv.Eng.Softw.36(8),561-566.http:// dx.doi.org/10.1016/j.advengsoft.2005.01.001.

    Yang,L.,Shi,J.J.,2010.Experimental study on the impact of rainfall on RCC construction.J.Constr.Eng.Manag.136(5),477-483.http://dx.doi.org/ 10.1061/(ASCE)CO.1943-7862.0000156.

    Ye,Y.X.,Liu,G.T.,Li,P.H.,Chen,F.Q.,2005.Dealing with leakage of Xibing roller compacted concrete thin arch dam.Adv.Sci.Technol.Water Resour. 25(3),27-31.http://dx.doi.org/10.3880/j.issn.1006-7647.2005.03.009(in Chinese).

    Zhang,S.R.,Wang,G.H.,Yu,X.R.,2013.Seismic cracking analysis of concrete gravity dams with initial cracks using the extended fnite element method. Eng. Struct. 56, 528-543. http://dx.doi.org/10.1016/ j.engstruct.2013.05.037.

    Zhou,J.P.,Dang,L.C.,2011.Handbook of Hydraulic Structure Design: Concrete Dams,second ed.China Water and Power Press,Beijing(in Chinese).

    Zhou,W.,Chang,X.L.,2002.Research on optimization of the whole confguration of RCC gravity dam based on FEM.J.Hydroelectr.Eng.76, 3-9.http://dx.doi.org/10.3969/j.issn.100-1243.2002.01.002(in Chinese).

    Received 9 December 2014;accepted 8 August 2015

    Available online 10 November 2015

    This work was supported by the National Basic Research Program of China(Grant No.2013CB035903)and the National Natural Science Foundation of China(Grants No.51321065 and 51209159).

    *Corresponding author.

    E-mail address:lmc@tju.edu.cn(Ming-chao Li).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.10.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    国产在线精品亚洲第一网站| 天天躁日日躁夜夜躁夜夜| 成年版毛片免费区| 少妇精品久久久久久久| 国产精品一区二区在线观看99| 这个男人来自地球电影免费观看| 正在播放国产对白刺激| 少妇 在线观看| 国产在线一区二区三区精| 中文字幕人妻丝袜一区二区| 亚洲精品自拍成人| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 国产三级黄色录像| 国产精品美女特级片免费视频播放器 | 自拍欧美九色日韩亚洲蝌蚪91| 老司机福利观看| 国产精品 欧美亚洲| 国产成人免费无遮挡视频| 色播在线永久视频| 老熟女久久久| 肉色欧美久久久久久久蜜桃| 国产97色在线日韩免费| 精品国产国语对白av| 午夜视频精品福利| videosex国产| 桃花免费在线播放| 欧美精品啪啪一区二区三区| 一区福利在线观看| 丝袜美腿诱惑在线| 欧美成人免费av一区二区三区 | 欧美精品亚洲一区二区| 80岁老熟妇乱子伦牲交| 免费观看av网站的网址| 亚洲综合色网址| av不卡在线播放| 不卡一级毛片| 国产精品九九99| tocl精华| 9191精品国产免费久久| 亚洲国产毛片av蜜桃av| 欧美精品一区二区大全| 正在播放国产对白刺激| 亚洲国产欧美日韩在线播放| 国产在线免费精品| e午夜精品久久久久久久| 精品卡一卡二卡四卡免费| 亚洲精品在线美女| 亚洲美女黄片视频| 99精品久久久久人妻精品| 乱人伦中国视频| 成人国产一区最新在线观看| 婷婷成人精品国产| 好男人电影高清在线观看| 精品国产超薄肉色丝袜足j| 国产日韩欧美视频二区| 91精品国产国语对白视频| 黑人欧美特级aaaaaa片| 一本色道久久久久久精品综合| e午夜精品久久久久久久| 国产成人欧美在线观看 | 成人精品一区二区免费| 国产精品影院久久| 99国产综合亚洲精品| 极品人妻少妇av视频| 99国产精品99久久久久| 极品少妇高潮喷水抽搐| 香蕉丝袜av| 十分钟在线观看高清视频www| 日韩免费高清中文字幕av| 国产亚洲精品第一综合不卡| 69av精品久久久久久 | 国产一区二区三区综合在线观看| 亚洲天堂av无毛| av国产精品久久久久影院| 老司机靠b影院| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美精品济南到| 精品少妇久久久久久888优播| 黄色 视频免费看| 久久久水蜜桃国产精品网| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 国产亚洲av高清不卡| 美女国产高潮福利片在线看| 黑人猛操日本美女一级片| 午夜福利视频精品| 免费在线观看视频国产中文字幕亚洲| 狠狠精品人妻久久久久久综合| 人妻 亚洲 视频| 国产亚洲精品久久久久5区| 亚洲人成电影观看| 韩国精品一区二区三区| 精品一品国产午夜福利视频| 五月开心婷婷网| 成人手机av| 一级片免费观看大全| 十八禁高潮呻吟视频| www.999成人在线观看| 精品国产乱码久久久久久男人| 国产色视频综合| 亚洲一卡2卡3卡4卡5卡精品中文| 精品午夜福利视频在线观看一区 | 国产精品亚洲一级av第二区| 十八禁高潮呻吟视频| 亚洲精品美女久久久久99蜜臀| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 亚洲精品国产色婷婷电影| 亚洲自偷自拍图片 自拍| 成人av一区二区三区在线看| 国产免费av片在线观看野外av| 人人妻人人澡人人爽人人夜夜| 黄片大片在线免费观看| 91麻豆av在线| 色播在线永久视频| 美女视频免费永久观看网站| 91麻豆精品激情在线观看国产 | 亚洲国产成人一精品久久久| 国产xxxxx性猛交| 亚洲精品久久成人aⅴ小说| 极品教师在线免费播放| 国产av又大| 中文字幕最新亚洲高清| 99国产精品一区二区三区| 男人舔女人的私密视频| 亚洲男人天堂网一区| av网站免费在线观看视频| 成人国产av品久久久| 搡老岳熟女国产| 午夜福利免费观看在线| 欧美精品一区二区免费开放| 亚洲欧洲日产国产| 欧美人与性动交α欧美软件| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 啪啪无遮挡十八禁网站| 美女扒开内裤让男人捅视频| 亚洲自偷自拍图片 自拍| 国产深夜福利视频在线观看| 国产91精品成人一区二区三区 | 99国产精品一区二区三区| 一个人免费看片子| 日本欧美视频一区| 大香蕉久久网| 1024视频免费在线观看| 人人妻人人澡人人看| 丁香六月欧美| 国产日韩欧美视频二区| 免费少妇av软件| 波多野结衣av一区二区av| 国产不卡av网站在线观看| 国产有黄有色有爽视频| 中文欧美无线码| 狂野欧美激情性xxxx| 久久国产亚洲av麻豆专区| 中文亚洲av片在线观看爽 | a级片在线免费高清观看视频| 国产精品九九99| 国产欧美日韩一区二区精品| 色综合欧美亚洲国产小说| 99精品在免费线老司机午夜| 欧美国产精品va在线观看不卡| 精品人妻1区二区| av天堂在线播放| 色视频在线一区二区三区| 亚洲中文日韩欧美视频| 亚洲专区国产一区二区| 丝瓜视频免费看黄片| 免费少妇av软件| 成人免费观看视频高清| 电影成人av| 少妇的丰满在线观看| 精品高清国产在线一区| 午夜两性在线视频| 国产日韩欧美在线精品| 大陆偷拍与自拍| 国产精品成人在线| 99热网站在线观看| 搡老熟女国产l中国老女人| 三上悠亚av全集在线观看| 成在线人永久免费视频| 黑人欧美特级aaaaaa片| 国产不卡一卡二| 日本av免费视频播放| av电影中文网址| 国产欧美日韩一区二区三| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人一区二区三| 99国产精品免费福利视频| 国产97色在线日韩免费| 午夜视频精品福利| 久久久久久久精品吃奶| 国产免费视频播放在线视频| 国产高清激情床上av| 两性夫妻黄色片| 一本大道久久a久久精品| 亚洲成人国产一区在线观看| 国产单亲对白刺激| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 久久久久久久久免费视频了| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 午夜激情av网站| 亚洲中文av在线| 老司机福利观看| 久久久久久人人人人人| 国产成人精品无人区| 日日夜夜操网爽| 久久狼人影院| 99精品久久久久人妻精品| 热99国产精品久久久久久7| 欧美 日韩 精品 国产| 国产高清videossex| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看| 欧美日韩av久久| 成人特级黄色片久久久久久久 | 国产真人三级小视频在线观看| 男女之事视频高清在线观看| 老司机午夜福利在线观看视频 | 超碰97精品在线观看| 国产精品久久久久久精品古装| 亚洲第一青青草原| av网站免费在线观看视频| 国产极品粉嫩免费观看在线| 人人妻人人添人人爽欧美一区卜| 一二三四在线观看免费中文在| 亚洲国产毛片av蜜桃av| 亚洲九九香蕉| 欧美日韩一级在线毛片| 人人澡人人妻人| 麻豆成人av在线观看| 国产不卡av网站在线观看| 波多野结衣一区麻豆| 美女福利国产在线| 亚洲三区欧美一区| 久久ye,这里只有精品| 亚洲一区中文字幕在线| 亚洲成人国产一区在线观看| 欧美日韩视频精品一区| 搡老熟女国产l中国老女人| 免费黄频网站在线观看国产| 天天添夜夜摸| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女 | 亚洲av第一区精品v没综合| 成人三级做爰电影| 国产精品1区2区在线观看. | 热re99久久精品国产66热6| 精品人妻在线不人妻| 黑丝袜美女国产一区| 免费不卡黄色视频| 天天躁日日躁夜夜躁夜夜| 大型黄色视频在线免费观看| 亚洲成av片中文字幕在线观看| 国产黄色免费在线视频| svipshipincom国产片| 亚洲中文日韩欧美视频| 亚洲国产欧美日韩在线播放| 国产午夜精品久久久久久| 欧美亚洲 丝袜 人妻 在线| 国产在线精品亚洲第一网站| 亚洲国产欧美日韩在线播放| 国内毛片毛片毛片毛片毛片| 高清av免费在线| 日韩中文字幕欧美一区二区| 国产精品.久久久| 十分钟在线观看高清视频www| 色综合婷婷激情| 国产av精品麻豆| 久久久久视频综合| av不卡在线播放| kizo精华| 欧美日韩一级在线毛片| 老熟妇乱子伦视频在线观看| 黄色视频不卡| 一本—道久久a久久精品蜜桃钙片| 一区二区三区激情视频| 黑丝袜美女国产一区| 亚洲第一欧美日韩一区二区三区 | 国产亚洲一区二区精品| avwww免费| 最新的欧美精品一区二区| 黄片播放在线免费| 超碰97精品在线观看| 天堂中文最新版在线下载| 精品第一国产精品| 新久久久久国产一级毛片| 69av精品久久久久久 | 精品国产超薄肉色丝袜足j| 天堂动漫精品| 国产黄频视频在线观看| 黄片播放在线免费| 12—13女人毛片做爰片一| videosex国产| 国产97色在线日韩免费| 咕卡用的链子| 老熟女久久久| 久久精品国产亚洲av高清一级| 中文字幕色久视频| 777久久人妻少妇嫩草av网站| 日本精品一区二区三区蜜桃| 熟女少妇亚洲综合色aaa.| 亚洲少妇的诱惑av| 亚洲国产av影院在线观看| 少妇粗大呻吟视频| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 一边摸一边抽搐一进一小说 | 久久亚洲精品不卡| 国产激情久久老熟女| 老熟女久久久| 超色免费av| 精品久久久精品久久久| 自线自在国产av| 男女之事视频高清在线观看| 午夜老司机福利片| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 中国美女看黄片| 欧美性长视频在线观看| 国产男女超爽视频在线观看| 丰满迷人的少妇在线观看| 国产不卡一卡二| av片东京热男人的天堂| 大型黄色视频在线免费观看| 美女主播在线视频| 蜜桃国产av成人99| 高清毛片免费观看视频网站 | 人成视频在线观看免费观看| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 91大片在线观看| 精品亚洲成国产av| 国产麻豆69| 国产精品久久久久久精品古装| 中国美女看黄片| 欧美国产精品va在线观看不卡| 性高湖久久久久久久久免费观看| 黄色a级毛片大全视频| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 十八禁人妻一区二区| 精品福利观看| 最近最新中文字幕大全免费视频| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 无人区码免费观看不卡 | 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| 精品一区二区三区视频在线观看免费 | 久久久精品94久久精品| 午夜福利乱码中文字幕| 一级片'在线观看视频| 人人妻,人人澡人人爽秒播| 成人黄色视频免费在线看| 亚洲欧美激情在线| 免费看十八禁软件| 一级黄色大片毛片| 久久精品成人免费网站| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 手机成人av网站| 亚洲欧美一区二区三区黑人| 高清欧美精品videossex| 亚洲av电影在线进入| 中文字幕高清在线视频| 国产免费现黄频在线看| 女人爽到高潮嗷嗷叫在线视频| 岛国毛片在线播放| 99久久99久久久精品蜜桃| 大陆偷拍与自拍| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕人妻熟女| 高清欧美精品videossex| 免费观看av网站的网址| 欧美日韩av久久| 亚洲精华国产精华精| 国产精品1区2区在线观看. | 99热网站在线观看| 免费少妇av软件| 高清av免费在线| 精品人妻在线不人妻| 高清在线国产一区| 亚洲久久久国产精品| 精品国内亚洲2022精品成人 | 亚洲七黄色美女视频| 国产精品国产高清国产av | 欧美精品av麻豆av| 天堂动漫精品| 丝袜美足系列| 国产伦人伦偷精品视频| 国产精品国产高清国产av | 久久ye,这里只有精品| 欧美激情 高清一区二区三区| 青青草视频在线视频观看| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 日本五十路高清| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的| 精品福利永久在线观看| 亚洲欧美激情在线| 欧美日韩一级在线毛片| 国产亚洲精品第一综合不卡| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 国产成人精品在线电影| 国产精品熟女久久久久浪| 久久亚洲真实| 激情视频va一区二区三区| 国产av又大| 午夜视频精品福利| 成人国语在线视频| 考比视频在线观看| 久久99热这里只频精品6学生| 成年人免费黄色播放视频| 一级毛片精品| 国产有黄有色有爽视频| av免费在线观看网站| 久久精品亚洲av国产电影网| 嫩草影视91久久| 桃花免费在线播放| 人妻 亚洲 视频| 天堂8中文在线网| 国产亚洲欧美在线一区二区| 欧美 亚洲 国产 日韩一| 电影成人av| 国产精品1区2区在线观看. | 国产淫语在线视频| 国产欧美日韩一区二区精品| 99久久99久久久精品蜜桃| 久久久欧美国产精品| 人妻久久中文字幕网| 999久久久国产精品视频| 久久久国产成人免费| 亚洲精品中文字幕在线视频| 男女之事视频高清在线观看| 在线观看舔阴道视频| 国产一区二区三区综合在线观看| 伦理电影免费视频| 一区二区日韩欧美中文字幕| 欧美成人免费av一区二区三区 | 黑人操中国人逼视频| 19禁男女啪啪无遮挡网站| 大片免费播放器 马上看| 久久精品aⅴ一区二区三区四区| 丰满迷人的少妇在线观看| 国产精品九九99| 无限看片的www在线观看| 中亚洲国语对白在线视频| 久久久精品区二区三区| aaaaa片日本免费| 在线观看一区二区三区激情| 最近最新中文字幕大全电影3 | 纵有疾风起免费观看全集完整版| 热re99久久精品国产66热6| 日本wwww免费看| 丁香欧美五月| 国产精品一区二区免费欧美| 大陆偷拍与自拍| 黄色视频在线播放观看不卡| 免费观看a级毛片全部| 新久久久久国产一级毛片| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 久久国产亚洲av麻豆专区| 日本a在线网址| 日韩一区二区三区影片| bbb黄色大片| 国产日韩欧美在线精品| 人人澡人人妻人| 久久国产精品大桥未久av| 9热在线视频观看99| 国产av又大| 精品亚洲成a人片在线观看| 夫妻午夜视频| 日本黄色日本黄色录像| 91大片在线观看| 91成人精品电影| 在线天堂中文资源库| 国产免费福利视频在线观看| 亚洲色图av天堂| 男女下面插进去视频免费观看| 精品国产乱子伦一区二区三区| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| 欧美黄色片欧美黄色片| 老司机福利观看| 国产精品久久久久久精品古装| 成年人黄色毛片网站| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 女人被躁到高潮嗷嗷叫费观| 日韩有码中文字幕| 日韩中文字幕欧美一区二区| 中文欧美无线码| 另类精品久久| a在线观看视频网站| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 成人黄色视频免费在线看| 亚洲av成人一区二区三| 精品久久久久久久毛片微露脸| 窝窝影院91人妻| 国产在线免费精品| 美女福利国产在线| 国产成人精品在线电影| netflix在线观看网站| 99精国产麻豆久久婷婷| 咕卡用的链子| 国产伦人伦偷精品视频| 免费日韩欧美在线观看| 久久99一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 丰满饥渴人妻一区二区三| 青草久久国产| 欧美日韩亚洲高清精品| 国产成人av教育| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| tube8黄色片| 亚洲第一欧美日韩一区二区三区 | 久久久欧美国产精品| 国产成人av教育| 黄色怎么调成土黄色| 日韩精品免费视频一区二区三区| 一本色道久久久久久精品综合| www.自偷自拍.com| 日本wwww免费看| 成人国产一区最新在线观看| 精品一区二区三区四区五区乱码| 精品亚洲乱码少妇综合久久| aaaaa片日本免费| 亚洲成人免费av在线播放| 久久久久视频综合| av在线播放免费不卡| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费一区二区三区在线 | 久久精品亚洲av国产电影网| 蜜桃国产av成人99| 日本一区二区免费在线视频| 精品亚洲乱码少妇综合久久| 久久久久视频综合| h视频一区二区三区| 久久ye,这里只有精品| www.999成人在线观看| 91精品国产国语对白视频| 亚洲九九香蕉| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 日本黄色视频三级网站网址 | av一本久久久久| 亚洲性夜色夜夜综合| 精品国产亚洲在线| 老司机福利观看| 亚洲av日韩精品久久久久久密| 精品少妇一区二区三区视频日本电影| 亚洲免费av在线视频| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 极品人妻少妇av视频| 国产91精品成人一区二区三区 | 桃红色精品国产亚洲av| 国产精品麻豆人妻色哟哟久久| 亚洲 欧美一区二区三区| 日韩人妻精品一区2区三区| 97在线人人人人妻| 黄色怎么调成土黄色| 人成视频在线观看免费观看| 亚洲伊人色综图| 久久久久久久久免费视频了| cao死你这个sao货| 午夜免费成人在线视频| 国产成人av激情在线播放| 国产免费福利视频在线观看| 91字幕亚洲| 久久国产精品人妻蜜桃| 国产成人精品久久二区二区91| 久久久久久久国产电影| 91大片在线观看| 国产福利在线免费观看视频| 伊人久久大香线蕉亚洲五| 欧美大码av| 高清黄色对白视频在线免费看| 12—13女人毛片做爰片一| 涩涩av久久男人的天堂| 精品国内亚洲2022精品成人 | 国产精品美女特级片免费视频播放器 | 国产一区二区在线观看av| 久久中文看片网| 久久精品亚洲熟妇少妇任你| 亚洲色图 男人天堂 中文字幕| 久热这里只有精品99| 夜夜骑夜夜射夜夜干| 女警被强在线播放| 国产精品免费一区二区三区在线 | 中文亚洲av片在线观看爽 | 国产精品98久久久久久宅男小说| 国产区一区二久久| 亚洲精品国产精品久久久不卡| 中文亚洲av片在线观看爽 | 国产精品98久久久久久宅男小说|