• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fngerprinting

    2015-01-16 01:21:16AidongRuanChenxiaoLiu
    Water Science and Engineering 2015年4期

    Ai-dong Ruan*,Chen-xiao Liu

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,PR China

    Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fngerprinting

    Ai-dong Ruan*,Chen-xiao Liu

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,PR China

    Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes,and may destroy the ecological balance if it is directly discharged into the environment without any treatment.In this study,the polymerase chain reaction(PCR)and denaturing gradient gel electrophoresis(DGGE)method was used to analyze the variation of the microbial community structure in the control and nicotinecontaminated sediment samples with nicotine concentration and time of exposure.The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure.Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure,while other bacteria were enriched under the effect of nicotine,and their DGGE bands changed from undertones to deep colors.The microbial community structure,however,showed a wide variation in the nicotinecontaminated sediment samples,especially in the sediment samples treated with high-concentration nicotine.The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure.Diversity indices showed that the contaminated groups had a similar trend over time.The diversity indices of contaminated groups all decreased in the frst 7 d after exposure,then increased until day 42.It has been found that nicotine decreased the diversity of the microbial community in the sediment. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Nicotine;Sediment;PCR-DGGE;Microbial community structure;Diversity index

    1.Introduction

    Nicotine(1-methyl-2-(3-pyridyl)-pyrrolidine,C10H14N2)is the principal alkaloid accumulated in mostNicotianaspecies, and the toxic aspects of nicotine are well known(Doolittle et al.,1995).Because of its harmfulness,nicotine has been classifed as a chemical in the Toxic Release Inventory by the U.S.Environmental Protection Agency since 1994(Blake,

    This work was supported by the National Natural Science Foundation of China(Grants No.51378175 and 41323001),and the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No.20145028212).

    *Corresponding author.E-mail address:aidong_ruan@hhu.edu.cn(Ai-dong Ruan).

    Peer review under responsibility of Hohai University. 1994).Moreover,waste in which the nicotine content exceeds 500 mg/kg dry weight(d.w.),is classifed as a toxic and hazardous waste inEuropean Union Regulationand laws in many countries.

    Furthermore,the tobacco-manufacturing process and all the activities using tobacco often produce large amounts of solid or liquid waste containing nicotine.Nicotine in tobacco waste easily enters the aquatic environment,due to its high solubility in water(Kaiser et al.,1996;Wang et al.,2001).Nicotine concentration has been detected in U.S.estuaries at levels from 2.5×10-4to 6×10-4mg/L(Benotti and Brownawell, 2007);in Spanish rivers at levels up to 1.9×10-3mg/L (Valcˊarcel et al.,2011);and in U.K.groundwater at levels up to 8.1×10-3mg/L(Stuart et al.,2012).A global investigation showed an average nicotine concentration of 1.9×10-3mg/L in the drinking water of 30 cities(Boleda et al.,2011).Therefore,it should be noted that nicotine is widely distributed in water,and present in high concentrations.Nicotinecontaminated waste may become a considerable threat to the environment,imperiling the health of human beings and the ecological balance as well,if it is directly discharged into the environment without any treatment(Piotrowska-Cyplik et al., 2009).

    China leads the world in tobacco production,with an annual production of 3.0 million tons of tobacco leaf and a planting area of 1.365 million hectares in 2010.Therefore,in China,a large quantity of tobacco waste,which has been estimated to be about 1.0 million tons every year,with an average nicotine content of 18 g/kg d.w.,is becoming a serious ecological problem(Zheng and Yu,2004).

    Nicotine enters soil and sediment via eluviation,and infuences sediment texture and fertility owing to its heterocyclic structure(Civilini et al.,1997;Wang et al.,2005).Once into sediment,it infuences many groups of microorganisms through degradation and toxicological effects(Yuan et al., 2006).In bacteria,pyridine and pyrrolidine pathways are two common nicotine degradation pathways(Brandsch,2006; Tang et al.,2013).In addition,a variant of the pyridine and pyrrolidine pathway(the VPP pathway)also exists(Wang et al.,2012;Ma et al.,2014).Most previous research has concentrated on single types of nicotine-degrading bacteria. However,few studies have investigated the actual infuence of nicotine on microorganisms in sediment.

    In this study,we explored the effect of nicotine pollution on the shift in the microbial community structure in the sediment from the aspects of nicotine concentration and time of exposure.Partial 16S rDNA genes were amplifed from the sediment microbial community DNA with a polymerase chain reaction(PCR),using primers that bind to evolutionarily conserved regions within these genes in the eubacteria.The diversity of PCR-amplifed products was transformed into genetic fngerprints using DGGE.

    2.Materials and methods

    2.1.Experimental sediment samples

    The sediment samples were taken from the Nanjing section of the Yangtze River.After air-drying,the sediment samples were ground into smaller particles using a mill,and sieved with a 2 mm-size sieve to remove plant material,macrofauna, and stones.The pH values of sediment samples were measured in water suspension with a soil to solution ratio of 1:5(weight to volume ratio)using a PHS-2C pH meter with a glass electrode.The organic matter and total nitrogen contents in the sediment samples were measured with the K2Cr2O4and digestion-distillation standard methods,respectively(Sciubba et al.,2013).The NO-3-N content was detected with the spectrophotometric method using phenol disulfonic acid(Bai et al.,2010).The available P,Mg,K,and Ca contents in the sediment samples were analyzed using an atomic absorption spectrophotometer(Angino,2012).Table 1 lists some physical and chemical properties of the sediment samples.

    Table 1 Main physical and chemical properties of sediment samples.

    2.2.Experimental design and operation

    The experimental setup consisted of plastic barrels,whose top diameter,bottom diameter,and height were 179,134,and 161 mm,respectively.A 10 cm-height conical gravel pile with a 25°slope was placed at the bottom of each barrel.Four layers of plastic woven meshes covered the gravel pile,and two polyethylene pipes(with an inner diameter of 1.0 cm and a length of 20 cm)passed through the plastic woven meshes and gravel to the bottom of each barrel at the center of the barrel.Then,1.5 kg of sediment was loaded,and 500 mL of deionized water was added through polyethylene pipes to saturate the system.Six barrels were divided into three groups (each group containing two biological repeats).After exposure at 28°C for two weeks,doses of 100 mL of solution with different nicotine concentrations were added to each barrel to attain fnal concentrations of 0,0.008,and 0.030 μg/g, respectively.A 10 mL well-mixed sample in each barrel was collected with the fve-point method(a 2 mL sample was collected at each point),without compensation,after 0,7,14, 28,and 42 d of exposure.The samples were stored at-80°C for molecular biological analysis.

    2.3.DNA extraction and PCR-DGGE analysis

    The DNA of the total sediment community was extracted using the method described by Duan and Min(2004).DNA purifcation was conducted using the Wizard DNA clean-up system(Promega,USA).The yield and quality of sedimentextracted DNA were assessed using a supermicro spectrophotometer(Kaiao,China).

    The method used was based on that of Damiani et al. (1996)with some modifcations.A PCR mixture with a volume of 50 μL contained 1.0 μL of template DNA(or PCR products),0.2 μmol/L of each primer,5 U of Taq polymerase, 1.0 μL of 10×PCR buffer,200 μmol/L of dNTP,37.5 mmol/L of magnesium chloride, and sterile deionized water. The primers used for the frst reaction of nested PCR were BSF8/20(5′-AGAGTTTGAT CCTGGCTCAG-3′)and BSR1541/20(5′-AAGGAGGTGA TCCAG CCGCA-3′) (Devereux and Willis,1995).The touchdown PCR amplifcation included the initial denaturation at 95°C for 5 min, followed by nine touchdown cycles,at 95°C for 60 s,58°C (decreased by 0.5°C per cycle)for 50 s,and 72°C for 120 s, then 21 cycles of 95°C for 60 s,54°C for 50 s,and 72°C for 120 s,and,fnally,a fnal elongation at 72°C for 10 min.

    Using the PCR products from the frst reaction as a template,the V3 variable region of 16S rDNA genes was amplifed using the primer pair 338F with a GC-clamp(5′-CGCCC GCCGCGCGCGGCGGGCGGGGCGGGGGCACG GGGGG ACTCC TACGG GAGGC A-3′)and 518R(5′-ATTAC CGCGG CTGCT GG-3′)(òvreas et al.,1997).PCR amplifcation was performed at 95°C for 5 min,with ten touchdown cycles,at 95°C for 60 s,56°C(decreased by 0.5°C per cycle)for 60 s,and 72°C for 120 s,then an additional 15 cycles,at 94°C for 60 s,51°C for 60 s,and 72°C for 120 s, followed by a fnal elongation at 72°C for 10 min.DNA and PCR products were confrmed by 10 g/L(weight to volume ratio)agarose gel electrophoresis,followed by staining with ethidium bromide(Nalin et al.,1999).Strong bands of the V3 variable region of the 16S rDNA gene PCR products of approximately 240 bp were subjected to DGGE analysis.

    DGGE analysis was conducted using a D-Code system (Bio-Rad,USA).The method has been described by Muyzer et al.(1993).Samples of PCR product were loaded onto 10%(weight to volume ratio)polyacrylamide gels with a denaturant gradient from 37%to 55%.The electrophoresis was run in a 1×TAE(Tris/Acetic acid/EDTA)buffer for 300 min at 150 V and 60°C.After electrophoresis,the gels were stained with silver.The silver-staining procedure was performed according to the method described by Bassam and Caetaneo-Anollˊes(1991).To obtain a clear image,the gel was photographed with a gel photo system(GelDoc,Bio-Rad, USA).

    2.4.Analysis of DGGE patterns

    Digitized DGGE images were analyzed with the Quantity One image analysis software(version 4.0,Bio-Rad,USA). This software identifes the bands occupying the same position in different lanes of a gel.The similarity of two samples was estimated with information in banding patterns with a Jaccard index(Cj)in each pair of samples(Eq.(1)):

    wherejis the total number of bands in two DGGE gel profles, andaandbare the respective number of bands in the two DGGE gel profles.The similarity of sediment samples was examined using the unweighted pair-group method with arithmetic means(UPGMA)and PhyTools software.

    The Shannon-Wiener index(H′),richness(S),and evenness (E)were calculated to compare the change in bacterial diversity based on the DGGE band data.H′is calculated as

    wherepiis the importance probability of bandiin a gel lane.Eis calculated asH′/lnS,andSis the total number of bands in a gel lane.

    3.Results and discussion

    3.1.Effect of nicotine on microbial community structure

    DGGE profles of the V3 variable region of 16S rDNA genes from the sediment samples during different time periods are shown in Fig.1.The culture times of a through e were 0,7, 14,28,and 42 d,respectively;and a′through e′was the repetitions of a through e,respectively.Each of the distinguishable bands in the separation pattern represents an individual bacterial species(Luca et al.,2002).As shown in Fig.1,some bacterial species were inhibited in the nicotine-contaminated sediment samples.With the increase of culture time,the color of Band 1 and Band 2 in DGGE gel changed from a deep color to an undertone,and even disappeared in the sediment samples with a nicotine concentration of 0.030 μg/g.However, the color of Band 1 and Band 2 in DGGE gel changed from an undertone to a deep color in sediment samples with a nicotine concentration of 0.008 μg/g.This indicated that a low nicotine concentration might stimulate Band 1 and Band 2 bacterial species.However,when the nicotine concentration was 0.030 μg/g,it was harmful to them.In sediment samples with a nicotine concentration of 0.030 μg/g,Band 3 and Band 4 were present in the late stage of exposure.

    3.2.Similarity analysis

    Genetic similarity of microbialcommunity profles revealed that there were very large differences in the control and nicotine-contaminated sediment samples(Fig.2).The microbial community structure in the control sample had a similarity of more than 72%to the initial contaminated samples during 42 d of exposure(Fig.3).The microbial community structure,however,showed a large degree of variation in the nicotine-contaminated sediment samples,especially in the sediment samples with high nicotine concentrations.The Jaccard index was only 61.4%between the initial sample and the sample with a nicotine concentration of 0.008 μg/g after 42 d of exposure.The sediment sample on day 28 with a nicotine concentration of 0.030 μg/g only had a similarity of 35.1%to the initial sample.The variation of the microbialcommunity structure in the sediment samples mostly occurred during the frst week of exposure.As compared with the initial sediment samples,the Jaccard index decreased by 33.2%in the sample with a 0.008 μg/g nicotine concentration and 48.9%in the sample with a 0.030 μg/g nicotine concentration, respectively,while the control sample only decreased by 13.4%.In the nicotine-contaminated sediment samples,the Jaccard index decreased until day 28,and then increased a little on day 42.Linear regression showed that there was not a signifcant time-effect relationship between the nicotine concentration and microbial community structure in the experimental sediment samples.

    Fig.1.DGGE patterns of V3 variable region of 16S rDNA genes from sediment samples with different nicotine concentrations at different culture times.

    Fig.2.Genetic similarity of microbial community profles obtained with PCR-DGGE from sediment samples with different nicotine concentrations at different culture times.

    Fig.3.Jaccard index of microbial communities for sediment samples with different nicotine concentrations at different culture times.

    3.3.Analysis of diversity indices

    Diversity indices are useful for investigating the diversity of microbial communities.The higher the Shannon-Wiener index is,the greater the diversity of microbial communities is.Two components contributed to the diversity indices:(1)the total numbers of species present or species richness(S),and(2)the distribution of the number of individuals among those different species,or species evenness(E).

    The diversity indices of microbial communities in nicotinecontaminated groups are shown in Table 2.Group 1 and group 2 are the experimental group and its biological repeat, respectively.The diversity indices between group 1 and group 2 are extremely similar at the same time and at the same concentration,demonstrating excellent repeatability.Before the exposure,the groups with the same concentration showed homogeneity:H′was between 1.52 and 1.58,Swas between 12 and 13,andEwas between 0.59 and 0.63.It can be seen that,before contamination,each system had an essential homogeneity with stable microbial community structure and activities.However,the diversity indices of the control group increased slightly with time.In addition,the contaminated groups had a similar trend over time,and the diversity indicesall decreased after 7 d of exposure,then increased until day 42. After 7 d,the group with the nicotine concentration of 0.030 μg/g reached the minimum diversity indices of the experimental groups.These results reveal thathighconcentration nicotine exposure has a stronger infuence on the diminishment of the microbial community in the frst 7 d than low-concentration nicotine exposure.After 28 d,the diversity indices of microbial communities in contaminated groups were much greater than those of the control groups, indicating that the increase of diversity of contaminated groups occurs over a long period of time,nearly three weeks. Moreover,after exposure,some microbial species quickly decreased,and,with time,the growth of new species was promoted,enriching the community structure.

    Table 2 Diversity indices of microbial communities in groups with different nicotine concentrations.

    4.Conclusions

    The PCR-DGGE method was used to investigate the microbial community structure in nicotine-contaminated sediment samples.The contamination of nicotine can greatly impact the microbial activity and function.Profles of DGGE showed that,with the increase of nicotine concentration and culture time,the toxicity of nicotine to sediment microorganisms increased,resulting in the variation of sediment bacteria diversity.The Jaccard index showed that the changes in sediment bacteria community were slight in control groups but signifcant in nicotine-contaminated groups,especially in groups with high nicotine concentration.In addition,it was revealed by the diversity indices that the diversity of community structure in nicotine-contaminated groups,decreased in the frst 7 d after exposure,then increased gradually until day 42.The results also indicated that new species of nicotineresistant microbial organisms were enriched in the nicotinecontaminated sedimentenvironment.The PCR-DGGE method can provide detailed information about the shift and diversity in microbial community structure in the sediment environment.These results will beneft the assessment and remediation of nicotine-contaminated sediment.

    Angino,E.,2012.Atomic Absorption Spectrometry in Geology.Elsevier, Amsterdam.

    Bai,J.H.,Wang,Q.G.,Gao,H.F.,Xiao,R.,Deng,W.,Cui,B.S.,2010.Spatial and temporal distribution patterns of nitrogen in marsh soils from an inland alkaline wetland:A case study of Fulaowenpao wetland,China.Acta Ecol. Sin.30(4),210-215.http://dx.doi.org/10.1016/j.chnaes.2010.06.004.

    Bassam,B.J.,Caetaneo-Anollˊes,G.,1991.Fast and sensitive silver staining of DNA in polyacrylamide gels.Anal.Biochem.196(1),80-83.http:// dx.doi.org/10.1016/0003-2697(91)90120-I.

    Benotti,M.J.,Brownawell,B.J.,2007.Distributions of pharmaceuticals in an urban estuary during both dry-and wet-weather conditions.Environ.Sci. Technol.41(16),5795-5802.http://dx.doi.org/10.1021/es0629965.

    Blake,D.M.,1994.Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air.National Renewable Energy Laboratory,Golden.

    Boleda,M.R.,Huerta-Fontela,M.,Ventura,F.,Galceran,M.T.,2011.Evaluation of the presence of drugs of abuse in tap waters.Chemosphere 84(1), 1601-1607.http://dx.doi.org/10.1016/j.chemosphere.2011.05.033.

    Brandsch,R.,2006.Microbiology and biochemistry of nicotine degradation. Appl.Microbiol.Biotechnol.69(5),493-498.http://dx.doi.org/10.1007/ s00253-005-0226-0.

    Civilini,M.,Domenis,C.,Sebastianutto,N.,Bertoldi,M.D.,1997.Nicotine decontamination of tobacco agro-industrial waste and its degradation by micro-organisms.Waste Manag.Res.15(4),349-358.http://dx.doi.org/ 10.1177/0734242X9701500403.

    Damiani,G.,Amedeo,P.,Bandi,C.,Fani,R.,Bellizzi,D.,Sgaramella,V., 1996. Bacteria identifcation by PCR-based techniques. In: Adolph,K.W.ed.,Microbial Genome Methods.CRC Press,Boca Raton,pp.167-173.

    Devereux,R.,Willis,S.G.,1995.Amplifcation of ribosomal RNA sequences. Mol.Microb.Ecol.Man.33,277-287.http://dx.doi.org/10.1007/978-94-011-0351-0_19.

    Doolittle,D.J.,Winegar,R.,Lee,J.K.,Caldwell,W.S.,Wallace,A.,Hayes,J., Bethizy,J.D.,1995.The genotoxic potential of nicotine and its major metabolites.Mutat.Res.344(3-4),95-102.http://dx.doi.org/10.1016/ 0165-1218(95)00037-2.

    Duan,X.J.,Min,H.,2004.Diversity of microbial genes in paddy soil stressed by cadminum using DGGE.Environ.Sci.25(5),122-126(in Chinese).

    Kaiser,J.P.,Feng,Y.,Bollag,J.M.,1996.Microbial metabolism of pyridine, quinoline,acridine,and their derivatives under aerobic and anaerobic conditions.Microbiol.Rev.60(3),483-498.

    Luca,C.,Daniele,A.,Marisa,M.,Carlo,C.,Giuseppe,C.,2002.An application of PCR-DGGE analysis to profle the yeast population in raw milk. Int.Dairy J.12(5),407-411.http://dx.doi.org/10.1016/S0958-6946(02) 00023-7.

    Ma,Y.,Wei,Y.,Qiu,J.G.,Wen,R.T.,Hong,J.,Liu,W.P.,2014.Isolation, transposon mutagenesis,and characterization of the novel nicotinedegrading strainShinellasp.HZN7.Appl.Microbiol.Biotechnol.98(6), 2625-2636.http://dx.doi.org/10.1007/s00253-013-5207-0.

    Muyzer,G.,Waal,E.C.,Uitterlinden,A.G.,1993.Profling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifed genes coding for 16S rRNA.Appl. Environ.Microbiol.59(3),695-700.

    Nalin,R.,Simonet,P.,Vogel,T.M.,Normand,P.,1999.Rhodanobacter lindaniclasticusgen.nov.,sp.nov.,a lindane-degrading bacterium.J.Syst. Bacteriol.49(1),19-23.http://dx.doi.org/10.1099/00207713-49-1-19.

    òvreas,L.,Forney,L.,Daàe,F.L.,1997.Distribution of bacterioplanton in meromictic Lake Saelevannet,as determined by denaturing gradient gel electrophoresis of PCR-amplifed gene fragments coding for 16S rRNA. Appl.Environ.Microbiol.63(9),3367-3373.

    Piotrowska-Cyplik,A.,Olejnik,A.,Cyplik,P.,Dach,J.,Czarnecki,Z.,2009.The kineticsofnicotinedegradation,enzymeactivitiesandgenotoxicpotentialin the characterization of tobacco waste composting.Bioresour.Technol. 100(21),5037-5044.http://dx.doi.org/10.1016/j.biortech.2009.05.053.

    Sciubba,L.,Cavani,L.,Marzadori,C.,Ciavatta,C.,2013.Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality.Biol.Fertil.Soils 49(5),597-608.http://dx.doi.org/10.1007/ s00374-012-0748-4.

    Stuart,M.,Lapworth,D.,Crane,E.,Hart,A.,2012.Review of risk from potential emerging contaminants in UK groundwater.Sci.Total Environ. 416(2),1-21.http://dx.doi.org/10.1016/j.scitotenv.2011.11.072.

    Tang,H.Z.,Wang,L.J.,Wang,W.W.,Yu,H.,Zhang,K.Z.,Yao,Y.X.,Xu,P., 2013.Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas.PLOS Genet.9(10),e1003923.http://dx.doi.org/ 10.1371/journal.pgen.1003923.

    Valcˊarcel,Y.,Alonso,S.G.,Rodriguez-Gil,J.L.,Gil,A.,Catala,M.,2011. Detectionofpharmaceuticallyactivecompoundsintheriversandtapwaterof the Madrid region(Spain)and potential ecotoxicological risk.Chemosphere 84(10),1336-1348.http://dx.doi.org/10.1016/j.chemosphere.2011.05.014.

    Wang,S.J.,Wang,Z.M.,Chen,Q.F.,Liu,G.Q.,2001.The countermeasure of the problems in fertilizer use and tobacco quality in tobacco growth area in Southern Anhui.J.Anhui Agric.Sci.29(3),366-367(in Chinese).

    Wang,S.N.,Xu,P.,Tang,H.Z.,Meng,J.,Liu,X.L.,Ma,C.Q.,2005.“Green”route to 6-hydroxy-3-succinoyl-pyridine from(S)-nicotine of tobaccowaste by whole cells of aPseudomonassp.Environ.Sci.Technol.39(17), 6877-6880.http://dx.doi.org/10.1021/es0500759.

    Wang,S.N.,Huang,H.Y.,Xie,K.B.,Xu,P.,2012.Identifcation of nicotine biotransformation intermediates byAgrobacterium tumefaciensstrain S33 suggests a novel nicotine degradation pathway.Appl.Microbiol.Biotechnol.95(6),1567-1578.http://dx.doi.org/10.1007/s00253-012-4007-2.

    Yuan,Y.J.,Lu,Z.X.,Huang,L.J.,Bie,X.M.,Lu¨,F.X.,Li,Y.,2006.Optimization of a medium for enhancing nicotine biodegradation byOchrobactrum intermediumDN2.J.Appl.Microbiol.101(3),691-697.http:// dx.doi.org/10.1111/j.1365-2672.2006.02929.x.

    Zheng,K.L.,Yu,D.M.,2004.A summary of the comprehensive utilizations of discarded tobacco leaves.J.Chongqing Univ.27(3),61-64(in Chinese).

    Received 25 December 2014;accepted 12 October 2015

    Available online 1 December 2015

    http://dx.doi.org/10.1016/j.wse.2015.11.003

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    欧美另类亚洲清纯唯美| 成人鲁丝片一二三区免费| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 色综合亚洲欧美另类图片| 国产精品av视频在线免费观看| 亚洲真实伦在线观看| 亚洲美女黄片视频| 久久久久亚洲av毛片大全| 人妻夜夜爽99麻豆av| 免费av不卡在线播放| 变态另类成人亚洲欧美熟女| 精品久久久久久久人妻蜜臀av| 制服人妻中文乱码| 日本在线视频免费播放| 精品久久久久久久久久久久久| 搡老妇女老女人老熟妇| 亚洲美女视频黄频| 日本黄色视频三级网站网址| 欧美不卡视频在线免费观看| 内射极品少妇av片p| 又紧又爽又黄一区二区| 在线免费观看不下载黄p国产 | 男人的好看免费观看在线视频| 午夜免费激情av| 国产欧美日韩一区二区精品| 99在线视频只有这里精品首页| 国产麻豆成人av免费视频| 非洲黑人性xxxx精品又粗又长| 久久性视频一级片| 深夜精品福利| 亚洲国产高清在线一区二区三| 在线国产一区二区在线| 国产精品久久电影中文字幕| 国产精品精品国产色婷婷| 国产真人三级小视频在线观看| 身体一侧抽搐| 我的老师免费观看完整版| 波多野结衣高清无吗| 亚洲精品一区av在线观看| 三级国产精品欧美在线观看| 国产精品99久久久久久久久| 美女cb高潮喷水在线观看| 少妇的逼好多水| ponron亚洲| 网址你懂的国产日韩在线| 夜夜夜夜夜久久久久| 亚洲五月婷婷丁香| 亚洲欧美日韩卡通动漫| 欧美xxxx黑人xx丫x性爽| 亚洲激情在线av| 亚洲av二区三区四区| 午夜精品在线福利| 欧美bdsm另类| 在线观看免费视频日本深夜| 美女被艹到高潮喷水动态| 国产精品美女特级片免费视频播放器| 香蕉丝袜av| 午夜福利高清视频| 欧美精品啪啪一区二区三区| 国产成人a区在线观看| 久久伊人香网站| 欧美黄色淫秽网站| 一本一本综合久久| 51午夜福利影视在线观看| 国产成人福利小说| 婷婷六月久久综合丁香| 丁香欧美五月| 精品一区二区三区视频在线观看免费| 国产精品乱码一区二三区的特点| 99热精品在线国产| 久久久久久久亚洲中文字幕 | 国产一区二区在线观看日韩 | 午夜免费成人在线视频| 黑人欧美特级aaaaaa片| 久久午夜亚洲精品久久| 午夜福利18| 精品乱码久久久久久99久播| 天堂av国产一区二区熟女人妻| 在线播放国产精品三级| 久久久色成人| 最近最新中文字幕大全免费视频| 十八禁网站免费在线| 男女午夜视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 免费av不卡在线播放| 一级毛片女人18水好多| 亚洲人成网站在线播| 热99re8久久精品国产| 99国产综合亚洲精品| 国产私拍福利视频在线观看| 亚洲美女黄片视频| 身体一侧抽搐| 国产免费男女视频| 怎么达到女性高潮| 国产色婷婷99| 久久草成人影院| 国产成人av教育| 两个人看的免费小视频| 亚洲aⅴ乱码一区二区在线播放| 色综合站精品国产| 欧美午夜高清在线| 国产午夜精品久久久久久一区二区三区 | 午夜免费成人在线视频| 搞女人的毛片| 国产欧美日韩精品一区二区| 在线免费观看不下载黄p国产 | 欧美日韩国产亚洲二区| 久久国产精品人妻蜜桃| 精品一区二区三区视频在线 | 亚洲av中文字字幕乱码综合| 久久天躁狠狠躁夜夜2o2o| 欧美日韩乱码在线| 性欧美人与动物交配| 最近最新中文字幕大全免费视频| 亚洲内射少妇av| 一个人免费在线观看的高清视频| eeuss影院久久| 99国产极品粉嫩在线观看| 国内精品美女久久久久久| 全区人妻精品视频| 亚洲无线观看免费| 看片在线看免费视频| 国产精品久久电影中文字幕| 国产97色在线日韩免费| 精品熟女少妇八av免费久了| 久久性视频一级片| av女优亚洲男人天堂| av视频在线观看入口| 深爱激情五月婷婷| 欧美日韩中文字幕国产精品一区二区三区| 欧美在线黄色| 一区二区三区高清视频在线| 亚洲色图av天堂| 欧美日韩瑟瑟在线播放| 欧美一级a爱片免费观看看| 91麻豆av在线| 中文字幕精品亚洲无线码一区| 日本 欧美在线| 成人午夜高清在线视频| 免费看美女性在线毛片视频| a级毛片a级免费在线| 黄片小视频在线播放| 久久精品国产亚洲av香蕉五月| 久久欧美精品欧美久久欧美| 小说图片视频综合网站| 伊人久久大香线蕉亚洲五| 一个人看视频在线观看www免费 | 国产极品精品免费视频能看的| 欧美日韩综合久久久久久 | 三级国产精品欧美在线观看| 欧美区成人在线视频| 三级男女做爰猛烈吃奶摸视频| 又紧又爽又黄一区二区| 欧美绝顶高潮抽搐喷水| 亚洲国产日韩欧美精品在线观看 | 免费看美女性在线毛片视频| 哪里可以看免费的av片| 女生性感内裤真人,穿戴方法视频| 国产国拍精品亚洲av在线观看 | 亚洲av电影在线进入| 一个人免费在线观看的高清视频| 90打野战视频偷拍视频| 亚洲av日韩精品久久久久久密| 变态另类丝袜制服| 少妇的逼好多水| 男女之事视频高清在线观看| 噜噜噜噜噜久久久久久91| 中文字幕熟女人妻在线| 嫩草影院精品99| av视频在线观看入口| 天美传媒精品一区二区| 少妇裸体淫交视频免费看高清| 岛国视频午夜一区免费看| 久久久久久久久久黄片| 国产欧美日韩一区二区三| 欧美午夜高清在线| 淫秽高清视频在线观看| 中文字幕人妻丝袜一区二区| 国产av不卡久久| 久久精品综合一区二区三区| 最近最新中文字幕大全免费视频| 18禁美女被吸乳视频| 亚洲欧美日韩卡通动漫| 一个人免费在线观看电影| 69人妻影院| 色播亚洲综合网| 高清毛片免费观看视频网站| 欧美日韩福利视频一区二区| 国产精品 国内视频| 天天躁日日操中文字幕| 毛片女人毛片| 色视频www国产| 三级毛片av免费| 欧美日韩一级在线毛片| 热99re8久久精品国产| 欧美色欧美亚洲另类二区| 国产精品亚洲av一区麻豆| 日本在线视频免费播放| 最近最新中文字幕大全电影3| 麻豆一二三区av精品| 国产激情偷乱视频一区二区| netflix在线观看网站| 国产伦一二天堂av在线观看| 欧美日本视频| 99国产精品一区二区三区| 国产黄片美女视频| 色哟哟哟哟哟哟| www.色视频.com| 美女大奶头视频| 国产午夜精品久久久久久一区二区三区 | 亚洲av免费在线观看| 亚洲狠狠婷婷综合久久图片| 免费观看人在逋| 亚洲五月天丁香| 亚洲成人久久爱视频| 国产精品久久久久久久久免 | 欧美在线一区亚洲| 国产精品久久视频播放| 色精品久久人妻99蜜桃| 99在线视频只有这里精品首页| aaaaa片日本免费| 国产在线精品亚洲第一网站| 脱女人内裤的视频| 无限看片的www在线观看| 99视频精品全部免费 在线| 老熟妇仑乱视频hdxx| 少妇人妻一区二区三区视频| 久久中文看片网| 麻豆国产97在线/欧美| 制服丝袜大香蕉在线| 精品熟女少妇八av免费久了| 精品无人区乱码1区二区| 欧美极品一区二区三区四区| 亚洲av成人精品一区久久| 淫妇啪啪啪对白视频| 久久伊人香网站| 俺也久久电影网| 色播亚洲综合网| 国产精品美女特级片免费视频播放器| 性欧美人与动物交配| 日本在线视频免费播放| 欧美最黄视频在线播放免费| 日本黄色视频三级网站网址| 91久久精品电影网| 国产一区在线观看成人免费| 亚洲精品美女久久久久99蜜臀| 观看美女的网站| 午夜免费激情av| 成人鲁丝片一二三区免费| 蜜桃久久精品国产亚洲av| 18+在线观看网站| 亚洲人成网站在线播放欧美日韩| 久久精品91蜜桃| 国产成人系列免费观看| 丰满乱子伦码专区| 亚洲黑人精品在线| 久9热在线精品视频| 国产精品亚洲av一区麻豆| 两个人看的免费小视频| 99热精品在线国产| 国产熟女xx| 精品不卡国产一区二区三区| ponron亚洲| 在线观看一区二区三区| 国产亚洲欧美在线一区二区| 丰满乱子伦码专区| 亚洲黑人精品在线| 18禁裸乳无遮挡免费网站照片| 国产真实乱freesex| 欧美中文日本在线观看视频| 最近最新中文字幕大全电影3| 18+在线观看网站| 一个人看的www免费观看视频| 亚洲av五月六月丁香网| 国产视频一区二区在线看| 最好的美女福利视频网| 国产一区在线观看成人免费| 美女高潮喷水抽搐中文字幕| 九九热线精品视视频播放| 制服丝袜大香蕉在线| 欧美乱妇无乱码| 色av中文字幕| 国产av麻豆久久久久久久| 成年版毛片免费区| 日本免费一区二区三区高清不卡| 亚洲成人精品中文字幕电影| 91麻豆精品激情在线观看国产| 欧美一区二区国产精品久久精品| 成人无遮挡网站| 中文字幕精品亚洲无线码一区| 精品人妻一区二区三区麻豆 | 天美传媒精品一区二区| 麻豆成人午夜福利视频| 欧美丝袜亚洲另类 | 亚洲人成网站在线播放欧美日韩| 成人av一区二区三区在线看| 色噜噜av男人的天堂激情| 久久久久久久午夜电影| 日韩欧美精品免费久久 | 成人性生交大片免费视频hd| 色av中文字幕| 少妇的逼水好多| 精品福利观看| 神马国产精品三级电影在线观看| 国产精品免费一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区| 欧美zozozo另类| 在线看三级毛片| 国产在线精品亚洲第一网站| 韩国av一区二区三区四区| 大型黄色视频在线免费观看| 亚洲av一区综合| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 叶爱在线成人免费视频播放| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 99在线人妻在线中文字幕| 黄色片一级片一级黄色片| 久久久久国产精品人妻aⅴ院| www.色视频.com| 三级毛片av免费| 手机成人av网站| 亚洲内射少妇av| 内地一区二区视频在线| 757午夜福利合集在线观看| 日韩欧美三级三区| 女人被狂操c到高潮| 麻豆成人av在线观看| 99精品欧美一区二区三区四区| 国产成人av教育| 国产免费男女视频| 男人舔奶头视频| 夜夜爽天天搞| 韩国av一区二区三区四区| 97超视频在线观看视频| aaaaa片日本免费| 波野结衣二区三区在线 | 日韩欧美免费精品| 一本精品99久久精品77| 欧美一区二区精品小视频在线| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 一区二区三区免费毛片| 国产成人av激情在线播放| 人人妻人人澡欧美一区二区| 日本a在线网址| 欧美中文日本在线观看视频| 一级黄色大片毛片| 亚洲精品色激情综合| 亚洲黑人精品在线| 在线播放国产精品三级| 日本黄大片高清| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 热99在线观看视频| 国产精品久久视频播放| 精品人妻一区二区三区麻豆 | 午夜激情欧美在线| 9191精品国产免费久久| 美女大奶头视频| 一夜夜www| 免费看日本二区| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 亚洲av日韩精品久久久久久密| 麻豆成人午夜福利视频| 成人欧美大片| 亚洲 国产 在线| 欧美一区二区国产精品久久精品| 国产麻豆成人av免费视频| a级一级毛片免费在线观看| ponron亚洲| 久久精品综合一区二区三区| 18禁黄网站禁片午夜丰满| 免费一级毛片在线播放高清视频| 99视频精品全部免费 在线| 国产欧美日韩一区二区三| 最近最新免费中文字幕在线| 国产久久久一区二区三区| 欧美日韩综合久久久久久 | 我要搜黄色片| 日本黄色片子视频| 在线国产一区二区在线| 日韩欧美国产一区二区入口| 国产一区二区亚洲精品在线观看| 成人无遮挡网站| 日韩欧美国产在线观看| 在线天堂最新版资源| 国产伦精品一区二区三区视频9 | 狂野欧美白嫩少妇大欣赏| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 亚洲内射少妇av| 在线免费观看不下载黄p国产 | 国产精品一及| 午夜老司机福利剧场| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 美女高潮喷水抽搐中文字幕| www.www免费av| 观看免费一级毛片| 成年女人看的毛片在线观看| 亚洲激情在线av| 禁无遮挡网站| 日韩大尺度精品在线看网址| 老熟妇仑乱视频hdxx| 久久久久久久午夜电影| 国内精品久久久久久久电影| 亚洲国产欧美网| 国产三级在线视频| 国产伦人伦偷精品视频| 中文字幕精品亚洲无线码一区| 午夜免费男女啪啪视频观看 | 日韩中文字幕欧美一区二区| 99热只有精品国产| 午夜福利在线观看吧| 一本精品99久久精品77| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 国产亚洲精品av在线| 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx| 一个人看的www免费观看视频| 最新中文字幕久久久久| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式 | 色综合亚洲欧美另类图片| 99热6这里只有精品| 久久婷婷人人爽人人干人人爱| 欧美成人一区二区免费高清观看| 国产精品久久电影中文字幕| 在线a可以看的网站| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 日本a在线网址| 高清在线国产一区| 精品一区二区三区人妻视频| 久久久久久国产a免费观看| 一级黄片播放器| www日本在线高清视频| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 天堂网av新在线| 国产精品久久久久久亚洲av鲁大| 在线观看美女被高潮喷水网站 | 国产午夜精品久久久久久一区二区三区 | 女警被强在线播放| 中文资源天堂在线| 五月伊人婷婷丁香| 国产精品久久视频播放| 黑人欧美特级aaaaaa片| 午夜福利高清视频| 国产精品女同一区二区软件 | 动漫黄色视频在线观看| 亚洲,欧美精品.| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| 中文字幕av成人在线电影| 我要搜黄色片| 亚洲第一电影网av| 不卡一级毛片| 综合色av麻豆| 国产av一区在线观看免费| 免费看a级黄色片| 可以在线观看的亚洲视频| 一个人看的www免费观看视频| 一个人免费在线观看电影| 国内久久婷婷六月综合欲色啪| 国产高潮美女av| 香蕉丝袜av| 看黄色毛片网站| 国产高清视频在线观看网站| 欧美中文综合在线视频| 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 亚洲在线观看片| 国产一区在线观看成人免费| a在线观看视频网站| 欧美精品啪啪一区二区三区| 少妇的逼好多水| 精品久久久久久久久久久久久| 日本五十路高清| 久久性视频一级片| www日本在线高清视频| 欧美性猛交黑人性爽| 精品人妻一区二区三区麻豆 | 99精品在免费线老司机午夜| 一a级毛片在线观看| 男人和女人高潮做爰伦理| 国产欧美日韩精品一区二区| 99视频精品全部免费 在线| 天堂√8在线中文| 欧美黄色淫秽网站| 一区二区三区激情视频| 91久久精品国产一区二区成人 | 亚洲欧美日韩东京热| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式 | 欧美在线一区亚洲| 看黄色毛片网站| 国产精品久久久人人做人人爽| 麻豆成人午夜福利视频| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 国产精品,欧美在线| 99久久综合精品五月天人人| 国产一区二区三区视频了| 亚洲av电影在线进入| 成人亚洲精品av一区二区| ponron亚洲| 国模一区二区三区四区视频| 久久久久久久久中文| 黄色女人牲交| 免费在线观看成人毛片| 国产高清视频在线播放一区| 毛片女人毛片| 精品一区二区三区视频在线观看免费| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 日日干狠狠操夜夜爽| 国产精品国产高清国产av| 夜夜爽天天搞| 亚洲中文字幕日韩| 一本一本综合久久| 久久精品91蜜桃| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 婷婷精品国产亚洲av在线| 免费看日本二区| 国产一区在线观看成人免费| 国产成人啪精品午夜网站| 国产精品,欧美在线| 怎么达到女性高潮| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费| 九九热线精品视视频播放| 午夜免费男女啪啪视频观看 | 欧美日韩乱码在线| 看黄色毛片网站| 国产精品日韩av在线免费观看| 内地一区二区视频在线| 黄色女人牲交| 最近最新中文字幕大全电影3| 88av欧美| 精品久久久久久久久久免费视频| 久久久久久久久大av| svipshipincom国产片| 久久婷婷人人爽人人干人人爱| www国产在线视频色| 免费看a级黄色片| 很黄的视频免费| 色噜噜av男人的天堂激情| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 国产成人欧美在线观看| 精品久久久久久,| 色av中文字幕| 国产精品一及| 高潮久久久久久久久久久不卡| 久久精品影院6| 啦啦啦韩国在线观看视频| 亚洲内射少妇av| 一区二区三区国产精品乱码| 99精品欧美一区二区三区四区| 色尼玛亚洲综合影院| 日韩欧美精品v在线| x7x7x7水蜜桃| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 日本熟妇午夜| 国产精品 国内视频| 999久久久精品免费观看国产| 欧美乱妇无乱码| 国内少妇人妻偷人精品xxx网站| 亚洲人成伊人成综合网2020| 99久久久亚洲精品蜜臀av| tocl精华| 国产av在哪里看| 日韩欧美在线二视频| 国产欧美日韩精品亚洲av| 在线观看舔阴道视频| 夜夜爽天天搞| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久com| 成人特级黄色片久久久久久久| 一本一本综合久久| 国产精品久久久久久亚洲av鲁大| 欧美日韩亚洲国产一区二区在线观看| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清在线视频| 亚洲熟妇熟女久久| 久久久久久久久中文| 我要搜黄色片| 内射极品少妇av片p| 69av精品久久久久久| 精品不卡国产一区二区三区| 免费看十八禁软件| 我的老师免费观看完整版| 麻豆国产av国片精品| 免费看a级黄色片| 国产欧美日韩一区二区精品| 久久国产精品影院| 成人无遮挡网站|