• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Dispersants for the Preparation of Y2O3 Spherical Powders by Homogeneous Precipitation at High Temperature①

    2015-01-07 03:43:57ZHANGCiGUOWngHUANGJiQunCAOYongGe
    結(jié)構(gòu)化學(xué) 2015年9期

    ZHANG D-Ci GUO Wng HUANG Ji-Qun CAO Yong-Ge②

    ?

    New Dispersants for the Preparation of Y2O3Spherical Powders by Homogeneous Precipitation at High Temperature①

    ZHANG Da-Caia, bGUO WangaHUANG Ji-QuanaCAO Yong-Gea②

    a(350002)b(100049)

    Spherical monodispersed and submicron-sized Y2O3powders were successfully synthesized through the urea homogeneous precipitation method adding PVA, PVP, or PVA and PVP compound (PVA/PVP) as the dispersant which generated no impurity phases after calcining. The productivity is up to 60% at 107 ± 2 ℃for 3.5 h in an oil bath. The structure, phase composition and evolution, morphology and specific surface area of Y2O3precursor and the calcined powders were explored by means of XRD, TG/DTA, FTIR, SEM, TEM and Micropore analyzer (BET). The spherical particle size of the powders calcined at 900 ℃ for 2 h was 330~350 nm. In this study, 15.5 Wt.% PVA, 8.5 Wt.% PVP or the mixture of both is in favor of enhancing the dispersity of the products. Based on what we have already achieved, it is rather significant to advance this research.

    PVA, PVP, PVA/PVP, productivity;

    1 INTRODUCTION

    Possessing the high melting point, high thermal conductivity, chemical stability[1, 2], transparency over a wide wavelength range from violet to infrared light[3, 4], and low phonon energy, yttria (Y2O3) is a promising material for infrared domes, optical matrix for scintillation, high temperature windows, and component of semiconductor. Moreover, rare earth-doped Y2O3has been considered as a candidate host material for solid-state lasers for many years[5-7], which has attracted much attention of researchers.

    As we know, the transmittance and laser per- formance of Y2O3transparent ceramics have greatly depended on the properties of initial Y2O3powders, such as purity, morphology, dispersity, particle size and size distribution. Based on this, spherical, monodispersed, fine and pure Y2O3powders are ideal choices for making Y2O3ceramics with high densification and transmittance. Great numbers of different techniques have been developed to synthesize rare earth oxide (REO) powders, like solid phase synthesis[8, 9], hydrothermal method[10, 11], sol-gel[12, 13], coprecipitation[14, 15]and homogeneous precipitation[16, 17]. Among these methods, homo- geneous precipitation (HP) is the optimal way to attain desired Y2O3powders. However, few papers have reported the productivity by HP. As a matter of fact, this method is so low-yield, which is partly due to its low reaction temperature in an aqueous medium (~90 ℃)[17], that its practical value is confined. Thus, improving reaction temperature is a significant means to increase powders yield with keeping other reaction conditions immutable. Nevertheless, the higher reaction temperature is, the bigger particle size of the precipitated precursor is, and the more severe agglomeration is. So, it is necessary to add dispersants to the solution to obtain dispersive and fine precursors. Traditionally, ammo- nium sulfate ((NH4)2SO4) is used as a dispersant because of the comparatively high electronegativity and decomposition temperature (~1100 ℃) of the sulfate ion (SO42-)[18-20]. (NH4)2SO4has indeed contributed to improving the dispersity of precursors and decreasing the size of particles at relatively low reaction temperature in an liquidous medium[21]. However, when increasing the reaction temperature to some degree, we found (NH4)2SO4causes more severe aggregation. Thus it is needed to substitute new dispersants for ammonium sulfate to improve dispersity of products and increasing productivity at high reaction temperature. After testing dozens of additives, we found poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) are beneficial to improving the decentrality of products as surfac- tants.

    In this research, taking a certain amount of PVA and PVP as the dispersants, we successfully synthe- sized pure uniform spherical Y2O3powders through a urea homogeneous precipitation method at high temperature (107 ± 2 ℃) for the oil bath. The pro- ductivity is up to 60%, which is much higher than the one at 90 ℃ (~10%). PVA and PVP are expected to have wide applications in preparing other rare earth oxide (REO) powders with high quality.

    2 EXPERIMENTAL

    2. 1 Materials and preparation of Y2O3powders

    Yttria (99.99%), nitric acid (99.999%), urea (99.999%), (NH4)2SO4(99.997%), ethanol (analy- tical grade), PVA (average MW 67000, 88% alcoholyzed) and PVP (average MW 24000) were used as the raw starting materials. According to our previous studies, the appropriate additions of PVA and PVP are 15.5 Wt.% and 8.5 Wt.% of raw Y2O3powders, respectively. So, for comparison, Y2O3precursors were prepared by HP technique according to the following five different means: (1) without any dispersants; (2) only 5Wt.% (NH4)2SO4as the dispersant (weighing 5 Wt.% of raw Y2O3pow- ders)[21]; (3) only 15.5 Wt.% PVA as the dispersant; (4) only 8.5 Wt.% PVP as the dispersant; (5) the mixture of PVA (15.5 Wt.%) and PVP (8.5 Wt.%) as the dispersant. Firstly, proper amounts of raw Y2O3powders were dissolved in dilute nitric acid to make a nitrate solution in which the concentration of Y3+was kept at 0.04 mol/L. The concentration ratio of urea and Y3+was controlled at 15:1. Then, ethanol, 20 vol.% of the solution, and the relevant dispersant was added to the solution and the pH was adjusted to 6.0. After being stirred at room temperature for 1 h for homogenization, the mixed solution was heated in a Dimethyl silicone bath whose temperature was 107 ± 2 ℃ and held for 3.5 h. In fact, the temperature of the mixed solution was kept at 85 ± 2 ℃ after 0.5 h. Next, the solution was naturally cooled down to room temperature. Finally, the precursor was centrifuged and washed repeatedly with deionized water and ethanol to completely remove by-products of the reaction. After rinsing, the precursor was dried at 65 ℃ for 12 h and calcined at 900 ℃ for 2 h in a tube furnace in O2.

    2. 2 Physical measurements

    Phase identification was examined by X-ray diffraction analysis (XRD, MiniFlex600, Rigaku, Japan) and thermal analysis of the precursors was performed via thermo-gravimetric/differential thermal analysis (TG/DTA, STA449F3, Netzsch, Germany). Fourier transform infrared spectroscopy (FTIR, Vertex70, Bruker, Germany) of the pre- cursors was determined at room temperature and the specific surface area of the powders calcined at 900 ℃ was measured with Micropore analyzer (Asap 2020 C+M, Micromeritics, USA) by BET method in N2. The morphology of calcined powders was characterized through scanning electron microscope (SEM, JSM-6700F, JEOL, Japan) and Transmission electron microscope (TEM, JEM-2010, JEOL, Japan).

    3 RESULTS AND DISCUSSION

    To illustrate the effects of dispersants concisely, all dispersants (or additives) mentioned in the following discussion just only refer to the ones added to the solution in liquid-phase reactions.

    3. 1 IR spectroscopy

    According to the FTIR spectra of the virgin and various dispersant-added precursors in Fig. 1, we can get some important information about the effect of dispersants on the products. The wide peaks at ~3373 cm-1are due to O–H bend and the peaks at about 648, 696, and 756 cm-1are attributed to the split non-planar bending vibration of CO32-. The peak at ~1125 cm-1results from the residual SO42-after rinsing. The peaks at about 1408 and 1520 cm-1are assigned to the split anti-symmetrical stretching vibration of CO32-that is weakened by the absorbed PVA, as shown in the inset. Maybe PVA’s hydro- philic groups, -CH2OH-, improved the stretching symmetry of CO32-by absorbing the surrounding electrons. From the above analysis, the precursor is reasonably considered as the basic carbonate with crystal water and the formula is Y+2y(OH)3x(CO3)3y·nH2O.

    Fig. 1. FTIR spectra of the precursors with different additives; Inset is the magnified image of FTIR spectra from 1230 to 1676 cm-1

    3. 2 TG analyses

    TG curves (Fig. 2) of the five different precursors show total weight loss of 39.6~41.4% up to 1050 ℃. Between 30~195 ℃, a weight of ~9% is mainly attributed to the evaporation of absorbed water and the release of molecular water. The subsequent loss from 195 to 800 ℃ is owing to the decomposition of Y(OH)3and Y2(CO3)3. The remainder of 58.6~60.4% does not change anymore between 800~1050 ℃, which reveals that Y(OH)3and Y2(CO3)3have decomposed into Y2O3utterly before 800 ℃. In addition, water loss of the precursor added with PVA, PVP, or the mixture of both is a little larger than the two others, seen in the inset. This is because the hydrophilic groups of PVA and PVP attached to the precursors absorbed more water.

    3. 3 Structure description

    Fig. 3a shows the XRD patterns of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h. It reveals that, except for the (NH4)2SO4-added one, the precursors all completely transformed to Y2O3crystals at 900 ℃ and no other phases were detected. After calcining, the (NH4)2SO4-added powder has the impure phase Y2O2SO4because the decomposition temperature of SO42-is higher than 900 ℃. This result is consistent with the FTIR analysis (Fig. 1). Residual Y2O2SO4is rather pernicious for ceramics sintering, because itwill decompose and release gas during sintering process, then densification and transmittance of ceramics will be impaired severely. Structural refinement with the Rietveld method[22]using Fullprof Program was performed to analyze further the effect of PVA and PVP on the structure of the prepared powders. The results, seen in Table 1 and Fig. 3b, indicate good agreement between the observed XRD pattern and the calculated one based on pure Y2O3phase. This result means that after calcination the PVA/PVP decomposed and evapora- ted completely and brought forth no impurities. Besides, we can find that the ratio of O2-andY3+is larger than 3:2 (Table 1). The reason is that ambient O2entered the interstices of Y2O3crystals during the calcining process in O2.

    Table 1. Rietveld Refinement Results of the PVA/PVP-added Y2O3Powder Calcined at 900 ℃ for 2 h Compared with the Pure Y2O3Powder

    PowdersAtomsxyzOccupancyLattice constants Y1 (C3i)0.25000.25000.25000.1000a = b = c = 10.6039 ? Pure Y2O3Y2 (C2)0.467500.25000.3000a= b= g= 90° O10.10870.34780.11950.6000 Y1 (C3i)0.25000.25000.25000.0982a = b = c = 10.6091 ? PVA/PVP-added Y2O3Y2 (C2)0.468500.25000.3018a= b= g= 90° O10.10780.34480.11960.6085

    Fig. 2. TG curves of the precursors with different additives; Inset is the magnified image of the selected part

    (a)????????????(b)

    Fig. 3. (a) XRD patterns of the powders calcined at 900 ℃ for 2 h with different additives. (b) Rietveld refinement pattern for the powder calcined at 900 ℃ for 2 h added with PVA/PVP as the dispersant; Inset is the unit cell structure of Y2O3revealing coordination environment of Y and O

    3. 4 Morphology characteristics

    The SEM and TEM morphologies of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h are presented in Fig. 4. Except for the (NH4)2SO4-added one (Fig. 4c, 4d), particles of all other powders are spherical because of the low concentration of Y3+(0.04 M), and the particle size of these powders is 330~350 nm. However, the size of the aggregates formed by the reunite of particles is much different. As Fig. 4 shows, the powder added with PVA or PVP as the dispersant is less agglomerative than the virgin one, so is the powder added with PVA/PVP. The mechanism of surfactants that consist of hydrophilic and hydrophobic groups has been extensively studied. PVA is a nonionic surfactant and PVP is a cationic one whose hydrophilic groups are positive after ionization. After the precursor particles were formed, the hydrophobic groups adhered to the surfaces of particles and the hydrophilic groups stretched into the liquidous medium (Fig. 5), which contributed to keeping particles from gathering with each other, namely, steric hindrance effect. In addition, because PVP’s hydrophilic groups are positive, it constituted charge layers on the surfaces which enhanced the repulsion between two particles. As to the (NH4)2SO4-added powder, the electrostatic effect of SO42-is not strong enough to keep particles apart from each other at high reaction temperature. Although its particle size is much smaller (Fig. 4d), particles agglomerated rather severely and many pores were formed in the aggregate so that it is quite hard to sinter for making transparent ceramics.

    Fig. 4. SEM photographs (left) and TEM photographs (right) of the powders calcined at 900 ℃for 2 h. The additives were: virgin (a and b); (NH4)2SO4(c and d); PVA (e and f); PVP (g and h); PVA/PVP (i and j)

    (a)????????????????? (b)

    Fig. 5. Dispersive effect of PVA (a) and PVP (b)

    3. 5 Special surface area measurement

    To study further about the effect of PVA and PVP on improving dispersity of particles, we examined the specific surface area of calcined products via BET method. Fig. 6 shows that the specific surface area of the product taking PVA or PVP as the dispersant is larger than the virgin one’s by 20% approximately. What’s more, the specific surface area of the product using PVA/PVP as the dispersant is about 30% larger than that of the virgin one, which manifests PVA and PVP cooperated with each other in alleviating agglomeration. Considering the fact that the temperature of the oil bath is so high (107 ± 2 ℃) that particles are strongly inclined to gather, PVA and PVP are still promising dispersants, though their benefit for improving products’ dispersity is not very great. As for the (NH4)2SO4- added powder, its much larger specific surface area is owing to the smaller particles than others.

    Fig. 6. Specific surface area of the powders calcined at 900 ℃ for 2 h with different additives measured by BET method

    4 CONCLUSION

    Monodispersed and submicron-sized Y2O3spherical powders were successfully prepared via the urea homogeneous precipitation method using PVA, PVP, or PVA/PVP as the dispersant. Both PVA and PVP improved the particle’s dispersion to a great degree. Furthermore, they were synergistic and engendered no impurity phases after calcining. The spherical particle sizes of the powders calcined at 900 ℃ for 2 h are 330~350 nm and the productivity is up to 60%. In this study, the contents of PVA and PVP were 15.5 Wt.% and 8.5 Wt.% of the raw Y2O3powders, respectively. Considering their vital role in weakening agglomeration, it is significant to move the study forward. For example, we can explore the effect of the proportion and average molecular weights of PVA and PVP on promoting dispersity of products. In sum, to make HP in producing Y2O3and other REO powders more meaningful and valuable, it is crucial to substitute new dispersants, such as PVA and PVP, for the traditional (NH4)2SO4at high reaction temperature in solution.

    (1) Tsukuda, Y. Application for refractory and corrosion resistant materials.. 1988, 23, 456-460.

    (2) Curtis, C. E. Properties of yttrium oxide ceramics.. 1957, 40, 274-278.

    (3) Wickersheim, K. A.; Lefever, R. A. Infrared transmittance of crystalline yttrium oxide and related compounds.. 1964, 111, 47-51.

    (4) Brecher, C.; Wei, G. C.; Rhodes, W. H. Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria.. 1990, 73, 1473-1488.

    (5) Kong, J.; Lu, J.; Takaichi, K.; Uematsu, T.; Ueda, K.; Tang, D. Y.; Shen, D. Y.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Diode-pumped Yb:Y2O3ceramic laser.. 2003, 82, 2556-2558.

    (6) Boulon, G.; Lupei, V. Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals.. 2007, 125, 45-54.

    (7) Lu, J. R.; Takaichi, K.; Uematsu, T.; Shirakawa, A.; Musha, M.; Ueda, K.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Yb3+:Y2O3ceramics-a novel solid state laser material.s. 2002, 41, 1373-1375.

    (8) Ikesue, A.; Kamata, K.; Yoshida, K. Synthesis of transparent Nd doped HfO2-Y2O3ceramics using HIP.c. 1996, 79, 359-364.

    (9) Li, W. J.; Zhou, S. M.; Liu, N. Effect of additives on optical characteristic of thulium doped yttria transparent ceramics. J.. 2010, 32, 971-974.

    (10) Sharma, P. K.; Jilavi, M. H.; Nab, R. Seeding effect in hydrothermal synthesis of nanosize yttria.. 1998, 17, 823-825.

    (11) Li, Q. S.; Feng, C. H.; Jiao, Q. Z. Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions.J.2004, 201, 3055-3059.

    (12) Dupont, A.; Parent, C.; Garrec, B. L. Size and morphology control of Y2O3nanopowders via a sol-gel route.. 2003, 171, 152-160.

    (13) Mangalaraja, R. V.; Ramama, K. V. S.; Ravi, J. Synthesis of nanocrystalline yttria by microwave-assisted citrate-gel decomposition technique.. 2008, 197, 292-295.

    (14) Saito, N.; Matsuda, S.; Ikegami, T. Fabrication of transparent yttria ceramics at low temperature using carbonate derived powder.. 1998, 81, 2023-2028.

    (15) Wen, L.; Sun, X. D.; Lu, Q. Synthesis of yttria nanopowders for transparent yttria ceramics... 2006, 29, 239-245.

    (16) Li, J. G.; Li, X. D.; Sun, X. D. Uniform colloidal spheres for (Y1-xGd)2O3(= 0-1): formation mechanism, compositional impacts, and physicochemical properties of the oxides.. 2008, 20, 2274-2281.

    (17) Qin, X. P.; Zhou, G. H.; Yang, H.; Yang, Y.; Zhang, J.; Wang, S. W. Synthesis and upconversion luminescence of monodispersed, submicron-sized Er3+:Y2O3spherical phosphors.. 2010, 493, 672-677.

    (18) Gong, H.; Tang, D. Y.; Huang, H. Effect of grain size on the sinterability of yttria nanopowders synthesized by carbonate-precipitation process.. 2008, 112, 423-426.

    (19) Ikegami, T.; Li, J. G.; Mori, T. Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide.. 2002, 85, 1725-1729.

    (20) Wen, L.; Sun, X. D.; Xiu, Z. M. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics.. 2004, 24, 2681-2688.

    (21) Qin, H. M.; Liu, H.; Sang, Y. H.; Zhang, X. L.; Lv, Y. H.; Wang, J. Y. Influence of the synthesis conditions on preparation of yttria powders by urea precipitation method.. 2011, 40, 1455-1459.

    (22) Rietveld, H. M. A profile refinement method for nuclear and magnetic structures.. 1969, 2, 65-71.

    ① This work was supported by the National Natural Science Foundation of China (91022035) and the Center for Advanced Materials,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

    ② Corresponding author. Cao Yong-Ge. E-mail: caoyongge@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-0722

    18 March 2015; accepted 5 May 2015 (ICSD 155173)

    搡老岳熟女国产| bbb黄色大片| kizo精华| 超碰97精品在线观看| 青春草亚洲视频在线观看| 日韩人妻精品一区2区三区| 欧美老熟妇乱子伦牲交| 激情视频va一区二区三区| 国精品久久久久久国模美| 日本vs欧美在线观看视频| 天堂中文最新版在线下载| 青春草视频在线免费观看| 一级黄片播放器| 9色porny在线观看| 午夜老司机福利片| 最近中文字幕2019免费版| 国产xxxxx性猛交| 日韩一区二区三区影片| 国产成人免费无遮挡视频| 国产一区亚洲一区在线观看| 又大又黄又爽视频免费| 女人久久www免费人成看片| 美女中出高潮动态图| 老熟女久久久| 久久久久久人妻| 妹子高潮喷水视频| 悠悠久久av| 国产免费一区二区三区四区乱码| 99热网站在线观看| 少妇人妻 视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区欧美精品| 久久精品人人爽人人爽视色| 一本一本久久a久久精品综合妖精| 中文字幕制服av| 免费看av在线观看网站| 免费黄色在线免费观看| 制服人妻中文乱码| 高清av免费在线| 日本av免费视频播放| 久久国产精品大桥未久av| 一本一本久久a久久精品综合妖精| 两个人免费观看高清视频| 国产日韩欧美视频二区| 国产免费视频播放在线视频| 精品久久蜜臀av无| 国产成人精品在线电影| 亚洲专区中文字幕在线 | 丁香六月欧美| 熟女少妇亚洲综合色aaa.| 亚洲一卡2卡3卡4卡5卡精品中文| 免费观看人在逋| 深夜精品福利| 国产精品麻豆人妻色哟哟久久| 亚洲精品第二区| 嫩草影院入口| svipshipincom国产片| 操出白浆在线播放| 纵有疾风起免费观看全集完整版| www.av在线官网国产| 国产免费又黄又爽又色| 老汉色∧v一级毛片| 亚洲精品日本国产第一区| 高清不卡的av网站| 丁香六月天网| 亚洲五月色婷婷综合| 一本大道久久a久久精品| 亚洲色图综合在线观看| 天美传媒精品一区二区| 久久久久精品国产欧美久久久 | 免费在线观看视频国产中文字幕亚洲 | 亚洲熟女精品中文字幕| 久久免费观看电影| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av涩爱| 亚洲国产看品久久| tube8黄色片| 乱人伦中国视频| 中文字幕亚洲精品专区| 亚洲伊人色综图| 美女视频免费永久观看网站| 黄网站色视频无遮挡免费观看| 亚洲欧美一区二区三区久久| 国产一区二区 视频在线| 久久ye,这里只有精品| 亚洲国产精品一区三区| 多毛熟女@视频| 一本—道久久a久久精品蜜桃钙片| 男女边摸边吃奶| 黄频高清免费视频| 19禁男女啪啪无遮挡网站| 欧美变态另类bdsm刘玥| 在线观看人妻少妇| 999精品在线视频| 日韩 亚洲 欧美在线| 婷婷色综合www| 一二三四中文在线观看免费高清| 国产亚洲午夜精品一区二区久久| 日韩一卡2卡3卡4卡2021年| 一级毛片 在线播放| 国产一区二区三区av在线| 男女边摸边吃奶| 大香蕉久久成人网| 看非洲黑人一级黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 色吧在线观看| 亚洲欧美成人综合另类久久久| 如日韩欧美国产精品一区二区三区| 欧美日韩成人在线一区二区| 日本色播在线视频| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频 | 一本大道久久a久久精品| 久久青草综合色| xxxhd国产人妻xxx| 色视频在线一区二区三区| 国产精品 欧美亚洲| 国产成人欧美在线观看 | 亚洲专区中文字幕在线 | 久久久精品国产亚洲av高清涩受| 亚洲av中文av极速乱| 最近中文字幕2019免费版| 精品酒店卫生间| 老汉色av国产亚洲站长工具| 蜜桃在线观看..| 国产色婷婷99| 精品亚洲成a人片在线观看| 999久久久国产精品视频| 亚洲精品中文字幕在线视频| 狂野欧美激情性bbbbbb| 老司机影院成人| 亚洲四区av| 一级毛片我不卡| 国产免费视频播放在线视频| 观看美女的网站| 国产人伦9x9x在线观看| 一边亲一边摸免费视频| 少妇人妻久久综合中文| 精品一区二区免费观看| 免费观看a级毛片全部| 日本vs欧美在线观看视频| 美女扒开内裤让男人捅视频| 亚洲情色 制服丝袜| 久久青草综合色| 日日爽夜夜爽网站| 搡老乐熟女国产| 国产精品一区二区在线不卡| 国精品久久久久久国模美| 欧美 亚洲 国产 日韩一| 久久精品国产综合久久久| 精品国产国语对白av| 美国免费a级毛片| 国产欧美亚洲国产| 国产精品香港三级国产av潘金莲 | 欧美 日韩 精品 国产| 亚洲精品在线美女| 在线观看www视频免费| 亚洲伊人色综图| 丝瓜视频免费看黄片| 国产日韩欧美亚洲二区| 考比视频在线观看| 亚洲中文av在线| 免费高清在线观看日韩| 大香蕉久久网| 成年人免费黄色播放视频| 国产一区二区三区综合在线观看| 99国产精品免费福利视频| 亚洲久久久国产精品| 人人妻人人爽人人添夜夜欢视频| 欧美黑人欧美精品刺激| 在线精品无人区一区二区三| 亚洲久久久国产精品| 不卡视频在线观看欧美| 国产探花极品一区二区| 亚洲精品美女久久久久99蜜臀 | 欧美av亚洲av综合av国产av | 精品国产一区二区久久| 777米奇影视久久| av在线播放精品| 亚洲欧美清纯卡通| 亚洲成人一二三区av| 国产xxxxx性猛交| 午夜福利乱码中文字幕| 精品人妻在线不人妻| 日韩,欧美,国产一区二区三区| 最近中文字幕2019免费版| 午夜日本视频在线| 欧美日韩视频精品一区| 看非洲黑人一级黄片| 亚洲av男天堂| 亚洲成国产人片在线观看| 久久久国产一区二区| 久久久久久久久免费视频了| 久久韩国三级中文字幕| 国产成人免费无遮挡视频| av女优亚洲男人天堂| 国产精品一区二区精品视频观看| 日韩一区二区三区影片| 国产深夜福利视频在线观看| 国产午夜精品一二区理论片| 国产精品一区二区在线观看99| 欧美日韩综合久久久久久| 欧美最新免费一区二区三区| 叶爱在线成人免费视频播放| 亚洲欧美精品自产自拍| 午夜福利网站1000一区二区三区| 男女边摸边吃奶| 欧美精品一区二区免费开放| 操出白浆在线播放| 成人国产av品久久久| 在线天堂中文资源库| videosex国产| 免费观看人在逋| a级毛片在线看网站| 黄片无遮挡物在线观看| 婷婷色综合大香蕉| 女人精品久久久久毛片| xxx大片免费视频| 男女国产视频网站| 欧美久久黑人一区二区| 国产1区2区3区精品| 老司机深夜福利视频在线观看 | 狠狠婷婷综合久久久久久88av| 欧美精品一区二区大全| 中文欧美无线码| 精品一区二区三区四区五区乱码 | 久久久久精品人妻al黑| 国产日韩欧美在线精品| 搡老岳熟女国产| 九九爱精品视频在线观看| 巨乳人妻的诱惑在线观看| 捣出白浆h1v1| 十八禁人妻一区二区| 熟女少妇亚洲综合色aaa.| 99久久综合免费| 欧美成人精品欧美一级黄| 亚洲国产精品999| 国产福利在线免费观看视频| a级毛片在线看网站| 少妇人妻 视频| 精品第一国产精品| 久久久久精品性色| 日本91视频免费播放| 亚洲视频免费观看视频| 亚洲成色77777| 十八禁人妻一区二区| 视频区图区小说| 美女扒开内裤让男人捅视频| 久久精品久久精品一区二区三区| 曰老女人黄片| 日本一区二区免费在线视频| 亚洲天堂av无毛| 高清av免费在线| 我要看黄色一级片免费的| 乱人伦中国视频| 黄片小视频在线播放| 亚洲七黄色美女视频| e午夜精品久久久久久久| 人人妻人人添人人爽欧美一区卜| 久久久久网色| 国产精品久久久久久精品古装| 丁香六月天网| a级片在线免费高清观看视频| 日韩熟女老妇一区二区性免费视频| 国产成人精品无人区| 观看av在线不卡| 又粗又硬又长又爽又黄的视频| 黄片播放在线免费| 亚洲成人一二三区av| 亚洲中文av在线| 七月丁香在线播放| 亚洲伊人久久精品综合| 欧美另类一区| 美女国产高潮福利片在线看| 亚洲熟女毛片儿| 欧美黑人欧美精品刺激| 少妇人妻 视频| av电影中文网址| 美女中出高潮动态图| 日本黄色日本黄色录像| 飞空精品影院首页| 精品人妻在线不人妻| 一级毛片黄色毛片免费观看视频| 精品国产一区二区久久| 青青草视频在线视频观看| 国产一级毛片在线| 黄片小视频在线播放| 亚洲精品久久久久久婷婷小说| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 制服丝袜香蕉在线| av免费观看日本| 黑人欧美特级aaaaaa片| 亚洲欧美中文字幕日韩二区| 在线观看一区二区三区激情| 国产av码专区亚洲av| 色吧在线观看| 男男h啪啪无遮挡| 另类精品久久| 久久精品aⅴ一区二区三区四区| 国产成人精品久久久久久| 久久久久精品久久久久真实原创| 成人18禁高潮啪啪吃奶动态图| www日本在线高清视频| 老熟女久久久| 亚洲久久久国产精品| 超色免费av| 国产日韩一区二区三区精品不卡| 一本大道久久a久久精品| 嫩草影视91久久| 色94色欧美一区二区| 在线观看免费午夜福利视频| 黄色怎么调成土黄色| 成年人午夜在线观看视频| 嫩草影视91久久| 99re6热这里在线精品视频| 老鸭窝网址在线观看| 成人国语在线视频| 黄色毛片三级朝国网站| 亚洲熟女毛片儿| 赤兔流量卡办理| 交换朋友夫妻互换小说| 久久99精品国语久久久| 久久久国产一区二区| 国产片特级美女逼逼视频| 日韩欧美一区视频在线观看| 亚洲av欧美aⅴ国产| 高清av免费在线| 一级a爱视频在线免费观看| 亚洲,欧美精品.| 亚洲av中文av极速乱| 亚洲美女视频黄频| 精品少妇久久久久久888优播| 亚洲三区欧美一区| 男女床上黄色一级片免费看| 99精品久久久久人妻精品| 日日爽夜夜爽网站| 一级黄片播放器| 午夜影院在线不卡| 欧美精品一区二区大全| 少妇人妻久久综合中文| 91精品伊人久久大香线蕉| 蜜桃国产av成人99| 不卡视频在线观看欧美| 丝袜人妻中文字幕| 国产人伦9x9x在线观看| 国产精品久久久久久精品电影小说| 熟妇人妻不卡中文字幕| 免费在线观看完整版高清| 黄片无遮挡物在线观看| 中文字幕av电影在线播放| 嫩草影视91久久| 国产免费现黄频在线看| 一区在线观看完整版| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡 | 久久精品国产亚洲av涩爱| 丝袜人妻中文字幕| 国产一区二区 视频在线| 精品少妇一区二区三区视频日本电影 | 国产免费一区二区三区四区乱码| 99久久人妻综合| 国产伦人伦偷精品视频| 国产成人免费观看mmmm| av不卡在线播放| h视频一区二区三区| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 日韩 亚洲 欧美在线| 日韩视频在线欧美| 超色免费av| 最近中文字幕高清免费大全6| 自线自在国产av| 亚洲精品成人av观看孕妇| 久热这里只有精品99| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 另类精品久久| 亚洲精品美女久久av网站| 国产精品国产三级专区第一集| 成人影院久久| 亚洲精品国产区一区二| 大香蕉久久网| 亚洲欧洲国产日韩| 久久精品亚洲熟妇少妇任你| av在线老鸭窝| 精品福利永久在线观看| 欧美精品av麻豆av| 中文字幕亚洲精品专区| 黄片小视频在线播放| 制服诱惑二区| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 超色免费av| 午夜日韩欧美国产| 亚洲图色成人| 久久国产精品大桥未久av| 亚洲av男天堂| 免费在线观看视频国产中文字幕亚洲 | 久久精品aⅴ一区二区三区四区| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| 性色av一级| 欧美日本中文国产一区发布| bbb黄色大片| 一区二区三区乱码不卡18| 亚洲第一av免费看| 男女下面插进去视频免费观看| 夫妻午夜视频| 亚洲三区欧美一区| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 超碰成人久久| 日韩一区二区视频免费看| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 纯流量卡能插随身wifi吗| 色网站视频免费| 啦啦啦在线观看免费高清www| 最近2019中文字幕mv第一页| 欧美黄色片欧美黄色片| 中文字幕人妻熟女乱码| 亚洲国产最新在线播放| 精品一区二区三卡| 日本午夜av视频| 我的亚洲天堂| 欧美日韩亚洲高清精品| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 久久99一区二区三区| 久久人人爽av亚洲精品天堂| 丝瓜视频免费看黄片| 美女大奶头黄色视频| 亚洲成人手机| 高清视频免费观看一区二区| 精品国产乱码久久久久久小说| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 制服诱惑二区| 中文字幕精品免费在线观看视频| 深夜精品福利| 777米奇影视久久| 妹子高潮喷水视频| 国产高清不卡午夜福利| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 久久99一区二区三区| 两个人看的免费小视频| 91成人精品电影| 18在线观看网站| 日韩免费高清中文字幕av| 精品人妻在线不人妻| 成人黄色视频免费在线看| 亚洲欧美清纯卡通| 人人妻人人爽人人添夜夜欢视频| 亚洲成国产人片在线观看| 少妇人妻精品综合一区二区| 精品酒店卫生间| 午夜久久久在线观看| 久久久久久久国产电影| 天天躁夜夜躁狠狠久久av| 国产免费一区二区三区四区乱码| 少妇被粗大的猛进出69影院| bbb黄色大片| 亚洲国产精品成人久久小说| 国产毛片在线视频| 99久久精品国产亚洲精品| 国产精品免费视频内射| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 亚洲国产欧美日韩在线播放| 免费观看av网站的网址| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 色网站视频免费| 日日爽夜夜爽网站| 久久毛片免费看一区二区三区| 免费不卡黄色视频| 999精品在线视频| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频| 久久av网站| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆| 美女主播在线视频| 女性被躁到高潮视频| 亚洲成色77777| 青春草亚洲视频在线观看| 国产成人系列免费观看| 又大又黄又爽视频免费| 青春草国产在线视频| 亚洲av欧美aⅴ国产| 亚洲婷婷狠狠爱综合网| 深夜精品福利| 一边亲一边摸免费视频| 日韩制服丝袜自拍偷拍| 日本av免费视频播放| 老司机影院成人| 色94色欧美一区二区| 色视频在线一区二区三区| 久久久精品免费免费高清| 国产成人欧美在线观看 | av视频免费观看在线观看| 最新在线观看一区二区三区 | 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 国产免费现黄频在线看| 久久青草综合色| 久久久欧美国产精品| 日韩不卡一区二区三区视频在线| 97精品久久久久久久久久精品| 精品国产一区二区三区久久久樱花| 国产精品女同一区二区软件| 国产色婷婷99| 极品人妻少妇av视频| 蜜桃国产av成人99| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 黄色视频不卡| 青春草亚洲视频在线观看| 精品一区二区三卡| 性少妇av在线| 中文字幕亚洲精品专区| 最新的欧美精品一区二区| 热99国产精品久久久久久7| 色94色欧美一区二区| 欧美日韩视频高清一区二区三区二| 男女无遮挡免费网站观看| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 国产精品 国内视频| 国产精品久久久久成人av| 欧美日本中文国产一区发布| 精品一区在线观看国产| 国产xxxxx性猛交| 日日撸夜夜添| 国产精品蜜桃在线观看| 亚洲一区二区三区欧美精品| 女性被躁到高潮视频| 国产精品av久久久久免费| 国产1区2区3区精品| 男女床上黄色一级片免费看| 久久久精品94久久精品| 午夜影院在线不卡| 日日撸夜夜添| www.自偷自拍.com| 婷婷色综合大香蕉| 免费看av在线观看网站| 丝袜人妻中文字幕| 九色亚洲精品在线播放| 亚洲av日韩在线播放| 丰满少妇做爰视频| 久久久久久久久久久免费av| 色视频在线一区二区三区| 1024香蕉在线观看| 男女高潮啪啪啪动态图| 美女午夜性视频免费| 爱豆传媒免费全集在线观看| 午夜影院在线不卡| 国产精品人妻久久久影院| 亚洲成人免费av在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲美女搞黄在线观看| 国产国语露脸激情在线看| 久久久久久久国产电影| 最黄视频免费看| 悠悠久久av| 在线观看免费午夜福利视频| 婷婷成人精品国产| 免费观看a级毛片全部| 飞空精品影院首页| 少妇被粗大猛烈的视频| 嫩草影视91久久| 性少妇av在线| 极品少妇高潮喷水抽搐| 亚洲美女视频黄频| av在线app专区| 国产成人免费观看mmmm| 午夜福利视频在线观看免费| 中文字幕色久视频| 精品一区二区三卡| 亚洲国产中文字幕在线视频| 另类亚洲欧美激情| 久久影院123| h视频一区二区三区| 欧美中文综合在线视频| 蜜桃在线观看..| 中文字幕av电影在线播放| 免费高清在线观看日韩| 日韩欧美精品免费久久| 中文字幕另类日韩欧美亚洲嫩草| 丰满少妇做爰视频| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美软件| 狠狠婷婷综合久久久久久88av| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 在线 av 中文字幕| 永久免费av网站大全| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 亚洲精品,欧美精品| 免费看av在线观看网站| 观看av在线不卡| 国产深夜福利视频在线观看|