• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Dispersants for the Preparation of Y2O3 Spherical Powders by Homogeneous Precipitation at High Temperature①

    2015-01-07 03:43:57ZHANGCiGUOWngHUANGJiQunCAOYongGe
    結(jié)構(gòu)化學(xué) 2015年9期

    ZHANG D-Ci GUO Wng HUANG Ji-Qun CAO Yong-Ge②

    ?

    New Dispersants for the Preparation of Y2O3Spherical Powders by Homogeneous Precipitation at High Temperature①

    ZHANG Da-Caia, bGUO WangaHUANG Ji-QuanaCAO Yong-Gea②

    a(350002)b(100049)

    Spherical monodispersed and submicron-sized Y2O3powders were successfully synthesized through the urea homogeneous precipitation method adding PVA, PVP, or PVA and PVP compound (PVA/PVP) as the dispersant which generated no impurity phases after calcining. The productivity is up to 60% at 107 ± 2 ℃for 3.5 h in an oil bath. The structure, phase composition and evolution, morphology and specific surface area of Y2O3precursor and the calcined powders were explored by means of XRD, TG/DTA, FTIR, SEM, TEM and Micropore analyzer (BET). The spherical particle size of the powders calcined at 900 ℃ for 2 h was 330~350 nm. In this study, 15.5 Wt.% PVA, 8.5 Wt.% PVP or the mixture of both is in favor of enhancing the dispersity of the products. Based on what we have already achieved, it is rather significant to advance this research.

    PVA, PVP, PVA/PVP, productivity;

    1 INTRODUCTION

    Possessing the high melting point, high thermal conductivity, chemical stability[1, 2], transparency over a wide wavelength range from violet to infrared light[3, 4], and low phonon energy, yttria (Y2O3) is a promising material for infrared domes, optical matrix for scintillation, high temperature windows, and component of semiconductor. Moreover, rare earth-doped Y2O3has been considered as a candidate host material for solid-state lasers for many years[5-7], which has attracted much attention of researchers.

    As we know, the transmittance and laser per- formance of Y2O3transparent ceramics have greatly depended on the properties of initial Y2O3powders, such as purity, morphology, dispersity, particle size and size distribution. Based on this, spherical, monodispersed, fine and pure Y2O3powders are ideal choices for making Y2O3ceramics with high densification and transmittance. Great numbers of different techniques have been developed to synthesize rare earth oxide (REO) powders, like solid phase synthesis[8, 9], hydrothermal method[10, 11], sol-gel[12, 13], coprecipitation[14, 15]and homogeneous precipitation[16, 17]. Among these methods, homo- geneous precipitation (HP) is the optimal way to attain desired Y2O3powders. However, few papers have reported the productivity by HP. As a matter of fact, this method is so low-yield, which is partly due to its low reaction temperature in an aqueous medium (~90 ℃)[17], that its practical value is confined. Thus, improving reaction temperature is a significant means to increase powders yield with keeping other reaction conditions immutable. Nevertheless, the higher reaction temperature is, the bigger particle size of the precipitated precursor is, and the more severe agglomeration is. So, it is necessary to add dispersants to the solution to obtain dispersive and fine precursors. Traditionally, ammo- nium sulfate ((NH4)2SO4) is used as a dispersant because of the comparatively high electronegativity and decomposition temperature (~1100 ℃) of the sulfate ion (SO42-)[18-20]. (NH4)2SO4has indeed contributed to improving the dispersity of precursors and decreasing the size of particles at relatively low reaction temperature in an liquidous medium[21]. However, when increasing the reaction temperature to some degree, we found (NH4)2SO4causes more severe aggregation. Thus it is needed to substitute new dispersants for ammonium sulfate to improve dispersity of products and increasing productivity at high reaction temperature. After testing dozens of additives, we found poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) are beneficial to improving the decentrality of products as surfac- tants.

    In this research, taking a certain amount of PVA and PVP as the dispersants, we successfully synthe- sized pure uniform spherical Y2O3powders through a urea homogeneous precipitation method at high temperature (107 ± 2 ℃) for the oil bath. The pro- ductivity is up to 60%, which is much higher than the one at 90 ℃ (~10%). PVA and PVP are expected to have wide applications in preparing other rare earth oxide (REO) powders with high quality.

    2 EXPERIMENTAL

    2. 1 Materials and preparation of Y2O3powders

    Yttria (99.99%), nitric acid (99.999%), urea (99.999%), (NH4)2SO4(99.997%), ethanol (analy- tical grade), PVA (average MW 67000, 88% alcoholyzed) and PVP (average MW 24000) were used as the raw starting materials. According to our previous studies, the appropriate additions of PVA and PVP are 15.5 Wt.% and 8.5 Wt.% of raw Y2O3powders, respectively. So, for comparison, Y2O3precursors were prepared by HP technique according to the following five different means: (1) without any dispersants; (2) only 5Wt.% (NH4)2SO4as the dispersant (weighing 5 Wt.% of raw Y2O3pow- ders)[21]; (3) only 15.5 Wt.% PVA as the dispersant; (4) only 8.5 Wt.% PVP as the dispersant; (5) the mixture of PVA (15.5 Wt.%) and PVP (8.5 Wt.%) as the dispersant. Firstly, proper amounts of raw Y2O3powders were dissolved in dilute nitric acid to make a nitrate solution in which the concentration of Y3+was kept at 0.04 mol/L. The concentration ratio of urea and Y3+was controlled at 15:1. Then, ethanol, 20 vol.% of the solution, and the relevant dispersant was added to the solution and the pH was adjusted to 6.0. After being stirred at room temperature for 1 h for homogenization, the mixed solution was heated in a Dimethyl silicone bath whose temperature was 107 ± 2 ℃ and held for 3.5 h. In fact, the temperature of the mixed solution was kept at 85 ± 2 ℃ after 0.5 h. Next, the solution was naturally cooled down to room temperature. Finally, the precursor was centrifuged and washed repeatedly with deionized water and ethanol to completely remove by-products of the reaction. After rinsing, the precursor was dried at 65 ℃ for 12 h and calcined at 900 ℃ for 2 h in a tube furnace in O2.

    2. 2 Physical measurements

    Phase identification was examined by X-ray diffraction analysis (XRD, MiniFlex600, Rigaku, Japan) and thermal analysis of the precursors was performed via thermo-gravimetric/differential thermal analysis (TG/DTA, STA449F3, Netzsch, Germany). Fourier transform infrared spectroscopy (FTIR, Vertex70, Bruker, Germany) of the pre- cursors was determined at room temperature and the specific surface area of the powders calcined at 900 ℃ was measured with Micropore analyzer (Asap 2020 C+M, Micromeritics, USA) by BET method in N2. The morphology of calcined powders was characterized through scanning electron microscope (SEM, JSM-6700F, JEOL, Japan) and Transmission electron microscope (TEM, JEM-2010, JEOL, Japan).

    3 RESULTS AND DISCUSSION

    To illustrate the effects of dispersants concisely, all dispersants (or additives) mentioned in the following discussion just only refer to the ones added to the solution in liquid-phase reactions.

    3. 1 IR spectroscopy

    According to the FTIR spectra of the virgin and various dispersant-added precursors in Fig. 1, we can get some important information about the effect of dispersants on the products. The wide peaks at ~3373 cm-1are due to O–H bend and the peaks at about 648, 696, and 756 cm-1are attributed to the split non-planar bending vibration of CO32-. The peak at ~1125 cm-1results from the residual SO42-after rinsing. The peaks at about 1408 and 1520 cm-1are assigned to the split anti-symmetrical stretching vibration of CO32-that is weakened by the absorbed PVA, as shown in the inset. Maybe PVA’s hydro- philic groups, -CH2OH-, improved the stretching symmetry of CO32-by absorbing the surrounding electrons. From the above analysis, the precursor is reasonably considered as the basic carbonate with crystal water and the formula is Y+2y(OH)3x(CO3)3y·nH2O.

    Fig. 1. FTIR spectra of the precursors with different additives; Inset is the magnified image of FTIR spectra from 1230 to 1676 cm-1

    3. 2 TG analyses

    TG curves (Fig. 2) of the five different precursors show total weight loss of 39.6~41.4% up to 1050 ℃. Between 30~195 ℃, a weight of ~9% is mainly attributed to the evaporation of absorbed water and the release of molecular water. The subsequent loss from 195 to 800 ℃ is owing to the decomposition of Y(OH)3and Y2(CO3)3. The remainder of 58.6~60.4% does not change anymore between 800~1050 ℃, which reveals that Y(OH)3and Y2(CO3)3have decomposed into Y2O3utterly before 800 ℃. In addition, water loss of the precursor added with PVA, PVP, or the mixture of both is a little larger than the two others, seen in the inset. This is because the hydrophilic groups of PVA and PVP attached to the precursors absorbed more water.

    3. 3 Structure description

    Fig. 3a shows the XRD patterns of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h. It reveals that, except for the (NH4)2SO4-added one, the precursors all completely transformed to Y2O3crystals at 900 ℃ and no other phases were detected. After calcining, the (NH4)2SO4-added powder has the impure phase Y2O2SO4because the decomposition temperature of SO42-is higher than 900 ℃. This result is consistent with the FTIR analysis (Fig. 1). Residual Y2O2SO4is rather pernicious for ceramics sintering, because itwill decompose and release gas during sintering process, then densification and transmittance of ceramics will be impaired severely. Structural refinement with the Rietveld method[22]using Fullprof Program was performed to analyze further the effect of PVA and PVP on the structure of the prepared powders. The results, seen in Table 1 and Fig. 3b, indicate good agreement between the observed XRD pattern and the calculated one based on pure Y2O3phase. This result means that after calcination the PVA/PVP decomposed and evapora- ted completely and brought forth no impurities. Besides, we can find that the ratio of O2-andY3+is larger than 3:2 (Table 1). The reason is that ambient O2entered the interstices of Y2O3crystals during the calcining process in O2.

    Table 1. Rietveld Refinement Results of the PVA/PVP-added Y2O3Powder Calcined at 900 ℃ for 2 h Compared with the Pure Y2O3Powder

    PowdersAtomsxyzOccupancyLattice constants Y1 (C3i)0.25000.25000.25000.1000a = b = c = 10.6039 ? Pure Y2O3Y2 (C2)0.467500.25000.3000a= b= g= 90° O10.10870.34780.11950.6000 Y1 (C3i)0.25000.25000.25000.0982a = b = c = 10.6091 ? PVA/PVP-added Y2O3Y2 (C2)0.468500.25000.3018a= b= g= 90° O10.10780.34480.11960.6085

    Fig. 2. TG curves of the precursors with different additives; Inset is the magnified image of the selected part

    (a)????????????(b)

    Fig. 3. (a) XRD patterns of the powders calcined at 900 ℃ for 2 h with different additives. (b) Rietveld refinement pattern for the powder calcined at 900 ℃ for 2 h added with PVA/PVP as the dispersant; Inset is the unit cell structure of Y2O3revealing coordination environment of Y and O

    3. 4 Morphology characteristics

    The SEM and TEM morphologies of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h are presented in Fig. 4. Except for the (NH4)2SO4-added one (Fig. 4c, 4d), particles of all other powders are spherical because of the low concentration of Y3+(0.04 M), and the particle size of these powders is 330~350 nm. However, the size of the aggregates formed by the reunite of particles is much different. As Fig. 4 shows, the powder added with PVA or PVP as the dispersant is less agglomerative than the virgin one, so is the powder added with PVA/PVP. The mechanism of surfactants that consist of hydrophilic and hydrophobic groups has been extensively studied. PVA is a nonionic surfactant and PVP is a cationic one whose hydrophilic groups are positive after ionization. After the precursor particles were formed, the hydrophobic groups adhered to the surfaces of particles and the hydrophilic groups stretched into the liquidous medium (Fig. 5), which contributed to keeping particles from gathering with each other, namely, steric hindrance effect. In addition, because PVP’s hydrophilic groups are positive, it constituted charge layers on the surfaces which enhanced the repulsion between two particles. As to the (NH4)2SO4-added powder, the electrostatic effect of SO42-is not strong enough to keep particles apart from each other at high reaction temperature. Although its particle size is much smaller (Fig. 4d), particles agglomerated rather severely and many pores were formed in the aggregate so that it is quite hard to sinter for making transparent ceramics.

    Fig. 4. SEM photographs (left) and TEM photographs (right) of the powders calcined at 900 ℃for 2 h. The additives were: virgin (a and b); (NH4)2SO4(c and d); PVA (e and f); PVP (g and h); PVA/PVP (i and j)

    (a)????????????????? (b)

    Fig. 5. Dispersive effect of PVA (a) and PVP (b)

    3. 5 Special surface area measurement

    To study further about the effect of PVA and PVP on improving dispersity of particles, we examined the specific surface area of calcined products via BET method. Fig. 6 shows that the specific surface area of the product taking PVA or PVP as the dispersant is larger than the virgin one’s by 20% approximately. What’s more, the specific surface area of the product using PVA/PVP as the dispersant is about 30% larger than that of the virgin one, which manifests PVA and PVP cooperated with each other in alleviating agglomeration. Considering the fact that the temperature of the oil bath is so high (107 ± 2 ℃) that particles are strongly inclined to gather, PVA and PVP are still promising dispersants, though their benefit for improving products’ dispersity is not very great. As for the (NH4)2SO4- added powder, its much larger specific surface area is owing to the smaller particles than others.

    Fig. 6. Specific surface area of the powders calcined at 900 ℃ for 2 h with different additives measured by BET method

    4 CONCLUSION

    Monodispersed and submicron-sized Y2O3spherical powders were successfully prepared via the urea homogeneous precipitation method using PVA, PVP, or PVA/PVP as the dispersant. Both PVA and PVP improved the particle’s dispersion to a great degree. Furthermore, they were synergistic and engendered no impurity phases after calcining. The spherical particle sizes of the powders calcined at 900 ℃ for 2 h are 330~350 nm and the productivity is up to 60%. In this study, the contents of PVA and PVP were 15.5 Wt.% and 8.5 Wt.% of the raw Y2O3powders, respectively. Considering their vital role in weakening agglomeration, it is significant to move the study forward. For example, we can explore the effect of the proportion and average molecular weights of PVA and PVP on promoting dispersity of products. In sum, to make HP in producing Y2O3and other REO powders more meaningful and valuable, it is crucial to substitute new dispersants, such as PVA and PVP, for the traditional (NH4)2SO4at high reaction temperature in solution.

    (1) Tsukuda, Y. Application for refractory and corrosion resistant materials.. 1988, 23, 456-460.

    (2) Curtis, C. E. Properties of yttrium oxide ceramics.. 1957, 40, 274-278.

    (3) Wickersheim, K. A.; Lefever, R. A. Infrared transmittance of crystalline yttrium oxide and related compounds.. 1964, 111, 47-51.

    (4) Brecher, C.; Wei, G. C.; Rhodes, W. H. Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria.. 1990, 73, 1473-1488.

    (5) Kong, J.; Lu, J.; Takaichi, K.; Uematsu, T.; Ueda, K.; Tang, D. Y.; Shen, D. Y.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Diode-pumped Yb:Y2O3ceramic laser.. 2003, 82, 2556-2558.

    (6) Boulon, G.; Lupei, V. Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals.. 2007, 125, 45-54.

    (7) Lu, J. R.; Takaichi, K.; Uematsu, T.; Shirakawa, A.; Musha, M.; Ueda, K.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Yb3+:Y2O3ceramics-a novel solid state laser material.s. 2002, 41, 1373-1375.

    (8) Ikesue, A.; Kamata, K.; Yoshida, K. Synthesis of transparent Nd doped HfO2-Y2O3ceramics using HIP.c. 1996, 79, 359-364.

    (9) Li, W. J.; Zhou, S. M.; Liu, N. Effect of additives on optical characteristic of thulium doped yttria transparent ceramics. J.. 2010, 32, 971-974.

    (10) Sharma, P. K.; Jilavi, M. H.; Nab, R. Seeding effect in hydrothermal synthesis of nanosize yttria.. 1998, 17, 823-825.

    (11) Li, Q. S.; Feng, C. H.; Jiao, Q. Z. Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions.J.2004, 201, 3055-3059.

    (12) Dupont, A.; Parent, C.; Garrec, B. L. Size and morphology control of Y2O3nanopowders via a sol-gel route.. 2003, 171, 152-160.

    (13) Mangalaraja, R. V.; Ramama, K. V. S.; Ravi, J. Synthesis of nanocrystalline yttria by microwave-assisted citrate-gel decomposition technique.. 2008, 197, 292-295.

    (14) Saito, N.; Matsuda, S.; Ikegami, T. Fabrication of transparent yttria ceramics at low temperature using carbonate derived powder.. 1998, 81, 2023-2028.

    (15) Wen, L.; Sun, X. D.; Lu, Q. Synthesis of yttria nanopowders for transparent yttria ceramics... 2006, 29, 239-245.

    (16) Li, J. G.; Li, X. D.; Sun, X. D. Uniform colloidal spheres for (Y1-xGd)2O3(= 0-1): formation mechanism, compositional impacts, and physicochemical properties of the oxides.. 2008, 20, 2274-2281.

    (17) Qin, X. P.; Zhou, G. H.; Yang, H.; Yang, Y.; Zhang, J.; Wang, S. W. Synthesis and upconversion luminescence of monodispersed, submicron-sized Er3+:Y2O3spherical phosphors.. 2010, 493, 672-677.

    (18) Gong, H.; Tang, D. Y.; Huang, H. Effect of grain size on the sinterability of yttria nanopowders synthesized by carbonate-precipitation process.. 2008, 112, 423-426.

    (19) Ikegami, T.; Li, J. G.; Mori, T. Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide.. 2002, 85, 1725-1729.

    (20) Wen, L.; Sun, X. D.; Xiu, Z. M. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics.. 2004, 24, 2681-2688.

    (21) Qin, H. M.; Liu, H.; Sang, Y. H.; Zhang, X. L.; Lv, Y. H.; Wang, J. Y. Influence of the synthesis conditions on preparation of yttria powders by urea precipitation method.. 2011, 40, 1455-1459.

    (22) Rietveld, H. M. A profile refinement method for nuclear and magnetic structures.. 1969, 2, 65-71.

    ① This work was supported by the National Natural Science Foundation of China (91022035) and the Center for Advanced Materials,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

    ② Corresponding author. Cao Yong-Ge. E-mail: caoyongge@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-0722

    18 March 2015; accepted 5 May 2015 (ICSD 155173)

    久久久国产一区二区| 淫妇啪啪啪对白视频 | 91成年电影在线观看| 一二三四在线观看免费中文在| 三级毛片av免费| 亚洲,欧美精品.| 欧美人与性动交α欧美软件| 精品熟女少妇八av免费久了| 久久国产精品大桥未久av| videos熟女内射| 老司机影院成人| 欧美中文综合在线视频| 亚洲av欧美aⅴ国产| 在线天堂中文资源库| 中文字幕制服av| 高清欧美精品videossex| 国产男女内射视频| 亚洲激情五月婷婷啪啪| 中文字幕人妻丝袜一区二区| 老熟妇仑乱视频hdxx| 黄色毛片三级朝国网站| 精品一区二区三区四区五区乱码| 精品国产一区二区三区久久久樱花| 两个人免费观看高清视频| 欧美国产精品va在线观看不卡| 18禁裸乳无遮挡动漫免费视频| 亚洲激情五月婷婷啪啪| 免费观看av网站的网址| 亚洲精品久久成人aⅴ小说| 老熟妇乱子伦视频在线观看 | 日韩一卡2卡3卡4卡2021年| 国产成人精品在线电影| av在线老鸭窝| 老司机影院成人| xxxhd国产人妻xxx| 国产区一区二久久| 18在线观看网站| www.av在线官网国产| 国产精品久久久av美女十八| 九色亚洲精品在线播放| 国产99久久九九免费精品| 女人精品久久久久毛片| 男女边摸边吃奶| 十八禁网站免费在线| 老熟妇仑乱视频hdxx| 不卡av一区二区三区| 久久久久精品国产欧美久久久 | 亚洲精品一卡2卡三卡4卡5卡 | 婷婷成人精品国产| 亚洲全国av大片| 一本色道久久久久久精品综合| 久久亚洲精品不卡| 99热全是精品| 啦啦啦视频在线资源免费观看| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品99久久久久| 亚洲国产欧美在线一区| 这个男人来自地球电影免费观看| 国产一区二区三区在线臀色熟女 | 久久这里只有精品19| 午夜福利,免费看| 成人国产一区最新在线观看| 啦啦啦在线免费观看视频4| 各种免费的搞黄视频| 国产精品 国内视频| 久久久久精品人妻al黑| 97在线人人人人妻| 少妇粗大呻吟视频| 国产精品99久久99久久久不卡| 在线观看舔阴道视频| xxxhd国产人妻xxx| 欧美另类一区| 中文字幕色久视频| 18禁黄网站禁片午夜丰满| 欧美激情高清一区二区三区| 国产欧美日韩精品亚洲av| 考比视频在线观看| 搡老岳熟女国产| 精品人妻一区二区三区麻豆| 国产精品一区二区精品视频观看| 91精品国产国语对白视频| 久久精品亚洲av国产电影网| 纵有疾风起免费观看全集完整版| 国产欧美亚洲国产| 国产xxxxx性猛交| 伊人久久大香线蕉亚洲五| 秋霞在线观看毛片| 欧美性长视频在线观看| 99国产精品99久久久久| 9色porny在线观看| 亚洲精品国产色婷婷电影| 成人三级做爰电影| 极品人妻少妇av视频| 午夜老司机福利片| 波多野结衣一区麻豆| 国产色视频综合| 中国美女看黄片| 69av精品久久久久久 | 91成年电影在线观看| 成年人免费黄色播放视频| 免费在线观看完整版高清| 1024香蕉在线观看| avwww免费| 一区福利在线观看| 欧美97在线视频| www.av在线官网国产| 大香蕉久久成人网| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 亚洲熟女毛片儿| h视频一区二区三区| 丝袜美腿诱惑在线| av有码第一页| 午夜福利乱码中文字幕| 亚洲精品国产av蜜桃| 亚洲欧美精品综合一区二区三区| 欧美激情久久久久久爽电影 | 中文字幕人妻丝袜一区二区| 深夜精品福利| 99re6热这里在线精品视频| 欧美激情 高清一区二区三区| 日韩视频在线欧美| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品av麻豆狂野| 夜夜夜夜夜久久久久| 1024视频免费在线观看| 少妇裸体淫交视频免费看高清 | 免费观看av网站的网址| 成人免费观看视频高清| 国产欧美亚洲国产| 在线天堂中文资源库| 亚洲久久久国产精品| 亚洲第一青青草原| 欧美激情 高清一区二区三区| 日韩视频在线欧美| 国产淫语在线视频| 国产淫语在线视频| 免费少妇av软件| 巨乳人妻的诱惑在线观看| 日本五十路高清| 亚洲精品一区蜜桃| 成人av一区二区三区在线看 | 亚洲一码二码三码区别大吗| 久久天躁狠狠躁夜夜2o2o| 老鸭窝网址在线观看| 亚洲av欧美aⅴ国产| 18在线观看网站| 精品少妇久久久久久888优播| 正在播放国产对白刺激| 久久午夜综合久久蜜桃| 久久热在线av| 精品一区二区三区av网在线观看 | 免费高清在线观看日韩| 在线精品无人区一区二区三| 热99久久久久精品小说推荐| 午夜免费观看性视频| 久久久欧美国产精品| 1024香蕉在线观看| 1024香蕉在线观看| 老汉色av国产亚洲站长工具| 欧美黑人欧美精品刺激| 国产欧美亚洲国产| 99精国产麻豆久久婷婷| 高清黄色对白视频在线免费看| 交换朋友夫妻互换小说| 男女边摸边吃奶| 91国产中文字幕| 最黄视频免费看| 中文欧美无线码| 国产成人av教育| 成年女人毛片免费观看观看9 | 青春草亚洲视频在线观看| 国产高清videossex| 亚洲av电影在线观看一区二区三区| 亚洲国产精品一区三区| 久久99热这里只频精品6学生| 热re99久久国产66热| 国产av国产精品国产| 精品国产乱子伦一区二区三区 | 丝瓜视频免费看黄片| 国产欧美日韩一区二区三区在线| 999久久久国产精品视频| 黄色 视频免费看| 国产成人欧美| 男人舔女人的私密视频| 涩涩av久久男人的天堂| h视频一区二区三区| 久久久精品免费免费高清| 久久久久精品人妻al黑| 亚洲中文av在线| 国产成人精品在线电影| 国产精品一区二区在线观看99| 国产精品自产拍在线观看55亚洲 | 大片免费播放器 马上看| 黄色毛片三级朝国网站| 久热爱精品视频在线9| 亚洲中文字幕日韩| 欧美日韩av久久| 久久人人爽人人片av| 建设人人有责人人尽责人人享有的| 国产精品一区二区精品视频观看| 一级a爱视频在线免费观看| 亚洲va日本ⅴa欧美va伊人久久 | 999久久久国产精品视频| 亚洲中文字幕日韩| 久久人人爽人人片av| 亚洲五月色婷婷综合| 亚洲国产精品成人久久小说| 亚洲五月色婷婷综合| 不卡一级毛片| 老汉色∧v一级毛片| 免费在线观看影片大全网站| 亚洲精品在线美女| 91字幕亚洲| 国产亚洲av片在线观看秒播厂| 国产日韩欧美亚洲二区| 一个人免费看片子| 99国产极品粉嫩在线观看| 乱人伦中国视频| 国产xxxxx性猛交| 欧美黑人精品巨大| 国产伦理片在线播放av一区| av有码第一页| 99国产精品一区二区蜜桃av | av在线播放精品| 91精品国产国语对白视频| 无限看片的www在线观看| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看 | 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级国产专区5o| 欧美日韩黄片免| 男女午夜视频在线观看| 国产一区有黄有色的免费视频| 在线观看免费视频网站a站| 18禁国产床啪视频网站| 18禁国产床啪视频网站| 视频区欧美日本亚洲| 91av网站免费观看| 午夜福利在线观看吧| 亚洲天堂av无毛| 精品第一国产精品| 成年人午夜在线观看视频| 亚洲精品美女久久av网站| 十分钟在线观看高清视频www| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 一本久久精品| 精品久久久久久久毛片微露脸 | 美女午夜性视频免费| 久久香蕉激情| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 老汉色av国产亚洲站长工具| 十分钟在线观看高清视频www| 999精品在线视频| 欧美精品一区二区大全| netflix在线观看网站| 久久狼人影院| 最新在线观看一区二区三区| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 又黄又粗又硬又大视频| 99精国产麻豆久久婷婷| 精品高清国产在线一区| 国产在线免费精品| 精品国内亚洲2022精品成人 | 欧美人与性动交α欧美软件| 国产成人精品在线电影| 久久国产亚洲av麻豆专区| 久久天堂一区二区三区四区| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 桃红色精品国产亚洲av| 秋霞在线观看毛片| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 国产精品九九99| 国产高清国产精品国产三级| 久久久精品免费免费高清| 最黄视频免费看| 一级a爱视频在线免费观看| 91av网站免费观看| 中文字幕高清在线视频| 在线天堂中文资源库| av天堂久久9| 美女中出高潮动态图| 亚洲av男天堂| 97在线人人人人妻| 极品人妻少妇av视频| 少妇粗大呻吟视频| 午夜精品久久久久久毛片777| 国产亚洲av高清不卡| 少妇裸体淫交视频免费看高清 | 十八禁网站免费在线| svipshipincom国产片| 精品亚洲成国产av| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| 香蕉国产在线看| av免费在线观看网站| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 视频区欧美日本亚洲| 亚洲欧美日韩高清在线视频 | 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看| 十八禁人妻一区二区| 五月天丁香电影| 国内毛片毛片毛片毛片毛片| 黄色毛片三级朝国网站| 国产在线视频一区二区| 久久久久久久精品精品| 他把我摸到了高潮在线观看 | 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 亚洲va日本ⅴa欧美va伊人久久 | 国精品久久久久久国模美| 亚洲国产精品999| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 久久精品亚洲av国产电影网| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区 | 亚洲国产毛片av蜜桃av| 三级毛片av免费| 亚洲国产成人一精品久久久| 香蕉国产在线看| 国产精品一二三区在线看| 一级,二级,三级黄色视频| 曰老女人黄片| 久久免费观看电影| 亚洲精品成人av观看孕妇| 美女大奶头黄色视频| 岛国在线观看网站| 老鸭窝网址在线观看| 在线 av 中文字幕| av网站免费在线观看视频| 久久久久网色| 日韩人妻精品一区2区三区| 美女国产高潮福利片在线看| 电影成人av| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| a级毛片黄视频| 亚洲欧美一区二区三区黑人| 亚洲午夜精品一区,二区,三区| 男女免费视频国产| 美女国产高潮福利片在线看| 国产精品 国内视频| 午夜激情av网站| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 欧美激情高清一区二区三区| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 97精品久久久久久久久久精品| 老鸭窝网址在线观看| 午夜激情av网站| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 精品福利永久在线观看| 亚洲五月色婷婷综合| 亚洲精品日韩在线中文字幕| 欧美成人午夜精品| 亚洲色图 男人天堂 中文字幕| 婷婷色av中文字幕| 日韩有码中文字幕| 日本五十路高清| 少妇人妻久久综合中文| av在线app专区| 极品人妻少妇av视频| 精品人妻一区二区三区麻豆| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| svipshipincom国产片| 考比视频在线观看| 久久久久久久久免费视频了| 大香蕉久久网| 亚洲欧美一区二区三区久久| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 精品福利永久在线观看| 欧美成人午夜精品| 免费观看a级毛片全部| 国产高清视频在线播放一区 | 精品视频人人做人人爽| 久久久精品94久久精品| 久久av网站| 国产成人av激情在线播放| 国产在线视频一区二区| 亚洲av成人一区二区三| 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 这个男人来自地球电影免费观看| 国产精品久久久久久精品古装| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| 日韩一卡2卡3卡4卡2021年| videos熟女内射| 老司机午夜福利在线观看视频 | 捣出白浆h1v1| 大片免费播放器 马上看| 亚洲九九香蕉| 丝袜脚勾引网站| a级毛片在线看网站| 亚洲欧美激情在线| 免费人妻精品一区二区三区视频| 国产成人欧美| 色婷婷av一区二区三区视频| 精品一区二区三卡| 男女国产视频网站| 一二三四社区在线视频社区8| 丁香六月欧美| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久电影网| 日韩视频在线欧美| 久久久精品94久久精品| 老汉色av国产亚洲站长工具| 99九九在线精品视频| 国产有黄有色有爽视频| 欧美精品亚洲一区二区| 青草久久国产| 18禁观看日本| 精品久久蜜臀av无| 91麻豆精品激情在线观看国产 | 91av网站免费观看| 国产精品1区2区在线观看. | 国产一区二区激情短视频 | 久久精品成人免费网站| 欧美 日韩 精品 国产| 一进一出抽搐动态| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲中文日韩欧美视频| 高清黄色对白视频在线免费看| 侵犯人妻中文字幕一二三四区| 十八禁人妻一区二区| 欧美日韩亚洲高清精品| 亚洲成国产人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 男女国产视频网站| 国产在线免费精品| 不卡av一区二区三区| 男女边摸边吃奶| 美女视频免费永久观看网站| 夜夜夜夜夜久久久久| 一区福利在线观看| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| 久久性视频一级片| 精品人妻一区二区三区麻豆| 免费久久久久久久精品成人欧美视频| 欧美黄色片欧美黄色片| 91精品伊人久久大香线蕉| 91av网站免费观看| 麻豆乱淫一区二区| 亚洲国产av影院在线观看| 欧美在线黄色| 国产高清videossex| 啦啦啦 在线观看视频| 日韩免费高清中文字幕av| 日韩人妻精品一区2区三区| 婷婷成人精品国产| 首页视频小说图片口味搜索| avwww免费| 人人妻人人添人人爽欧美一区卜| 成在线人永久免费视频| a级毛片黄视频| 两性夫妻黄色片| 久久人人97超碰香蕉20202| 大码成人一级视频| a级片在线免费高清观看视频| 啦啦啦中文免费视频观看日本| 国产精品自产拍在线观看55亚洲 | 亚洲精品国产av成人精品| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 一本色道久久久久久精品综合| 久久毛片免费看一区二区三区| 精品少妇久久久久久888优播| 黄色视频,在线免费观看| a级毛片黄视频| 欧美日韩视频精品一区| 少妇精品久久久久久久| 黑人欧美特级aaaaaa片| 午夜福利在线免费观看网站| 美女国产高潮福利片在线看| 成人黄色视频免费在线看| 在线观看人妻少妇| 久久热在线av| 久久人妻福利社区极品人妻图片| 国产亚洲av高清不卡| 热99re8久久精品国产| avwww免费| 亚洲 欧美一区二区三区| 性色av乱码一区二区三区2| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| 啦啦啦免费观看视频1| 天堂8中文在线网| 女性生殖器流出的白浆| 国产老妇伦熟女老妇高清| 如日韩欧美国产精品一区二区三区| 国产野战对白在线观看| 搡老乐熟女国产| 日韩熟女老妇一区二区性免费视频| 色老头精品视频在线观看| 后天国语完整版免费观看| videos熟女内射| 欧美大码av| 99精国产麻豆久久婷婷| 一边摸一边做爽爽视频免费| 性少妇av在线| 久久中文看片网| 午夜日韩欧美国产| 亚洲激情五月婷婷啪啪| 乱人伦中国视频| 男女高潮啪啪啪动态图| 午夜福利在线免费观看网站| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区久久| 国产又色又爽无遮挡免| 咕卡用的链子| 国产黄频视频在线观看| 少妇精品久久久久久久| 日本av手机在线免费观看| 肉色欧美久久久久久久蜜桃| 超碰97精品在线观看| 少妇的丰满在线观看| 人妻一区二区av| 中文字幕精品免费在线观看视频| 国产一区二区三区av在线| tube8黄色片| 高潮久久久久久久久久久不卡| 成年美女黄网站色视频大全免费| 天堂俺去俺来也www色官网| 桃花免费在线播放| 日本精品一区二区三区蜜桃| 欧美精品啪啪一区二区三区 | 国产精品免费视频内射| 亚洲伊人久久精品综合| 亚洲,欧美精品.| 欧美人与性动交α欧美软件| 日本av免费视频播放| 久久国产精品男人的天堂亚洲| 国产成人av激情在线播放| 狠狠狠狠99中文字幕| 久久久久久人人人人人| 2018国产大陆天天弄谢| 久久久国产精品麻豆| 一级a爱视频在线免费观看| 少妇人妻久久综合中文| 欧美黄色片欧美黄色片| 亚洲va日本ⅴa欧美va伊人久久 | 日韩中文字幕欧美一区二区| 狂野欧美激情性xxxx| 亚洲精品美女久久av网站| 午夜激情av网站| 日韩一卡2卡3卡4卡2021年| 久久亚洲国产成人精品v| 亚洲自偷自拍图片 自拍| 午夜精品久久久久久毛片777| 在线观看免费视频网站a站| 丝袜美足系列| 国产精品偷伦视频观看了| 久久久国产欧美日韩av| 国产99久久九九免费精品| 久久久久久久久久久久大奶| 十八禁高潮呻吟视频| 91老司机精品| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区三区| 狠狠狠狠99中文字幕| 伊人久久大香线蕉亚洲五| 91大片在线观看| 国产免费福利视频在线观看| 成年av动漫网址| 伦理电影免费视频| 黄频高清免费视频| 18禁观看日本| 亚洲国产精品一区三区| 最近最新中文字幕大全免费视频| 久久人人97超碰香蕉20202| 91大片在线观看| 高清黄色对白视频在线免费看| 嫩草影视91久久| 国产日韩一区二区三区精品不卡| 亚洲国产精品一区二区三区在线| 成人国产一区最新在线观看| 丰满迷人的少妇在线观看| 国产成人精品无人区| 人人妻,人人澡人人爽秒播| 午夜免费鲁丝| 天天操日日干夜夜撸| 97在线人人人人妻| 久久青草综合色| 麻豆av在线久日| tube8黄色片| 午夜福利视频精品| 青草久久国产| 日韩欧美一区视频在线观看| 99九九在线精品视频| 亚洲天堂av无毛| 国产欧美日韩一区二区三 | 国产免费现黄频在线看| 日韩中文字幕欧美一区二区| 熟女少妇亚洲综合色aaa.|