• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Dispersants for the Preparation of Y2O3 Spherical Powders by Homogeneous Precipitation at High Temperature①

    2015-01-07 03:43:57ZHANGCiGUOWngHUANGJiQunCAOYongGe
    結(jié)構(gòu)化學(xué) 2015年9期

    ZHANG D-Ci GUO Wng HUANG Ji-Qun CAO Yong-Ge②

    ?

    New Dispersants for the Preparation of Y2O3Spherical Powders by Homogeneous Precipitation at High Temperature①

    ZHANG Da-Caia, bGUO WangaHUANG Ji-QuanaCAO Yong-Gea②

    a(350002)b(100049)

    Spherical monodispersed and submicron-sized Y2O3powders were successfully synthesized through the urea homogeneous precipitation method adding PVA, PVP, or PVA and PVP compound (PVA/PVP) as the dispersant which generated no impurity phases after calcining. The productivity is up to 60% at 107 ± 2 ℃for 3.5 h in an oil bath. The structure, phase composition and evolution, morphology and specific surface area of Y2O3precursor and the calcined powders were explored by means of XRD, TG/DTA, FTIR, SEM, TEM and Micropore analyzer (BET). The spherical particle size of the powders calcined at 900 ℃ for 2 h was 330~350 nm. In this study, 15.5 Wt.% PVA, 8.5 Wt.% PVP or the mixture of both is in favor of enhancing the dispersity of the products. Based on what we have already achieved, it is rather significant to advance this research.

    PVA, PVP, PVA/PVP, productivity;

    1 INTRODUCTION

    Possessing the high melting point, high thermal conductivity, chemical stability[1, 2], transparency over a wide wavelength range from violet to infrared light[3, 4], and low phonon energy, yttria (Y2O3) is a promising material for infrared domes, optical matrix for scintillation, high temperature windows, and component of semiconductor. Moreover, rare earth-doped Y2O3has been considered as a candidate host material for solid-state lasers for many years[5-7], which has attracted much attention of researchers.

    As we know, the transmittance and laser per- formance of Y2O3transparent ceramics have greatly depended on the properties of initial Y2O3powders, such as purity, morphology, dispersity, particle size and size distribution. Based on this, spherical, monodispersed, fine and pure Y2O3powders are ideal choices for making Y2O3ceramics with high densification and transmittance. Great numbers of different techniques have been developed to synthesize rare earth oxide (REO) powders, like solid phase synthesis[8, 9], hydrothermal method[10, 11], sol-gel[12, 13], coprecipitation[14, 15]and homogeneous precipitation[16, 17]. Among these methods, homo- geneous precipitation (HP) is the optimal way to attain desired Y2O3powders. However, few papers have reported the productivity by HP. As a matter of fact, this method is so low-yield, which is partly due to its low reaction temperature in an aqueous medium (~90 ℃)[17], that its practical value is confined. Thus, improving reaction temperature is a significant means to increase powders yield with keeping other reaction conditions immutable. Nevertheless, the higher reaction temperature is, the bigger particle size of the precipitated precursor is, and the more severe agglomeration is. So, it is necessary to add dispersants to the solution to obtain dispersive and fine precursors. Traditionally, ammo- nium sulfate ((NH4)2SO4) is used as a dispersant because of the comparatively high electronegativity and decomposition temperature (~1100 ℃) of the sulfate ion (SO42-)[18-20]. (NH4)2SO4has indeed contributed to improving the dispersity of precursors and decreasing the size of particles at relatively low reaction temperature in an liquidous medium[21]. However, when increasing the reaction temperature to some degree, we found (NH4)2SO4causes more severe aggregation. Thus it is needed to substitute new dispersants for ammonium sulfate to improve dispersity of products and increasing productivity at high reaction temperature. After testing dozens of additives, we found poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) are beneficial to improving the decentrality of products as surfac- tants.

    In this research, taking a certain amount of PVA and PVP as the dispersants, we successfully synthe- sized pure uniform spherical Y2O3powders through a urea homogeneous precipitation method at high temperature (107 ± 2 ℃) for the oil bath. The pro- ductivity is up to 60%, which is much higher than the one at 90 ℃ (~10%). PVA and PVP are expected to have wide applications in preparing other rare earth oxide (REO) powders with high quality.

    2 EXPERIMENTAL

    2. 1 Materials and preparation of Y2O3powders

    Yttria (99.99%), nitric acid (99.999%), urea (99.999%), (NH4)2SO4(99.997%), ethanol (analy- tical grade), PVA (average MW 67000, 88% alcoholyzed) and PVP (average MW 24000) were used as the raw starting materials. According to our previous studies, the appropriate additions of PVA and PVP are 15.5 Wt.% and 8.5 Wt.% of raw Y2O3powders, respectively. So, for comparison, Y2O3precursors were prepared by HP technique according to the following five different means: (1) without any dispersants; (2) only 5Wt.% (NH4)2SO4as the dispersant (weighing 5 Wt.% of raw Y2O3pow- ders)[21]; (3) only 15.5 Wt.% PVA as the dispersant; (4) only 8.5 Wt.% PVP as the dispersant; (5) the mixture of PVA (15.5 Wt.%) and PVP (8.5 Wt.%) as the dispersant. Firstly, proper amounts of raw Y2O3powders were dissolved in dilute nitric acid to make a nitrate solution in which the concentration of Y3+was kept at 0.04 mol/L. The concentration ratio of urea and Y3+was controlled at 15:1. Then, ethanol, 20 vol.% of the solution, and the relevant dispersant was added to the solution and the pH was adjusted to 6.0. After being stirred at room temperature for 1 h for homogenization, the mixed solution was heated in a Dimethyl silicone bath whose temperature was 107 ± 2 ℃ and held for 3.5 h. In fact, the temperature of the mixed solution was kept at 85 ± 2 ℃ after 0.5 h. Next, the solution was naturally cooled down to room temperature. Finally, the precursor was centrifuged and washed repeatedly with deionized water and ethanol to completely remove by-products of the reaction. After rinsing, the precursor was dried at 65 ℃ for 12 h and calcined at 900 ℃ for 2 h in a tube furnace in O2.

    2. 2 Physical measurements

    Phase identification was examined by X-ray diffraction analysis (XRD, MiniFlex600, Rigaku, Japan) and thermal analysis of the precursors was performed via thermo-gravimetric/differential thermal analysis (TG/DTA, STA449F3, Netzsch, Germany). Fourier transform infrared spectroscopy (FTIR, Vertex70, Bruker, Germany) of the pre- cursors was determined at room temperature and the specific surface area of the powders calcined at 900 ℃ was measured with Micropore analyzer (Asap 2020 C+M, Micromeritics, USA) by BET method in N2. The morphology of calcined powders was characterized through scanning electron microscope (SEM, JSM-6700F, JEOL, Japan) and Transmission electron microscope (TEM, JEM-2010, JEOL, Japan).

    3 RESULTS AND DISCUSSION

    To illustrate the effects of dispersants concisely, all dispersants (or additives) mentioned in the following discussion just only refer to the ones added to the solution in liquid-phase reactions.

    3. 1 IR spectroscopy

    According to the FTIR spectra of the virgin and various dispersant-added precursors in Fig. 1, we can get some important information about the effect of dispersants on the products. The wide peaks at ~3373 cm-1are due to O–H bend and the peaks at about 648, 696, and 756 cm-1are attributed to the split non-planar bending vibration of CO32-. The peak at ~1125 cm-1results from the residual SO42-after rinsing. The peaks at about 1408 and 1520 cm-1are assigned to the split anti-symmetrical stretching vibration of CO32-that is weakened by the absorbed PVA, as shown in the inset. Maybe PVA’s hydro- philic groups, -CH2OH-, improved the stretching symmetry of CO32-by absorbing the surrounding electrons. From the above analysis, the precursor is reasonably considered as the basic carbonate with crystal water and the formula is Y+2y(OH)3x(CO3)3y·nH2O.

    Fig. 1. FTIR spectra of the precursors with different additives; Inset is the magnified image of FTIR spectra from 1230 to 1676 cm-1

    3. 2 TG analyses

    TG curves (Fig. 2) of the five different precursors show total weight loss of 39.6~41.4% up to 1050 ℃. Between 30~195 ℃, a weight of ~9% is mainly attributed to the evaporation of absorbed water and the release of molecular water. The subsequent loss from 195 to 800 ℃ is owing to the decomposition of Y(OH)3and Y2(CO3)3. The remainder of 58.6~60.4% does not change anymore between 800~1050 ℃, which reveals that Y(OH)3and Y2(CO3)3have decomposed into Y2O3utterly before 800 ℃. In addition, water loss of the precursor added with PVA, PVP, or the mixture of both is a little larger than the two others, seen in the inset. This is because the hydrophilic groups of PVA and PVP attached to the precursors absorbed more water.

    3. 3 Structure description

    Fig. 3a shows the XRD patterns of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h. It reveals that, except for the (NH4)2SO4-added one, the precursors all completely transformed to Y2O3crystals at 900 ℃ and no other phases were detected. After calcining, the (NH4)2SO4-added powder has the impure phase Y2O2SO4because the decomposition temperature of SO42-is higher than 900 ℃. This result is consistent with the FTIR analysis (Fig. 1). Residual Y2O2SO4is rather pernicious for ceramics sintering, because itwill decompose and release gas during sintering process, then densification and transmittance of ceramics will be impaired severely. Structural refinement with the Rietveld method[22]using Fullprof Program was performed to analyze further the effect of PVA and PVP on the structure of the prepared powders. The results, seen in Table 1 and Fig. 3b, indicate good agreement between the observed XRD pattern and the calculated one based on pure Y2O3phase. This result means that after calcination the PVA/PVP decomposed and evapora- ted completely and brought forth no impurities. Besides, we can find that the ratio of O2-andY3+is larger than 3:2 (Table 1). The reason is that ambient O2entered the interstices of Y2O3crystals during the calcining process in O2.

    Table 1. Rietveld Refinement Results of the PVA/PVP-added Y2O3Powder Calcined at 900 ℃ for 2 h Compared with the Pure Y2O3Powder

    PowdersAtomsxyzOccupancyLattice constants Y1 (C3i)0.25000.25000.25000.1000a = b = c = 10.6039 ? Pure Y2O3Y2 (C2)0.467500.25000.3000a= b= g= 90° O10.10870.34780.11950.6000 Y1 (C3i)0.25000.25000.25000.0982a = b = c = 10.6091 ? PVA/PVP-added Y2O3Y2 (C2)0.468500.25000.3018a= b= g= 90° O10.10780.34480.11960.6085

    Fig. 2. TG curves of the precursors with different additives; Inset is the magnified image of the selected part

    (a)????????????(b)

    Fig. 3. (a) XRD patterns of the powders calcined at 900 ℃ for 2 h with different additives. (b) Rietveld refinement pattern for the powder calcined at 900 ℃ for 2 h added with PVA/PVP as the dispersant; Inset is the unit cell structure of Y2O3revealing coordination environment of Y and O

    3. 4 Morphology characteristics

    The SEM and TEM morphologies of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h are presented in Fig. 4. Except for the (NH4)2SO4-added one (Fig. 4c, 4d), particles of all other powders are spherical because of the low concentration of Y3+(0.04 M), and the particle size of these powders is 330~350 nm. However, the size of the aggregates formed by the reunite of particles is much different. As Fig. 4 shows, the powder added with PVA or PVP as the dispersant is less agglomerative than the virgin one, so is the powder added with PVA/PVP. The mechanism of surfactants that consist of hydrophilic and hydrophobic groups has been extensively studied. PVA is a nonionic surfactant and PVP is a cationic one whose hydrophilic groups are positive after ionization. After the precursor particles were formed, the hydrophobic groups adhered to the surfaces of particles and the hydrophilic groups stretched into the liquidous medium (Fig. 5), which contributed to keeping particles from gathering with each other, namely, steric hindrance effect. In addition, because PVP’s hydrophilic groups are positive, it constituted charge layers on the surfaces which enhanced the repulsion between two particles. As to the (NH4)2SO4-added powder, the electrostatic effect of SO42-is not strong enough to keep particles apart from each other at high reaction temperature. Although its particle size is much smaller (Fig. 4d), particles agglomerated rather severely and many pores were formed in the aggregate so that it is quite hard to sinter for making transparent ceramics.

    Fig. 4. SEM photographs (left) and TEM photographs (right) of the powders calcined at 900 ℃for 2 h. The additives were: virgin (a and b); (NH4)2SO4(c and d); PVA (e and f); PVP (g and h); PVA/PVP (i and j)

    (a)????????????????? (b)

    Fig. 5. Dispersive effect of PVA (a) and PVP (b)

    3. 5 Special surface area measurement

    To study further about the effect of PVA and PVP on improving dispersity of particles, we examined the specific surface area of calcined products via BET method. Fig. 6 shows that the specific surface area of the product taking PVA or PVP as the dispersant is larger than the virgin one’s by 20% approximately. What’s more, the specific surface area of the product using PVA/PVP as the dispersant is about 30% larger than that of the virgin one, which manifests PVA and PVP cooperated with each other in alleviating agglomeration. Considering the fact that the temperature of the oil bath is so high (107 ± 2 ℃) that particles are strongly inclined to gather, PVA and PVP are still promising dispersants, though their benefit for improving products’ dispersity is not very great. As for the (NH4)2SO4- added powder, its much larger specific surface area is owing to the smaller particles than others.

    Fig. 6. Specific surface area of the powders calcined at 900 ℃ for 2 h with different additives measured by BET method

    4 CONCLUSION

    Monodispersed and submicron-sized Y2O3spherical powders were successfully prepared via the urea homogeneous precipitation method using PVA, PVP, or PVA/PVP as the dispersant. Both PVA and PVP improved the particle’s dispersion to a great degree. Furthermore, they were synergistic and engendered no impurity phases after calcining. The spherical particle sizes of the powders calcined at 900 ℃ for 2 h are 330~350 nm and the productivity is up to 60%. In this study, the contents of PVA and PVP were 15.5 Wt.% and 8.5 Wt.% of the raw Y2O3powders, respectively. Considering their vital role in weakening agglomeration, it is significant to move the study forward. For example, we can explore the effect of the proportion and average molecular weights of PVA and PVP on promoting dispersity of products. In sum, to make HP in producing Y2O3and other REO powders more meaningful and valuable, it is crucial to substitute new dispersants, such as PVA and PVP, for the traditional (NH4)2SO4at high reaction temperature in solution.

    (1) Tsukuda, Y. Application for refractory and corrosion resistant materials.. 1988, 23, 456-460.

    (2) Curtis, C. E. Properties of yttrium oxide ceramics.. 1957, 40, 274-278.

    (3) Wickersheim, K. A.; Lefever, R. A. Infrared transmittance of crystalline yttrium oxide and related compounds.. 1964, 111, 47-51.

    (4) Brecher, C.; Wei, G. C.; Rhodes, W. H. Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria.. 1990, 73, 1473-1488.

    (5) Kong, J.; Lu, J.; Takaichi, K.; Uematsu, T.; Ueda, K.; Tang, D. Y.; Shen, D. Y.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Diode-pumped Yb:Y2O3ceramic laser.. 2003, 82, 2556-2558.

    (6) Boulon, G.; Lupei, V. Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals.. 2007, 125, 45-54.

    (7) Lu, J. R.; Takaichi, K.; Uematsu, T.; Shirakawa, A.; Musha, M.; Ueda, K.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Yb3+:Y2O3ceramics-a novel solid state laser material.s. 2002, 41, 1373-1375.

    (8) Ikesue, A.; Kamata, K.; Yoshida, K. Synthesis of transparent Nd doped HfO2-Y2O3ceramics using HIP.c. 1996, 79, 359-364.

    (9) Li, W. J.; Zhou, S. M.; Liu, N. Effect of additives on optical characteristic of thulium doped yttria transparent ceramics. J.. 2010, 32, 971-974.

    (10) Sharma, P. K.; Jilavi, M. H.; Nab, R. Seeding effect in hydrothermal synthesis of nanosize yttria.. 1998, 17, 823-825.

    (11) Li, Q. S.; Feng, C. H.; Jiao, Q. Z. Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions.J.2004, 201, 3055-3059.

    (12) Dupont, A.; Parent, C.; Garrec, B. L. Size and morphology control of Y2O3nanopowders via a sol-gel route.. 2003, 171, 152-160.

    (13) Mangalaraja, R. V.; Ramama, K. V. S.; Ravi, J. Synthesis of nanocrystalline yttria by microwave-assisted citrate-gel decomposition technique.. 2008, 197, 292-295.

    (14) Saito, N.; Matsuda, S.; Ikegami, T. Fabrication of transparent yttria ceramics at low temperature using carbonate derived powder.. 1998, 81, 2023-2028.

    (15) Wen, L.; Sun, X. D.; Lu, Q. Synthesis of yttria nanopowders for transparent yttria ceramics... 2006, 29, 239-245.

    (16) Li, J. G.; Li, X. D.; Sun, X. D. Uniform colloidal spheres for (Y1-xGd)2O3(= 0-1): formation mechanism, compositional impacts, and physicochemical properties of the oxides.. 2008, 20, 2274-2281.

    (17) Qin, X. P.; Zhou, G. H.; Yang, H.; Yang, Y.; Zhang, J.; Wang, S. W. Synthesis and upconversion luminescence of monodispersed, submicron-sized Er3+:Y2O3spherical phosphors.. 2010, 493, 672-677.

    (18) Gong, H.; Tang, D. Y.; Huang, H. Effect of grain size on the sinterability of yttria nanopowders synthesized by carbonate-precipitation process.. 2008, 112, 423-426.

    (19) Ikegami, T.; Li, J. G.; Mori, T. Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide.. 2002, 85, 1725-1729.

    (20) Wen, L.; Sun, X. D.; Xiu, Z. M. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics.. 2004, 24, 2681-2688.

    (21) Qin, H. M.; Liu, H.; Sang, Y. H.; Zhang, X. L.; Lv, Y. H.; Wang, J. Y. Influence of the synthesis conditions on preparation of yttria powders by urea precipitation method.. 2011, 40, 1455-1459.

    (22) Rietveld, H. M. A profile refinement method for nuclear and magnetic structures.. 1969, 2, 65-71.

    ① This work was supported by the National Natural Science Foundation of China (91022035) and the Center for Advanced Materials,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

    ② Corresponding author. Cao Yong-Ge. E-mail: caoyongge@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-0722

    18 March 2015; accepted 5 May 2015 (ICSD 155173)

    精品久久久久久,| 嫩草影院入口| 亚洲专区中文字幕在线| 精品一区二区三区av网在线观看| 18禁在线播放成人免费| 一区福利在线观看| 欧美成人免费av一区二区三区| 亚洲精品美女久久久久99蜜臀| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| 国产高清三级在线| 国产精品一及| 757午夜福利合集在线观看| 两人在一起打扑克的视频| 哪里可以看免费的av片| 午夜福利在线观看免费完整高清在 | 欧美区成人在线视频| 午夜福利视频1000在线观看| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 日本 欧美在线| 国产探花在线观看一区二区| 成人三级黄色视频| 男插女下体视频免费在线播放| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 国产淫片久久久久久久久 | 亚洲电影在线观看av| а√天堂www在线а√下载| 国产av麻豆久久久久久久| 一区福利在线观看| av黄色大香蕉| 91在线精品国自产拍蜜月 | 日本免费a在线| 婷婷精品国产亚洲av在线| 亚洲中文日韩欧美视频| 美女 人体艺术 gogo| 欧美性猛交╳xxx乱大交人| 人妻夜夜爽99麻豆av| 丰满人妻熟妇乱又伦精品不卡| 天天躁日日操中文字幕| www.色视频.com| 又紧又爽又黄一区二区| 特大巨黑吊av在线直播| 免费人成视频x8x8入口观看| 美女免费视频网站| 国产成+人综合+亚洲专区| 欧美成人免费av一区二区三区| 亚洲av第一区精品v没综合| 国内揄拍国产精品人妻在线| 麻豆成人av在线观看| 精品国内亚洲2022精品成人| 国产单亲对白刺激| 午夜老司机福利剧场| 成年女人永久免费观看视频| 久久欧美精品欧美久久欧美| 老熟妇乱子伦视频在线观看| 怎么达到女性高潮| 日本黄色片子视频| 91在线精品国自产拍蜜月 | 国产欧美日韩一区二区精品| 变态另类丝袜制服| av中文乱码字幕在线| 中文字幕高清在线视频| 最新在线观看一区二区三区| 日日干狠狠操夜夜爽| 亚洲片人在线观看| 身体一侧抽搐| 在线观看舔阴道视频| 亚洲国产中文字幕在线视频| 免费观看的影片在线观看| 天堂动漫精品| 又粗又爽又猛毛片免费看| 亚洲无线观看免费| 法律面前人人平等表现在哪些方面| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久精品吃奶| 一区福利在线观看| 欧美三级亚洲精品| 亚洲av中文字字幕乱码综合| 国产精品美女特级片免费视频播放器| 国内精品久久久久久久电影| 免费在线观看影片大全网站| 中文字幕久久专区| 99精品久久久久人妻精品| 老熟妇仑乱视频hdxx| 国产亚洲精品av在线| 中出人妻视频一区二区| 亚洲av熟女| 国产精品免费一区二区三区在线| 在线观看66精品国产| 性欧美人与动物交配| 亚洲精品久久国产高清桃花| 欧美性猛交黑人性爽| 精品国产三级普通话版| 亚洲电影在线观看av| 999久久久精品免费观看国产| 久久人人精品亚洲av| 日韩人妻高清精品专区| 无限看片的www在线观看| 很黄的视频免费| 亚洲av熟女| 99精品欧美一区二区三区四区| 国产一区二区在线观看日韩 | 日韩欧美精品v在线| 色哟哟哟哟哟哟| 免费无遮挡裸体视频| 国产精品野战在线观看| 老司机午夜福利在线观看视频| 亚洲精华国产精华精| 久久久精品欧美日韩精品| 黄片小视频在线播放| 国产主播在线观看一区二区| 日本免费一区二区三区高清不卡| 国产精品98久久久久久宅男小说| 精品久久久久久久人妻蜜臀av| 成人18禁在线播放| 又爽又黄无遮挡网站| 99在线视频只有这里精品首页| 欧美性感艳星| 十八禁网站免费在线| 婷婷六月久久综合丁香| av天堂在线播放| 黄色日韩在线| xxx96com| 午夜福利成人在线免费观看| 男女视频在线观看网站免费| 久久久久久国产a免费观看| 久久精品91蜜桃| 男人和女人高潮做爰伦理| 国产一区二区三区视频了| 国产伦在线观看视频一区| 窝窝影院91人妻| 真实男女啪啪啪动态图| 黄色丝袜av网址大全| 国产精品亚洲av一区麻豆| 无人区码免费观看不卡| a在线观看视频网站| 久久久久久国产a免费观看| 99热只有精品国产| 久久久久久久久大av| 无遮挡黄片免费观看| 91字幕亚洲| 一区二区三区激情视频| 欧美不卡视频在线免费观看| 搡老熟女国产l中国老女人| 精品一区二区三区av网在线观看| 人妻久久中文字幕网| 18禁黄网站禁片午夜丰满| 亚洲男人的天堂狠狠| 一级毛片高清免费大全| 免费一级毛片在线播放高清视频| 亚洲不卡免费看| 欧美成人免费av一区二区三区| 欧美成人免费av一区二区三区| 99久久精品国产亚洲精品| 男人和女人高潮做爰伦理| 欧美乱妇无乱码| 母亲3免费完整高清在线观看| 欧美性感艳星| 国内毛片毛片毛片毛片毛片| 男插女下体视频免费在线播放| 日本 欧美在线| 色播亚洲综合网| 两个人视频免费观看高清| 国产三级黄色录像| 长腿黑丝高跟| 亚洲av美国av| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 91av网一区二区| 久久国产乱子伦精品免费另类| 久久精品人妻少妇| 日韩免费av在线播放| 日韩欧美国产一区二区入口| 日本五十路高清| 欧美又色又爽又黄视频| 人人妻,人人澡人人爽秒播| 日本与韩国留学比较| 午夜免费成人在线视频| 国产精品影院久久| 久久人人精品亚洲av| 2021天堂中文幕一二区在线观| 日韩欧美精品v在线| eeuss影院久久| 国产主播在线观看一区二区| 搡女人真爽免费视频火全软件 | 黑人欧美特级aaaaaa片| 一本精品99久久精品77| 久久久久久久亚洲中文字幕 | 欧美黑人巨大hd| 久久久久久久午夜电影| 宅男免费午夜| 久久这里只有精品中国| 亚洲自拍偷在线| 又紧又爽又黄一区二区| 久久久久久久久中文| 亚洲av成人精品一区久久| 国产v大片淫在线免费观看| 亚洲av免费高清在线观看| 嫩草影院精品99| 国产黄a三级三级三级人| 岛国视频午夜一区免费看| 热99在线观看视频| 亚洲国产精品sss在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人系列免费观看| 18禁黄网站禁片免费观看直播| 久久欧美精品欧美久久欧美| 12—13女人毛片做爰片一| 国产黄片美女视频| 亚洲最大成人中文| 黄色成人免费大全| 好看av亚洲va欧美ⅴa在| 亚洲国产日韩欧美精品在线观看 | 一进一出好大好爽视频| 日韩欧美一区二区三区在线观看| 九九久久精品国产亚洲av麻豆| 3wmmmm亚洲av在线观看| 国产三级在线视频| 此物有八面人人有两片| 午夜福利18| www日本黄色视频网| 久久这里只有精品中国| 精品国产美女av久久久久小说| 亚洲熟妇中文字幕五十中出| 国产精品日韩av在线免费观看| 国产精品精品国产色婷婷| 久久香蕉国产精品| 哪里可以看免费的av片| 99在线人妻在线中文字幕| 国产精品爽爽va在线观看网站| 午夜福利免费观看在线| 五月玫瑰六月丁香| 岛国视频午夜一区免费看| 国产高清视频在线观看网站| 亚洲熟妇中文字幕五十中出| www.999成人在线观看| 99热只有精品国产| 噜噜噜噜噜久久久久久91| 我要搜黄色片| 亚洲五月婷婷丁香| 国产精华一区二区三区| 成人av在线播放网站| aaaaa片日本免费| 成人鲁丝片一二三区免费| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 看片在线看免费视频| 国产伦在线观看视频一区| 久久精品亚洲精品国产色婷小说| 无限看片的www在线观看| 老司机在亚洲福利影院| 麻豆久久精品国产亚洲av| 97碰自拍视频| 国产不卡一卡二| 亚洲熟妇中文字幕五十中出| 老鸭窝网址在线观看| 一进一出抽搐动态| 欧美色欧美亚洲另类二区| 校园春色视频在线观看| 精品午夜福利视频在线观看一区| 级片在线观看| 韩国av一区二区三区四区| 成人特级黄色片久久久久久久| 99久国产av精品| 18禁美女被吸乳视频| 19禁男女啪啪无遮挡网站| 久久婷婷人人爽人人干人人爱| 最新中文字幕久久久久| 久久精品国产清高在天天线| 丰满的人妻完整版| 18禁国产床啪视频网站| 日本免费a在线| a在线观看视频网站| x7x7x7水蜜桃| 欧美3d第一页| 蜜桃久久精品国产亚洲av| 国产成人av激情在线播放| 亚洲一区二区三区不卡视频| 久久久久国产精品人妻aⅴ院| 动漫黄色视频在线观看| 亚洲美女黄片视频| 国内揄拍国产精品人妻在线| 国产高清视频在线观看网站| 国产精品爽爽va在线观看网站| 久久久精品欧美日韩精品| 丝袜美腿在线中文| 99在线视频只有这里精品首页| 国产麻豆成人av免费视频| 久久久国产成人精品二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 热99在线观看视频| 最近视频中文字幕2019在线8| 国产精品久久视频播放| 久9热在线精品视频| 国产精品亚洲av一区麻豆| 国产探花在线观看一区二区| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲美女视频黄频| or卡值多少钱| 在线观看午夜福利视频| e午夜精品久久久久久久| 亚洲av成人精品一区久久| 国产亚洲精品av在线| 亚洲无线观看免费| 国产精品久久久久久久电影 | 69av精品久久久久久| 欧美成人一区二区免费高清观看| 可以在线观看的亚洲视频| 欧美中文综合在线视频| 亚洲国产欧美网| 草草在线视频免费看| 日韩欧美 国产精品| 91九色精品人成在线观看| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式 | 亚洲av不卡在线观看| 少妇人妻精品综合一区二区 | 老鸭窝网址在线观看| 国产精品免费一区二区三区在线| 免费看a级黄色片| 久久精品夜夜夜夜夜久久蜜豆| 91麻豆精品激情在线观看国产| 欧美黄色片欧美黄色片| 中文字幕av成人在线电影| 老汉色∧v一级毛片| 午夜影院日韩av| 2021天堂中文幕一二区在线观| 精品人妻偷拍中文字幕| 午夜福利高清视频| 一进一出抽搐gif免费好疼| 全区人妻精品视频| 亚洲人成网站在线播放欧美日韩| 身体一侧抽搐| 九九在线视频观看精品| 全区人妻精品视频| 欧美+日韩+精品| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产 | 久久这里只有精品中国| 一级a爱片免费观看的视频| 亚洲片人在线观看| 国产成年人精品一区二区| 变态另类丝袜制服| 欧美中文综合在线视频| 99热这里只有是精品50| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| 婷婷精品国产亚洲av| 日韩欧美精品v在线| 在线免费观看的www视频| 国产精品三级大全| 国产成人福利小说| 国产亚洲av嫩草精品影院| 日本黄色片子视频| 国产成人a区在线观看| 婷婷精品国产亚洲av| 伊人久久大香线蕉亚洲五| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影| 91久久精品国产一区二区成人 | 亚洲av美国av| 国产一区二区在线av高清观看| 亚洲欧美一区二区三区黑人| 亚洲aⅴ乱码一区二区在线播放| 国产精品 国内视频| 亚洲精品影视一区二区三区av| 在线观看午夜福利视频| 美女 人体艺术 gogo| 精品久久久久久久久久久久久| 国产激情偷乱视频一区二区| 成人国产综合亚洲| 一区二区三区高清视频在线| 嫩草影视91久久| av欧美777| 国产国拍精品亚洲av在线观看 | 在线播放无遮挡| 亚洲男人的天堂狠狠| 中文字幕人妻熟人妻熟丝袜美 | 日韩人妻高清精品专区| 国产三级在线视频| 色吧在线观看| 少妇裸体淫交视频免费看高清| 国产精品久久久久久人妻精品电影| 午夜老司机福利剧场| av黄色大香蕉| 国产亚洲精品综合一区在线观看| 免费av不卡在线播放| 午夜免费成人在线视频| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 日韩亚洲欧美综合| 午夜福利成人在线免费观看| 欧美一级a爱片免费观看看| 免费av观看视频| 黄色成人免费大全| 12—13女人毛片做爰片一| 国产精品影院久久| 国产三级黄色录像| 久久天躁狠狠躁夜夜2o2o| 成人av在线播放网站| 99久久综合精品五月天人人| 亚洲va日本ⅴa欧美va伊人久久| 夜夜看夜夜爽夜夜摸| 国产午夜精品久久久久久一区二区三区 | 久9热在线精品视频| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看 | 国产精品电影一区二区三区| 中文字幕高清在线视频| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 欧美在线黄色| 两个人视频免费观看高清| 亚洲人成电影免费在线| 黄色丝袜av网址大全| 黄色日韩在线| 精品人妻偷拍中文字幕| 国产精品久久久久久亚洲av鲁大| 丰满乱子伦码专区| 一本久久中文字幕| 免费观看精品视频网站| 精品福利观看| 午夜免费观看网址| 综合色av麻豆| 亚洲七黄色美女视频| 天堂影院成人在线观看| 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 淫秽高清视频在线观看| aaaaa片日本免费| 日韩大尺度精品在线看网址| 国产激情偷乱视频一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲精品亚洲一区二区| 黄色视频,在线免费观看| 一级作爱视频免费观看| 久久精品国产99精品国产亚洲性色| 亚洲五月婷婷丁香| 亚洲avbb在线观看| 美女被艹到高潮喷水动态| 成年版毛片免费区| 午夜免费观看网址| 欧美激情在线99| 美女高潮的动态| 国产高清videossex| 中文字幕精品亚洲无线码一区| 色尼玛亚洲综合影院| 色老头精品视频在线观看| 亚洲美女黄片视频| 国产高清有码在线观看视频| 99在线视频只有这里精品首页| 久久久久久久亚洲中文字幕 | netflix在线观看网站| 成人欧美大片| 一级毛片女人18水好多| 精品国产超薄肉色丝袜足j| 男女床上黄色一级片免费看| 国产精品 国内视频| 欧美黄色淫秽网站| 国产欧美日韩精品一区二区| 久久欧美精品欧美久久欧美| 中文字幕人妻丝袜一区二区| 国产精品久久久久久人妻精品电影| 国产在线精品亚洲第一网站| 国产精品99久久99久久久不卡| 国产精品影院久久| 在线免费观看的www视频| 很黄的视频免费| 中文字幕av在线有码专区| 99国产精品一区二区蜜桃av| 国产成人av教育| 少妇的逼水好多| ponron亚洲| 久久精品国产清高在天天线| 操出白浆在线播放| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 国产午夜福利久久久久久| 欧美成人性av电影在线观看| 两人在一起打扑克的视频| 国产色爽女视频免费观看| 免费av观看视频| 精品人妻偷拍中文字幕| 男女床上黄色一级片免费看| 麻豆国产97在线/欧美| 蜜桃亚洲精品一区二区三区| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| 亚洲性夜色夜夜综合| 国产成人aa在线观看| 黄色丝袜av网址大全| 中文字幕av成人在线电影| 久久久久久久久大av| 老鸭窝网址在线观看| 性欧美人与动物交配| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 欧美另类亚洲清纯唯美| 又黄又爽又免费观看的视频| 村上凉子中文字幕在线| 日本 欧美在线| x7x7x7水蜜桃| 亚洲欧美日韩高清在线视频| 天堂av国产一区二区熟女人妻| 亚洲精品日韩av片在线观看 | 精品乱码久久久久久99久播| 男女之事视频高清在线观看| 国产麻豆成人av免费视频| 少妇高潮的动态图| 国产精品香港三级国产av潘金莲| 欧美在线一区亚洲| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 免费电影在线观看免费观看| 国产亚洲欧美在线一区二区| 色av中文字幕| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| bbb黄色大片| 亚洲午夜理论影院| 白带黄色成豆腐渣| 久久中文看片网| 欧美又色又爽又黄视频| 亚洲无线在线观看| 国产成人啪精品午夜网站| 99精品在免费线老司机午夜| 亚洲精品日韩av片在线观看 | 久久久久九九精品影院| 国产精品久久久久久久久免 | 伊人久久大香线蕉亚洲五| 亚洲精品国产精品久久久不卡| 青草久久国产| 在线十欧美十亚洲十日本专区| 97碰自拍视频| 久久久国产精品麻豆| av片东京热男人的天堂| 手机成人av网站| 亚洲激情在线av| 在线观看日韩欧美| 欧美日韩瑟瑟在线播放| 亚洲美女视频黄频| 青草久久国产| 欧美不卡视频在线免费观看| 他把我摸到了高潮在线观看| 色播亚洲综合网| 国产激情偷乱视频一区二区| 麻豆久久精品国产亚洲av| 国产亚洲欧美在线一区二区| 欧美xxxx黑人xx丫x性爽| 脱女人内裤的视频| 91字幕亚洲| 久久久精品欧美日韩精品| 国产精品永久免费网站| 久久香蕉精品热| 免费高清视频大片| 狂野欧美白嫩少妇大欣赏| 一级黄色大片毛片| 精品国产美女av久久久久小说| 听说在线观看完整版免费高清| 国产aⅴ精品一区二区三区波| 日韩中文字幕欧美一区二区| 男女床上黄色一级片免费看| 特大巨黑吊av在线直播| 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 麻豆国产97在线/欧美| 熟女人妻精品中文字幕| 亚洲一区二区三区不卡视频| 亚洲美女视频黄频| 99在线视频只有这里精品首页| 免费av观看视频| 变态另类丝袜制服| 成年免费大片在线观看| 老熟妇乱子伦视频在线观看| 99精品欧美一区二区三区四区| 无人区码免费观看不卡| 在线十欧美十亚洲十日本专区| 国产一区二区在线观看日韩 | 国产三级在线视频| 18禁裸乳无遮挡免费网站照片| 少妇的丰满在线观看| 日日摸夜夜添夜夜添小说| 白带黄色成豆腐渣| 97碰自拍视频| 国产精品av视频在线免费观看| 亚洲美女视频黄频| 床上黄色一级片| 国产淫片久久久久久久久 | 精品国产亚洲在线| 亚洲av免费在线观看| 18禁美女被吸乳视频| 99热精品在线国产| 男女午夜视频在线观看| 亚洲七黄色美女视频| 午夜视频国产福利| 午夜福利18| av视频在线观看入口| 亚洲一区二区三区不卡视频| 草草在线视频免费看| 99久久综合精品五月天人人| 三级男女做爰猛烈吃奶摸视频| 哪里可以看免费的av片| 丰满人妻熟妇乱又伦精品不卡| 999久久久精品免费观看国产| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 国产精品影院久久| 亚洲av日韩精品久久久久久密|