• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Dispersants for the Preparation of Y2O3 Spherical Powders by Homogeneous Precipitation at High Temperature①

    2015-01-07 03:43:57ZHANGCiGUOWngHUANGJiQunCAOYongGe
    結(jié)構(gòu)化學(xué) 2015年9期

    ZHANG D-Ci GUO Wng HUANG Ji-Qun CAO Yong-Ge②

    ?

    New Dispersants for the Preparation of Y2O3Spherical Powders by Homogeneous Precipitation at High Temperature①

    ZHANG Da-Caia, bGUO WangaHUANG Ji-QuanaCAO Yong-Gea②

    a(350002)b(100049)

    Spherical monodispersed and submicron-sized Y2O3powders were successfully synthesized through the urea homogeneous precipitation method adding PVA, PVP, or PVA and PVP compound (PVA/PVP) as the dispersant which generated no impurity phases after calcining. The productivity is up to 60% at 107 ± 2 ℃for 3.5 h in an oil bath. The structure, phase composition and evolution, morphology and specific surface area of Y2O3precursor and the calcined powders were explored by means of XRD, TG/DTA, FTIR, SEM, TEM and Micropore analyzer (BET). The spherical particle size of the powders calcined at 900 ℃ for 2 h was 330~350 nm. In this study, 15.5 Wt.% PVA, 8.5 Wt.% PVP or the mixture of both is in favor of enhancing the dispersity of the products. Based on what we have already achieved, it is rather significant to advance this research.

    PVA, PVP, PVA/PVP, productivity;

    1 INTRODUCTION

    Possessing the high melting point, high thermal conductivity, chemical stability[1, 2], transparency over a wide wavelength range from violet to infrared light[3, 4], and low phonon energy, yttria (Y2O3) is a promising material for infrared domes, optical matrix for scintillation, high temperature windows, and component of semiconductor. Moreover, rare earth-doped Y2O3has been considered as a candidate host material for solid-state lasers for many years[5-7], which has attracted much attention of researchers.

    As we know, the transmittance and laser per- formance of Y2O3transparent ceramics have greatly depended on the properties of initial Y2O3powders, such as purity, morphology, dispersity, particle size and size distribution. Based on this, spherical, monodispersed, fine and pure Y2O3powders are ideal choices for making Y2O3ceramics with high densification and transmittance. Great numbers of different techniques have been developed to synthesize rare earth oxide (REO) powders, like solid phase synthesis[8, 9], hydrothermal method[10, 11], sol-gel[12, 13], coprecipitation[14, 15]and homogeneous precipitation[16, 17]. Among these methods, homo- geneous precipitation (HP) is the optimal way to attain desired Y2O3powders. However, few papers have reported the productivity by HP. As a matter of fact, this method is so low-yield, which is partly due to its low reaction temperature in an aqueous medium (~90 ℃)[17], that its practical value is confined. Thus, improving reaction temperature is a significant means to increase powders yield with keeping other reaction conditions immutable. Nevertheless, the higher reaction temperature is, the bigger particle size of the precipitated precursor is, and the more severe agglomeration is. So, it is necessary to add dispersants to the solution to obtain dispersive and fine precursors. Traditionally, ammo- nium sulfate ((NH4)2SO4) is used as a dispersant because of the comparatively high electronegativity and decomposition temperature (~1100 ℃) of the sulfate ion (SO42-)[18-20]. (NH4)2SO4has indeed contributed to improving the dispersity of precursors and decreasing the size of particles at relatively low reaction temperature in an liquidous medium[21]. However, when increasing the reaction temperature to some degree, we found (NH4)2SO4causes more severe aggregation. Thus it is needed to substitute new dispersants for ammonium sulfate to improve dispersity of products and increasing productivity at high reaction temperature. After testing dozens of additives, we found poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) are beneficial to improving the decentrality of products as surfac- tants.

    In this research, taking a certain amount of PVA and PVP as the dispersants, we successfully synthe- sized pure uniform spherical Y2O3powders through a urea homogeneous precipitation method at high temperature (107 ± 2 ℃) for the oil bath. The pro- ductivity is up to 60%, which is much higher than the one at 90 ℃ (~10%). PVA and PVP are expected to have wide applications in preparing other rare earth oxide (REO) powders with high quality.

    2 EXPERIMENTAL

    2. 1 Materials and preparation of Y2O3powders

    Yttria (99.99%), nitric acid (99.999%), urea (99.999%), (NH4)2SO4(99.997%), ethanol (analy- tical grade), PVA (average MW 67000, 88% alcoholyzed) and PVP (average MW 24000) were used as the raw starting materials. According to our previous studies, the appropriate additions of PVA and PVP are 15.5 Wt.% and 8.5 Wt.% of raw Y2O3powders, respectively. So, for comparison, Y2O3precursors were prepared by HP technique according to the following five different means: (1) without any dispersants; (2) only 5Wt.% (NH4)2SO4as the dispersant (weighing 5 Wt.% of raw Y2O3pow- ders)[21]; (3) only 15.5 Wt.% PVA as the dispersant; (4) only 8.5 Wt.% PVP as the dispersant; (5) the mixture of PVA (15.5 Wt.%) and PVP (8.5 Wt.%) as the dispersant. Firstly, proper amounts of raw Y2O3powders were dissolved in dilute nitric acid to make a nitrate solution in which the concentration of Y3+was kept at 0.04 mol/L. The concentration ratio of urea and Y3+was controlled at 15:1. Then, ethanol, 20 vol.% of the solution, and the relevant dispersant was added to the solution and the pH was adjusted to 6.0. After being stirred at room temperature for 1 h for homogenization, the mixed solution was heated in a Dimethyl silicone bath whose temperature was 107 ± 2 ℃ and held for 3.5 h. In fact, the temperature of the mixed solution was kept at 85 ± 2 ℃ after 0.5 h. Next, the solution was naturally cooled down to room temperature. Finally, the precursor was centrifuged and washed repeatedly with deionized water and ethanol to completely remove by-products of the reaction. After rinsing, the precursor was dried at 65 ℃ for 12 h and calcined at 900 ℃ for 2 h in a tube furnace in O2.

    2. 2 Physical measurements

    Phase identification was examined by X-ray diffraction analysis (XRD, MiniFlex600, Rigaku, Japan) and thermal analysis of the precursors was performed via thermo-gravimetric/differential thermal analysis (TG/DTA, STA449F3, Netzsch, Germany). Fourier transform infrared spectroscopy (FTIR, Vertex70, Bruker, Germany) of the pre- cursors was determined at room temperature and the specific surface area of the powders calcined at 900 ℃ was measured with Micropore analyzer (Asap 2020 C+M, Micromeritics, USA) by BET method in N2. The morphology of calcined powders was characterized through scanning electron microscope (SEM, JSM-6700F, JEOL, Japan) and Transmission electron microscope (TEM, JEM-2010, JEOL, Japan).

    3 RESULTS AND DISCUSSION

    To illustrate the effects of dispersants concisely, all dispersants (or additives) mentioned in the following discussion just only refer to the ones added to the solution in liquid-phase reactions.

    3. 1 IR spectroscopy

    According to the FTIR spectra of the virgin and various dispersant-added precursors in Fig. 1, we can get some important information about the effect of dispersants on the products. The wide peaks at ~3373 cm-1are due to O–H bend and the peaks at about 648, 696, and 756 cm-1are attributed to the split non-planar bending vibration of CO32-. The peak at ~1125 cm-1results from the residual SO42-after rinsing. The peaks at about 1408 and 1520 cm-1are assigned to the split anti-symmetrical stretching vibration of CO32-that is weakened by the absorbed PVA, as shown in the inset. Maybe PVA’s hydro- philic groups, -CH2OH-, improved the stretching symmetry of CO32-by absorbing the surrounding electrons. From the above analysis, the precursor is reasonably considered as the basic carbonate with crystal water and the formula is Y+2y(OH)3x(CO3)3y·nH2O.

    Fig. 1. FTIR spectra of the precursors with different additives; Inset is the magnified image of FTIR spectra from 1230 to 1676 cm-1

    3. 2 TG analyses

    TG curves (Fig. 2) of the five different precursors show total weight loss of 39.6~41.4% up to 1050 ℃. Between 30~195 ℃, a weight of ~9% is mainly attributed to the evaporation of absorbed water and the release of molecular water. The subsequent loss from 195 to 800 ℃ is owing to the decomposition of Y(OH)3and Y2(CO3)3. The remainder of 58.6~60.4% does not change anymore between 800~1050 ℃, which reveals that Y(OH)3and Y2(CO3)3have decomposed into Y2O3utterly before 800 ℃. In addition, water loss of the precursor added with PVA, PVP, or the mixture of both is a little larger than the two others, seen in the inset. This is because the hydrophilic groups of PVA and PVP attached to the precursors absorbed more water.

    3. 3 Structure description

    Fig. 3a shows the XRD patterns of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h. It reveals that, except for the (NH4)2SO4-added one, the precursors all completely transformed to Y2O3crystals at 900 ℃ and no other phases were detected. After calcining, the (NH4)2SO4-added powder has the impure phase Y2O2SO4because the decomposition temperature of SO42-is higher than 900 ℃. This result is consistent with the FTIR analysis (Fig. 1). Residual Y2O2SO4is rather pernicious for ceramics sintering, because itwill decompose and release gas during sintering process, then densification and transmittance of ceramics will be impaired severely. Structural refinement with the Rietveld method[22]using Fullprof Program was performed to analyze further the effect of PVA and PVP on the structure of the prepared powders. The results, seen in Table 1 and Fig. 3b, indicate good agreement between the observed XRD pattern and the calculated one based on pure Y2O3phase. This result means that after calcination the PVA/PVP decomposed and evapora- ted completely and brought forth no impurities. Besides, we can find that the ratio of O2-andY3+is larger than 3:2 (Table 1). The reason is that ambient O2entered the interstices of Y2O3crystals during the calcining process in O2.

    Table 1. Rietveld Refinement Results of the PVA/PVP-added Y2O3Powder Calcined at 900 ℃ for 2 h Compared with the Pure Y2O3Powder

    PowdersAtomsxyzOccupancyLattice constants Y1 (C3i)0.25000.25000.25000.1000a = b = c = 10.6039 ? Pure Y2O3Y2 (C2)0.467500.25000.3000a= b= g= 90° O10.10870.34780.11950.6000 Y1 (C3i)0.25000.25000.25000.0982a = b = c = 10.6091 ? PVA/PVP-added Y2O3Y2 (C2)0.468500.25000.3018a= b= g= 90° O10.10780.34480.11960.6085

    Fig. 2. TG curves of the precursors with different additives; Inset is the magnified image of the selected part

    (a)????????????(b)

    Fig. 3. (a) XRD patterns of the powders calcined at 900 ℃ for 2 h with different additives. (b) Rietveld refinement pattern for the powder calcined at 900 ℃ for 2 h added with PVA/PVP as the dispersant; Inset is the unit cell structure of Y2O3revealing coordination environment of Y and O

    3. 4 Morphology characteristics

    The SEM and TEM morphologies of the virgin and various dispersant-added Y2O3powders calcined at 900 ℃ for 2 h are presented in Fig. 4. Except for the (NH4)2SO4-added one (Fig. 4c, 4d), particles of all other powders are spherical because of the low concentration of Y3+(0.04 M), and the particle size of these powders is 330~350 nm. However, the size of the aggregates formed by the reunite of particles is much different. As Fig. 4 shows, the powder added with PVA or PVP as the dispersant is less agglomerative than the virgin one, so is the powder added with PVA/PVP. The mechanism of surfactants that consist of hydrophilic and hydrophobic groups has been extensively studied. PVA is a nonionic surfactant and PVP is a cationic one whose hydrophilic groups are positive after ionization. After the precursor particles were formed, the hydrophobic groups adhered to the surfaces of particles and the hydrophilic groups stretched into the liquidous medium (Fig. 5), which contributed to keeping particles from gathering with each other, namely, steric hindrance effect. In addition, because PVP’s hydrophilic groups are positive, it constituted charge layers on the surfaces which enhanced the repulsion between two particles. As to the (NH4)2SO4-added powder, the electrostatic effect of SO42-is not strong enough to keep particles apart from each other at high reaction temperature. Although its particle size is much smaller (Fig. 4d), particles agglomerated rather severely and many pores were formed in the aggregate so that it is quite hard to sinter for making transparent ceramics.

    Fig. 4. SEM photographs (left) and TEM photographs (right) of the powders calcined at 900 ℃for 2 h. The additives were: virgin (a and b); (NH4)2SO4(c and d); PVA (e and f); PVP (g and h); PVA/PVP (i and j)

    (a)????????????????? (b)

    Fig. 5. Dispersive effect of PVA (a) and PVP (b)

    3. 5 Special surface area measurement

    To study further about the effect of PVA and PVP on improving dispersity of particles, we examined the specific surface area of calcined products via BET method. Fig. 6 shows that the specific surface area of the product taking PVA or PVP as the dispersant is larger than the virgin one’s by 20% approximately. What’s more, the specific surface area of the product using PVA/PVP as the dispersant is about 30% larger than that of the virgin one, which manifests PVA and PVP cooperated with each other in alleviating agglomeration. Considering the fact that the temperature of the oil bath is so high (107 ± 2 ℃) that particles are strongly inclined to gather, PVA and PVP are still promising dispersants, though their benefit for improving products’ dispersity is not very great. As for the (NH4)2SO4- added powder, its much larger specific surface area is owing to the smaller particles than others.

    Fig. 6. Specific surface area of the powders calcined at 900 ℃ for 2 h with different additives measured by BET method

    4 CONCLUSION

    Monodispersed and submicron-sized Y2O3spherical powders were successfully prepared via the urea homogeneous precipitation method using PVA, PVP, or PVA/PVP as the dispersant. Both PVA and PVP improved the particle’s dispersion to a great degree. Furthermore, they were synergistic and engendered no impurity phases after calcining. The spherical particle sizes of the powders calcined at 900 ℃ for 2 h are 330~350 nm and the productivity is up to 60%. In this study, the contents of PVA and PVP were 15.5 Wt.% and 8.5 Wt.% of the raw Y2O3powders, respectively. Considering their vital role in weakening agglomeration, it is significant to move the study forward. For example, we can explore the effect of the proportion and average molecular weights of PVA and PVP on promoting dispersity of products. In sum, to make HP in producing Y2O3and other REO powders more meaningful and valuable, it is crucial to substitute new dispersants, such as PVA and PVP, for the traditional (NH4)2SO4at high reaction temperature in solution.

    (1) Tsukuda, Y. Application for refractory and corrosion resistant materials.. 1988, 23, 456-460.

    (2) Curtis, C. E. Properties of yttrium oxide ceramics.. 1957, 40, 274-278.

    (3) Wickersheim, K. A.; Lefever, R. A. Infrared transmittance of crystalline yttrium oxide and related compounds.. 1964, 111, 47-51.

    (4) Brecher, C.; Wei, G. C.; Rhodes, W. H. Point defects in optical ceramics: high-temperature absorption processes in lanthana-strengthened yttria.. 1990, 73, 1473-1488.

    (5) Kong, J.; Lu, J.; Takaichi, K.; Uematsu, T.; Ueda, K.; Tang, D. Y.; Shen, D. Y.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Diode-pumped Yb:Y2O3ceramic laser.. 2003, 82, 2556-2558.

    (6) Boulon, G.; Lupei, V. Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals.. 2007, 125, 45-54.

    (7) Lu, J. R.; Takaichi, K.; Uematsu, T.; Shirakawa, A.; Musha, M.; Ueda, K.; Yagi, H.; Yanagitani, T.; Kaminskii, A. A. Yb3+:Y2O3ceramics-a novel solid state laser material.s. 2002, 41, 1373-1375.

    (8) Ikesue, A.; Kamata, K.; Yoshida, K. Synthesis of transparent Nd doped HfO2-Y2O3ceramics using HIP.c. 1996, 79, 359-364.

    (9) Li, W. J.; Zhou, S. M.; Liu, N. Effect of additives on optical characteristic of thulium doped yttria transparent ceramics. J.. 2010, 32, 971-974.

    (10) Sharma, P. K.; Jilavi, M. H.; Nab, R. Seeding effect in hydrothermal synthesis of nanosize yttria.. 1998, 17, 823-825.

    (11) Li, Q. S.; Feng, C. H.; Jiao, Q. Z. Shape-controlled synthesis of yttria nanocrystals under hydrothermal conditions.J.2004, 201, 3055-3059.

    (12) Dupont, A.; Parent, C.; Garrec, B. L. Size and morphology control of Y2O3nanopowders via a sol-gel route.. 2003, 171, 152-160.

    (13) Mangalaraja, R. V.; Ramama, K. V. S.; Ravi, J. Synthesis of nanocrystalline yttria by microwave-assisted citrate-gel decomposition technique.. 2008, 197, 292-295.

    (14) Saito, N.; Matsuda, S.; Ikegami, T. Fabrication of transparent yttria ceramics at low temperature using carbonate derived powder.. 1998, 81, 2023-2028.

    (15) Wen, L.; Sun, X. D.; Lu, Q. Synthesis of yttria nanopowders for transparent yttria ceramics... 2006, 29, 239-245.

    (16) Li, J. G.; Li, X. D.; Sun, X. D. Uniform colloidal spheres for (Y1-xGd)2O3(= 0-1): formation mechanism, compositional impacts, and physicochemical properties of the oxides.. 2008, 20, 2274-2281.

    (17) Qin, X. P.; Zhou, G. H.; Yang, H.; Yang, Y.; Zhang, J.; Wang, S. W. Synthesis and upconversion luminescence of monodispersed, submicron-sized Er3+:Y2O3spherical phosphors.. 2010, 493, 672-677.

    (18) Gong, H.; Tang, D. Y.; Huang, H. Effect of grain size on the sinterability of yttria nanopowders synthesized by carbonate-precipitation process.. 2008, 112, 423-426.

    (19) Ikegami, T.; Li, J. G.; Mori, T. Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide.. 2002, 85, 1725-1729.

    (20) Wen, L.; Sun, X. D.; Xiu, Z. M. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics.. 2004, 24, 2681-2688.

    (21) Qin, H. M.; Liu, H.; Sang, Y. H.; Zhang, X. L.; Lv, Y. H.; Wang, J. Y. Influence of the synthesis conditions on preparation of yttria powders by urea precipitation method.. 2011, 40, 1455-1459.

    (22) Rietveld, H. M. A profile refinement method for nuclear and magnetic structures.. 1969, 2, 65-71.

    ① This work was supported by the National Natural Science Foundation of China (91022035) and the Center for Advanced Materials,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

    ② Corresponding author. Cao Yong-Ge. E-mail: caoyongge@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-0722

    18 March 2015; accepted 5 May 2015 (ICSD 155173)

    搡老熟女国产l中国老女人| 欧美黄色淫秽网站| 欧美激情在线99| 麻豆国产av国片精品| 国产高清视频在线观看网站| 国产男靠女视频免费网站| 欧美大码av| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 欧美日韩福利视频一区二区| 国产亚洲精品久久久com| 精品一区二区三区视频在线 | 国产精品久久久久久亚洲av鲁大| 日韩精品青青久久久久久| 999久久久国产精品视频| 久久精品影院6| 国产91精品成人一区二区三区| 色综合亚洲欧美另类图片| 日韩欧美一区二区三区在线观看| 国产免费av片在线观看野外av| 国产免费av片在线观看野外av| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 亚洲av日韩精品久久久久久密| 久久久精品欧美日韩精品| 国产91精品成人一区二区三区| 久久久久久久久久黄片| 黄片小视频在线播放| 亚洲av美国av| 国产av不卡久久| 麻豆国产97在线/欧美| 五月玫瑰六月丁香| 国内精品一区二区在线观看| 亚洲欧美日韩高清专用| 最近在线观看免费完整版| 久久精品国产99精品国产亚洲性色| 欧美成人免费av一区二区三区| 制服人妻中文乱码| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 亚洲自偷自拍图片 自拍| 熟女电影av网| 亚洲精品在线观看二区| 亚洲精品在线观看二区| 精华霜和精华液先用哪个| 久久精品国产亚洲av香蕉五月| 国产私拍福利视频在线观看| 精品国产美女av久久久久小说| 男女床上黄色一级片免费看| 国产精品日韩av在线免费观看| 俄罗斯特黄特色一大片| 两个人视频免费观看高清| 欧美xxxx黑人xx丫x性爽| 香蕉国产在线看| 很黄的视频免费| 老司机福利观看| 最新在线观看一区二区三区| 国产视频内射| 国产69精品久久久久777片 | 免费在线观看影片大全网站| 999久久久国产精品视频| 成人三级黄色视频| 国产精品久久久人人做人人爽| 草草在线视频免费看| 国产精华一区二区三区| 一个人免费在线观看电影 | 国内精品一区二区在线观看| 999久久久国产精品视频| 国产免费av片在线观看野外av| a级毛片a级免费在线| 亚洲,欧美精品.| 99国产综合亚洲精品| 久久久久九九精品影院| 美女高潮的动态| 天堂网av新在线| 激情在线观看视频在线高清| 97碰自拍视频| 美女黄网站色视频| 观看美女的网站| 好男人在线观看高清免费视频| 精品99又大又爽又粗少妇毛片 | 国产精品久久久久久亚洲av鲁大| 久久99热这里只有精品18| 亚洲国产欧美人成| 欧美xxxx黑人xx丫x性爽| 免费在线观看亚洲国产| 91老司机精品| 一个人看视频在线观看www免费 | 亚洲国产精品sss在线观看| 中文字幕人妻丝袜一区二区| 狠狠狠狠99中文字幕| 国产真实乱freesex| 国产成人啪精品午夜网站| 小蜜桃在线观看免费完整版高清| av天堂中文字幕网| 在线视频色国产色| 国产主播在线观看一区二区| 日韩三级视频一区二区三区| 偷拍熟女少妇极品色| 国产精品久久视频播放| 欧美色视频一区免费| 国产69精品久久久久777片 | 91麻豆精品激情在线观看国产| 亚洲无线在线观看| 欧美成人一区二区免费高清观看 | 国产av在哪里看| 久久久国产欧美日韩av| 久久中文看片网| 日韩欧美免费精品| 制服丝袜大香蕉在线| 日本 欧美在线| 亚洲国产色片| 99久久综合精品五月天人人| 观看免费一级毛片| 国产亚洲精品综合一区在线观看| www.www免费av| 亚洲自拍偷在线| 亚洲av成人av| 欧美成人一区二区免费高清观看 | 精品电影一区二区在线| 久久人人精品亚洲av| 国产精品香港三级国产av潘金莲| 久久久久久大精品| 香蕉国产在线看| 日韩欧美国产在线观看| 又黄又爽又免费观看的视频| 日本与韩国留学比较| 国产高清激情床上av| 嫩草影院精品99| 高清毛片免费观看视频网站| 欧美丝袜亚洲另类 | 中文亚洲av片在线观看爽| 亚洲 国产 在线| 久久婷婷人人爽人人干人人爱| 最近视频中文字幕2019在线8| 午夜福利视频1000在线观看| 精品午夜福利视频在线观看一区| 99国产精品99久久久久| 国产精品1区2区在线观看.| 久久欧美精品欧美久久欧美| 美女大奶头视频| www.999成人在线观看| 最近最新中文字幕大全免费视频| 最近在线观看免费完整版| 欧美极品一区二区三区四区| 美女被艹到高潮喷水动态| 欧美激情久久久久久爽电影| 色哟哟哟哟哟哟| 亚洲一区高清亚洲精品| 老汉色av国产亚洲站长工具| 精品免费久久久久久久清纯| 精品无人区乱码1区二区| 国产伦精品一区二区三区四那| 麻豆成人av在线观看| 美女午夜性视频免费| 精品国产乱码久久久久久男人| 午夜激情欧美在线| 久久久精品大字幕| 国产精品亚洲一级av第二区| 久久久久久人人人人人| 精品乱码久久久久久99久播| 成人午夜高清在线视频| 麻豆国产av国片精品| 在线播放国产精品三级| 韩国av一区二区三区四区| 两个人的视频大全免费| 九九久久精品国产亚洲av麻豆 | 亚洲欧美激情综合另类| 亚洲在线自拍视频| 亚洲欧美日韩东京热| 国产高清视频在线播放一区| 在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 男人和女人高潮做爰伦理| 欧美国产日韩亚洲一区| 国产伦精品一区二区三区四那| 成年版毛片免费区| 国产精品久久久久久亚洲av鲁大| 97超视频在线观看视频| 欧美成人性av电影在线观看| 在线观看日韩欧美| 日本一本二区三区精品| 成人国产综合亚洲| 国产av在哪里看| 十八禁网站免费在线| 成熟少妇高潮喷水视频| 欧美日韩国产亚洲二区| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 午夜免费激情av| 久久久久国产一级毛片高清牌| 美女被艹到高潮喷水动态| 午夜视频精品福利| АⅤ资源中文在线天堂| 真人一进一出gif抽搐免费| 成熟少妇高潮喷水视频| 在线观看舔阴道视频| 又粗又爽又猛毛片免费看| 日本精品一区二区三区蜜桃| 最近最新免费中文字幕在线| 免费看日本二区| netflix在线观看网站| 日韩人妻高清精品专区| 欧美黑人欧美精品刺激| 男人的好看免费观看在线视频| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 亚洲精品在线观看二区| 久久久久久大精品| 国产麻豆成人av免费视频| 人妻丰满熟妇av一区二区三区| 熟妇人妻久久中文字幕3abv| 日韩人妻高清精品专区| 亚洲av成人av| 两性夫妻黄色片| 日韩欧美在线二视频| 不卡av一区二区三区| 成人国产一区最新在线观看| 中文字幕人妻丝袜一区二区| 国模一区二区三区四区视频 | 观看免费一级毛片| 变态另类丝袜制服| 男人和女人高潮做爰伦理| 精品国内亚洲2022精品成人| 久久精品91蜜桃| 久久天堂一区二区三区四区| 中亚洲国语对白在线视频| 在线看三级毛片| 亚洲一区二区三区不卡视频| 91av网一区二区| 男女视频在线观看网站免费| 国产精品永久免费网站| 特级一级黄色大片| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 免费看日本二区| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 性色av乱码一区二区三区2| 日本黄色片子视频| 国产成+人综合+亚洲专区| 国产精品久久久av美女十八| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区三区| 午夜福利18| 叶爱在线成人免费视频播放| 最新在线观看一区二区三区| 国产1区2区3区精品| 国产精品亚洲一级av第二区| 免费av毛片视频| 久久亚洲真实| 一卡2卡三卡四卡精品乱码亚洲| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 搡老妇女老女人老熟妇| 欧美一级毛片孕妇| 亚洲国产日韩欧美精品在线观看 | 午夜免费激情av| 亚洲国产中文字幕在线视频| 免费av不卡在线播放| 日韩 欧美 亚洲 中文字幕| 亚洲五月天丁香| 最近最新中文字幕大全电影3| 天天一区二区日本电影三级| 五月伊人婷婷丁香| 国产精品久久视频播放| 精品国产乱子伦一区二区三区| 国产爱豆传媒在线观看| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 免费在线观看日本一区| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 美女 人体艺术 gogo| 国产亚洲精品av在线| 精华霜和精华液先用哪个| 麻豆av在线久日| 中文在线观看免费www的网站| 1000部很黄的大片| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 日韩欧美在线乱码| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| 中文在线观看免费www的网站| 曰老女人黄片| 国产免费av片在线观看野外av| 国模一区二区三区四区视频 | 国产又色又爽无遮挡免费看| cao死你这个sao货| 亚洲第一电影网av| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久久久久人妻蜜臀av| 久久国产精品人妻蜜桃| 99久久久亚洲精品蜜臀av| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| h日本视频在线播放| 一二三四社区在线视频社区8| 中国美女看黄片| 啦啦啦观看免费观看视频高清| 2021天堂中文幕一二区在线观| 叶爱在线成人免费视频播放| av片东京热男人的天堂| 亚洲自偷自拍图片 自拍| 久久这里只有精品中国| 高清毛片免费观看视频网站| 国产欧美日韩精品一区二区| 国产三级在线视频| 91久久精品国产一区二区成人 | 国产美女午夜福利| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久 | 精品一区二区三区av网在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲午夜理论影院| 精品久久久久久,| 91久久精品国产一区二区成人 | 嫁个100分男人电影在线观看| 九色国产91popny在线| 黄色日韩在线| 88av欧美| 99精品久久久久人妻精品| 亚洲av成人一区二区三| 精品久久久久久,| 亚洲午夜理论影院| 亚洲av成人不卡在线观看播放网| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 三级国产精品欧美在线观看 | 伦理电影免费视频| 国产午夜福利久久久久久| 国产三级黄色录像| 99久国产av精品| 午夜福利在线观看免费完整高清在 | 亚洲国产色片| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区| 成年女人看的毛片在线观看| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 亚洲专区字幕在线| 国产免费av片在线观看野外av| 午夜免费激情av| 免费一级毛片在线播放高清视频| 亚洲欧美日韩无卡精品| 嫩草影院入口| 一级毛片女人18水好多| 国产三级在线视频| 亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区| 2021天堂中文幕一二区在线观| 嫩草影院入口| 啦啦啦观看免费观看视频高清| 变态另类丝袜制服| 色视频www国产| 欧美日韩黄片免| 91在线精品国自产拍蜜月 | 一级毛片精品| 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 成人精品一区二区免费| 午夜影院日韩av| 免费观看的影片在线观看| 欧美高清成人免费视频www| 他把我摸到了高潮在线观看| 国产美女午夜福利| 白带黄色成豆腐渣| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 每晚都被弄得嗷嗷叫到高潮| 国产高清有码在线观看视频| 久久久精品大字幕| 搡老岳熟女国产| 在线观看日韩欧美| 国语自产精品视频在线第100页| 亚洲无线在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人不卡在线观看播放网| 91在线精品国自产拍蜜月 | 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 日本a在线网址| 淫妇啪啪啪对白视频| 免费看a级黄色片| 国产高清有码在线观看视频| 脱女人内裤的视频| 亚洲国产精品999在线| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 在线视频色国产色| 波多野结衣巨乳人妻| 嫩草影视91久久| 久久中文字幕一级| 亚洲av成人精品一区久久| 巨乳人妻的诱惑在线观看| 桃红色精品国产亚洲av| 黑人欧美特级aaaaaa片| 日韩欧美精品v在线| 美女cb高潮喷水在线观看 | 婷婷精品国产亚洲av在线| 亚洲欧美日韩卡通动漫| 国产精品电影一区二区三区| 国产精品香港三级国产av潘金莲| 欧美日韩福利视频一区二区| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av在线| 久久精品91无色码中文字幕| 久久久精品大字幕| 国产成人系列免费观看| 欧美成狂野欧美在线观看| 一本综合久久免费| 精品国产美女av久久久久小说| 在线观看日韩欧美| 国产精品98久久久久久宅男小说| 国产精品九九99| 国产日本99.免费观看| 亚洲色图av天堂| 一个人免费在线观看的高清视频| 成熟少妇高潮喷水视频| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 亚洲专区中文字幕在线| 天天添夜夜摸| 在线播放国产精品三级| 国产高潮美女av| 性色av乱码一区二区三区2| 黑人欧美特级aaaaaa片| 午夜福利成人在线免费观看| 国产1区2区3区精品| 男女下面进入的视频免费午夜| 99精品久久久久人妻精品| 国产乱人伦免费视频| a级毛片a级免费在线| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 91麻豆av在线| 亚洲中文字幕一区二区三区有码在线看 | 国产成人精品久久二区二区91| 一级毛片高清免费大全| 久久久成人免费电影| 操出白浆在线播放| 亚洲专区国产一区二区| 国产精品精品国产色婷婷| 日本一本二区三区精品| av欧美777| 很黄的视频免费| 亚洲精品一卡2卡三卡4卡5卡| 制服丝袜大香蕉在线| 免费在线观看日本一区| 国产主播在线观看一区二区| av片东京热男人的天堂| 三级国产精品欧美在线观看 | 特级一级黄色大片| 亚洲av日韩精品久久久久久密| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 在线观看免费午夜福利视频| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 欧美高清成人免费视频www| av欧美777| 亚洲人成电影免费在线| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲成a人片在线一区二区| av天堂中文字幕网| 国产精品精品国产色婷婷| 国产成人av激情在线播放| 欧美一级a爱片免费观看看| av国产免费在线观看| bbb黄色大片| 精品不卡国产一区二区三区| 久久伊人香网站| 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 99国产精品一区二区三区| 亚洲无线在线观看| 欧美一级a爱片免费观看看| 黄色女人牲交| 国产成人欧美在线观看| 日本五十路高清| 久久久国产成人免费| 国产精品一区二区三区四区免费观看 | 久久国产精品人妻蜜桃| 久久久成人免费电影| 国产成人啪精品午夜网站| 午夜福利欧美成人| 特大巨黑吊av在线直播| 18禁黄网站禁片免费观看直播| 精品日产1卡2卡| 亚洲国产看品久久| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 久久久久亚洲av毛片大全| 中文字幕精品亚洲无线码一区| 久久欧美精品欧美久久欧美| 久久这里只有精品19| 国产爱豆传媒在线观看| 国产麻豆成人av免费视频| 国产三级中文精品| 国产麻豆成人av免费视频| 大型黄色视频在线免费观看| 成人av在线播放网站| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 岛国在线观看网站| 久久中文字幕人妻熟女| 波多野结衣巨乳人妻| 亚洲精品粉嫩美女一区| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品自产拍在线观看55亚洲| 美女被艹到高潮喷水动态| www.999成人在线观看| www.熟女人妻精品国产| 看黄色毛片网站| 一个人看视频在线观看www免费 | 国产私拍福利视频在线观看| av片东京热男人的天堂| 日韩免费av在线播放| bbb黄色大片| 亚洲真实伦在线观看| 国产成人欧美在线观看| 99re在线观看精品视频| 午夜成年电影在线免费观看| 午夜免费观看网址| 精品一区二区三区av网在线观看| 亚洲精品美女久久av网站| 一级毛片高清免费大全| 国产精品精品国产色婷婷| 免费看光身美女| a级毛片在线看网站| 久久国产精品影院| 免费观看的影片在线观看| 国产高潮美女av| 很黄的视频免费| 搡老岳熟女国产| 日本在线视频免费播放| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 不卡av一区二区三区| cao死你这个sao货| 麻豆成人av在线观看| 一本一本综合久久| 18禁观看日本| 老司机午夜十八禁免费视频| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 国产伦精品一区二区三区视频9 | 狂野欧美激情性xxxx| 国产真人三级小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲av美国av| 精品久久久久久久人妻蜜臀av| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 免费看十八禁软件| 三级国产精品欧美在线观看 | e午夜精品久久久久久久| 午夜免费成人在线视频| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 精品日产1卡2卡| 亚洲美女视频黄频| 级片在线观看| 欧美黄色片欧美黄色片| 午夜精品一区二区三区免费看| 天堂√8在线中文| 成人欧美大片| 国产三级黄色录像| 午夜激情欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 久久精品aⅴ一区二区三区四区| 亚洲在线观看片| 舔av片在线| 国产精品1区2区在线观看.| 毛片女人毛片| 亚洲真实伦在线观看| 欧美中文综合在线视频| 国产高清视频在线观看网站| 中文在线观看免费www的网站| 亚洲av成人av| 久久久久免费精品人妻一区二区| 日本a在线网址| 黄色成人免费大全| 亚洲色图 男人天堂 中文字幕| 波多野结衣高清无吗| 色av中文字幕| 美女黄网站色视频| 亚洲中文日韩欧美视频| 国产成人精品无人区| 午夜福利在线观看免费完整高清在 | 久久伊人香网站| АⅤ资源中文在线天堂| 国产伦在线观看视频一区| 18美女黄网站色大片免费观看| 成人av一区二区三区在线看| 又爽又黄无遮挡网站| 91麻豆精品激情在线观看国产| 一级毛片高清免费大全| 欧美zozozo另类| 1000部很黄的大片| 免费看日本二区| 亚洲av美国av|