席 銳 鄒 琛 陳楨玥 吳春芳 陸國平 徐志紅
·基礎研究·
同型半胱氨酸促進血管平滑肌細胞增殖的機制及辛伐他汀的干預作用
席 銳 鄒 琛 陳楨玥 吳春芳 陸國平 徐志紅
目的:探討同型半胱氨酸促進大鼠血管平滑肌細胞(VSMC)增殖的機制及辛伐他汀的干預作用。 方法:貼壁培養(yǎng)的大鼠原代VSMC隨機分為3組。(1)對照組:用含10%胎牛血清的DMEM培養(yǎng)基(完全培養(yǎng)基); (2)同型半胱氨酸組:在完全培養(yǎng)基中加入同型半胱氨酸(0.05 mmol/L); (3)辛伐他汀組:在完全培養(yǎng)基中加入同型半胱氨酸(0.05 mmol/L)和辛伐他汀(10 μmol/L)。培養(yǎng)24 h后,光學顯微鏡下觀察各組細胞的形態(tài);采用半定量PCR法檢測c-myc 、P27kip1的mRNA水平;用Western blot檢測細胞周期蛋白(cyclin )D1、cyclin E、cyclin A和核增殖抗原(PCNA)的蛋白表達水平。 結果:與對照組相比,同型半胱氨酸組c-myc mRNA水平上調,P27kip1mRNA水平下調,下游cyclin D1、cyclin E、cyclin A和PCNA蛋白表達增加。與同型半胱氨酸組相比,辛伐他汀組上述檢測指標均得到逆轉。 結論:同型半胱氨酸可促進大鼠VSMC c-myc、cyclin D1、cyclin E、cyclin A等增殖相關基因的表達,抑制P27kip1表達。辛伐他汀可逆轉上述效應。
同型半胱氨酸;動脈粥樣硬化;血管平滑肌細胞
同型半胱氨酸是一種含巰基氨基酸,是體內蛋氨酸分解過程中產生的重要中間產物。臨床研究顯示,同型半胱氨酸與動脈粥樣硬化性疾病(如冠心病、腦血管疾病及外周血管栓塞性疾病等)密切相關,是動脈粥樣硬化的獨立危險因子[1-11]。同型半胱氨酸的致動脈粥樣硬化作用可能與其促進血管平滑肌細胞(VSMC)增殖、導致血管內皮功能障礙以及致炎、促凝和促氧化等作用有關[12-15]。本課題組前期研究證實,同型半胱氨酸可促進大鼠VSMC增殖[16],但具體機制不明。本研究進一步探討同型半胱氨酸促進VSMC增殖的機制以及辛伐他汀的干預作用。
1.1 材料
SD大鼠購自上海中科院動物研究所;兔源細胞周期蛋白(cyclin) D1多克隆抗體以及鼠源核增殖抗原(PCNA)單克隆抗體購自Cell Signaling公司;兔源cyclin A多克隆抗體以及鼠源cyclin E單克隆抗體購自Santa Cruz公司。PCR引物采用Primer 3 軟件設計,序列見表1。
1.2 方法
采用組織塊貼壁法原代培養(yǎng)SD大鼠的VSMC。取生長狀態(tài)良好的第4代細胞制成細胞懸液(4×107個/ml),接種于6孔細胞培養(yǎng)板中,每孔1 ml,孵育24 h,換無血清培養(yǎng)24 h后,依次分為3組。(1)對照組:用含10%胎牛血清的DMEM培養(yǎng)基(完全培養(yǎng)基)培養(yǎng),不加特殊處理;(2)同型半胱氨酸組:完全培養(yǎng)基中加入同型半胱氨酸(0.05 mmol/L);(3)辛伐他汀組:在完全培養(yǎng)基中加入同型半胱氨酸(0.05 mmol/L)和辛伐他汀(10 μmol/L)。各組細胞均設立3個復孔,藥物處理時間均為24 h。
采用Trizol法提取細胞總RNA。按逆轉錄試劑盒說明書合成cDNA。PCR反應條件:94℃變性5 min, 94℃變性45 s,50℃退火1 min,72℃延伸1 min,35個循環(huán),最后再72℃延伸10 min,4℃終止反應。電泳后膠條在凝膠成像儀中攝影,Image Quant軟件進行灰度掃描分析。
采用Western blot檢測cyclin D1、cyclin E、cyclin A和PCNA的蛋白表達水平。
1.3 統(tǒng)計學分析
計量資料以均數(shù)±標準差表示,多組間比較用q檢驗;計數(shù)資料以百分數(shù)(%)表示,組間比較用χ2檢驗;所有數(shù)據(jù)用SPSS 18.0軟件進行分析。P<0.05表示差異有統(tǒng)計學意義。
2.1 VSMC形態(tài)學變化
對照組細胞排列有序;同型半胱氨酸組細胞排列雜亂,呈團狀密集樣增生;經辛伐他汀干預后細胞密度降低,細胞體積縮小,細胞間連接緊密(見圖1)。
注:A為對照組;B為同型半胱氨酸組;C為辛伐他汀組
2.2 細胞增殖相關基因的表達
與對照組相比,同型半胱氨酸組原癌基因c-myc mRNA水平明顯升高,細胞周期蛋白激酶抑制蛋白P27kip1mRNA水平明顯下調;與同型半胱氨酸組相比,辛伐他汀組c-myc水平顯著降低,P27kip1水平明顯上調(P<0.05,見表2)。
表2 各組c-myc、P27kip1的mRNA相對表達量
與對照組相比,同型半胱氨酸組cyclin D1、cyclin A、cyclin E及PCNA蛋白表達水平明顯升高;與同型半胱氨酸組相比,辛伐他汀組上述蛋白表達水平明顯降低(P<0.05,見圖2、表3)。
注:A為對照組;B為同型半胱氨酸組;C為辛伐他汀組
表3 各組cyclin和PCNA蛋白表達水平
同型半胱氨酸促進VSMC增殖的機制尚未闡明,可能與細胞外各種絲裂原激活不同信號傳導途徑有關。研究發(fā)現(xiàn),同型半胱氨酸可通過興奮氨基酸受體或氧化還原受體,引起Ca2+內流。一方面激活磷脂酶/三磷酸肌醇傳導途徑,激活蛋白激酶C,進而激活絲裂素活化蛋白激酶;另一方面可通過鈣調蛋白激活鈣調蛋白激酶,促進原癌基因c-myc、轉錄因子c-myb及c-fos的表達,經過絲裂素活化蛋白激酶的催化,促進基因轉錄,最終導致VSMC增殖[17]。
c-myc是控制細胞生長的基因之一,為myc癌基因家族中關鍵的一員,其編碼產物c-myc蛋白作用于基因調控區(qū),可啟動一系列與增殖有關的基因,促進細胞增殖、分化,參與腫瘤發(fā)生、轉移等病理過程[18-19]。本研究表明,同型半胱氨酸可誘導體外培養(yǎng)的大鼠VSMC c-myc轉錄增加,說明同型半胱氨酸誘導的VSMC增殖可能與癌基因調控的分子生物學機制有關,但是同型半胱氨酸如何啟動c-myc基因轉錄尚有待進一步研究。
cyclin和細胞周期蛋白依賴性激酶(CDK)是細胞內調節(jié)細胞周期的主要物質,cyclin D、cyclin A、cyclin E能誘導細胞進入有絲分裂S期,進而促進細胞增殖[20-21]。P27kip1是細胞周期蛋白依賴性激酶抑制蛋白(CKI)家族中的重要成員之一,可抑制不同的CDK復合物(主要包括cyclin E-CDK2、cyclin D-CDK4、cyclin A等G1期復合物)的活性,使細胞周期不能通過G1-S點而阻斷于G1期[22-24]。本研究顯示,同型半胱氨酸促進VSMC中 cyclin D1、cyclin E、cyclin A的表達,抑制P27kip1表達,其誘導的VSMC增殖可能與下調P27kip1表達引起cyclin表達升高有關。
辛伐他汀的非調脂作用包括改善內皮細胞功能、抑制VSMC增殖及維持斑塊穩(wěn)定性,長期應用可減少心血管事件的發(fā)生[25]。既往研究發(fā)現(xiàn),辛伐他汀抑制同型半胱氨酸誘導的大鼠VSMC增殖主要是通過降低S期和G2/M期百分率、提高G0/G1期百分率,即誘導G0/G1期靜止[23]。本研究顯示,經10 μmol/L辛伐他汀干預24 h后,P27kip1表達明顯上調,同時cyclin D1、cyclin E、cyclin A和細胞增殖的重要指標PCNA也被辛伐他汀顯著抑制。P27kip1和cyclin上述協(xié)調性表達的結果,可解釋辛伐他汀作用于增殖的VSMC后,細胞周期主要停滯在G0/G1期,S期和G2/M期百分率下降,細胞接近靜息水平。
本研究初步探討了同型半胱氨酸誘導大鼠VSMC增殖的機制及辛伐他汀的作用。P27kip1蛋白表達的變化可能是決定VSMC增殖的關鍵[22-23]。因此,未來研究的重點是全面認識P27kip1基因的作用,以用于控制細胞增殖的基因治療。
[1] Varol E. Association between serum homocysteine and arterial stiffness: role of antihypertensive drugs[J]. J Geriatr Cardiol,2014,11(2):175-176.
[2] Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series).Pulm Circ,2014,4(2):169-174.
[3] Mangge H, Becker K, Fuchs D,et al. Antioxidants, inflammation and cardiovascular disease[J].World J Cardiol,2014,6(6):462-477.
[4] Chen FP, Wang HM, Chiang FF,et al. The metabolic ayndrome is associated with an increased risk of colorectal polyps independent of plasma homocysteine[J].Ann Nutr Metab,2014,64(2):106-112.
[5] Shenoy V, Mehendale V, Prabhu K,et al. Correlation of serum homocysteine levels with the severity of coronary artery disease[J].Indian J Clin Biochem,2014,29(3):339-344.
[6] Yi X, Zhou Y, Jiang D, et al. Efficacy of folic acid supplementation on endothelial function and plasma homocysteineconcentration in coronary artery disease: A meta-analysis of randomized controlled trials[J].Exp Ther Med,2014,7(5):1100-1110.
[7] Baszczuk A, Kopczyński Z. Hyperhomocysteinemia in patients with cardiovascular disease[J].Postepy Hig Med Dosw (Online),2014, 68: 579-589.
[8] Cotlarciuc I, Malik R, Holliday EG, et al. Effect of genetic variants associated with plasma homocysteine levels on stroke risk[J].Stroke,2014,45(7):1920-1924.
[9] Wang CY, Chen ZW, Zhang T, et al. Elevated plasma homocysteine level is associated with ischemic stroke in Chinese hypertensive patients[J].Eur J Intern Med,2014,25(6):538-544.
[10] Bertoia ML, Pai JK, Cooke JP, et al. Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease[J].Atherosclerosis,2014,235(1):94-101.
[11] Baszczuk A, Musialik K, Kopczyński J, et al. Hyperhom-ocysteinemia, lipid and lipoprotein disturbances in patients with primary hypertension[J].Adv Med Sci,2014,59(1):68-73.
[12] Han XB, Zhang HP, Cao CJ, et al. Aberrant DNA methylation of the PDGF gene in homocysteine mediated VSMC proliferation and its underlying mechanism[J].Mol Med Rep,2014,10(2):947-954.
[13] Kalani A, Kamat PK, Chaturvedi P,et al. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia[J].Life Sci,2014,107(1-2):1-7.
[14] Guo HY, Xu FK, Lv HT,et al. Hyperhomocysteinemia independently causes and promotes atherosclerosis in LDL receptor-deficient mice[J].J Geriatr Cardiol,2014,11(1):74-78.
[15] Wei HJ, Xu JH, Li MH,et al. Hydrogen sulfide induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway[J].Acta Pharmacol Sin,2014,35(6):707-715.
[16] 徐志紅,陸國平,吳春芳.同型半胱氨酸對血管平滑肌細胞增殖與膠原合成變化的影響[J]. 中華老年心腦血管病雜志,2007,9(1):45-48.
[17] Fernandez-Sanchez ME, Gonatopoulos-Pournatzis T, Preston G,et al. S-adenosyl homocysteine hydrolase is required for Myc-induced mRNA cap methylation, protein synthesis, and cell proliferation[J].Mol Cell Biol, 2009,29(23):6182-6191.
[18] Jiang W, Zhang Y, Meng F,et al. Identification of active transcription factor and miRNA regulatory pathways in Alzheimer′s disease[J].Bioinformatics, 2013,29(20):2596-2602.
[19] Halaby MJ, Hakem R, Hakem A. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation[J].Cell Cycle, 2013,12(17):2733-2737.
[20] Hindley C, Philpott A. The cell cycle and pluripotency. Biochem J, 2013 ,451(2):135-143.
[21] Hu XT, Zuckerman KS. Role of cell cycle regulatory molecules in retinoic acid- and vitamin D3-induced differentiation of acute myeloid leukaemia cells[J].Cell Prolif, 2014,47(3):200-210.
[22] Cerqueira A, Martín A, Symonds CE, et al. Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinaseinhibitors and assembly factors[J].Mol Cell Biol,2014,34(8):1452-1459.
[23] Tane S, Ikenishi A, Okayama H. CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes[J].Biochem Biophys Res Commun, 2014,443(3):1105-1109.
[24] Al-Ghoul WM, Kim MS, Fazal N, et al. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers[J]. Results Immunol, 2014, 4:14-22.
[25] 葛 進,趙 姜.阿托伐他汀對冠心病患者血清ghrelin水平的影響[J].國際心血管病雜志,2013,40(5):326-328.
(收稿:2014-07-21 修回:2014-12-03)
(本文編輯:丁媛媛)
Homocysteine on vascular smooth muscle cell proliferation and effects of simvastatin
XIRui1,ZOUChen1,CHENZhenyue1,WUChunfang1,LUGuoping1,XUZhihong2.
1DepartmentofCardiology; 2DepartmentofGeriatrics,RuijinHospital,ShanghaiJiaotongUniversity,Shanghai200025,China
Objective:To explore the mechanism of homocysteine promoting the proliferation of rat vascular smooth muscle cells (VSMC) and intervention effects of simvastatin. Methods:Primary rat VSMC were divided into 3 groups. Cells in control group were cultured in DMEM with 10% fetal bovine serum. Cells in homocysteine group were treated with 0.05 mmol/L homocysteine,and cells in simvastatin group were treated with 0.05 mmol/L homocysteine and 10 μmol/L simvastatin. Morphology of cells was observed under optical microscope. The mRNA levels of c-myc和P27kip1were analyzed by semi-quantitative PCR, and the protein levels of cyclin D1, cyclin E, cyclin A and PCNA were evaluated by Western blot. Results:Compared with control group, the mRNA level of c-myc and protein levels of cyclin D1, cyclin E, cyclin A and PCNA in homocysteine group were significantly increased, while the mRNA level of P27kip1was decreased. After treatment with simvastatin, P27kip1was upregulated compared with homocysteine group accompanied by the inhibition of c-myc, cyclin D1, cyclin E, cyclin A and PCNA. Conclusion:Homocysteine promotes the expression of proliferation associated genes such as c-myc, cyclin D1, cyclin E, cyclin A and PCNA and inhibits P27kip1expression, which can be reversed by simvastatin.
Homocysteine; Atherosclerosis; Smooth muscle cells
上海市科委重大基礎研究項目(054119634)
200025 上海交通大學附屬瑞金醫(yī)院心臟科(席 銳,鄒 琛,陳楨玥,吳春芳,陸國平);老年病科(徐志紅)
徐志紅,Email:zhihxu@163.com
10.3969/j.issn.1673-6583.2015.01.014