• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Isobutane/Butene Alkylation Using Solid Acid Catalysts in a Fixed Bed Reactor

    2016-03-22 06:36:01
    中國煉油與石油化工 2016年2期

    (Research Institute of Petroleum Processing, SINOPEC, Beijing 100083)

    Modeling of Isobutane/Butene Alkylation Using Solid Acid Catalysts in a Fixed Bed Reactor

    Liu Zheng; Tang Xiaojin; Hu Lifeng; Hou Shuandi

    (Research Institute of Petroleum Processing, SINOPEC, Beijing 100083)

    A dynamic mass transfer model of isobutane/butene alkylation over solid acid catalysts in a fi xed bed reactor was established. In the model, a modi fi ed equation for the relationship between point activity and effective diffusion coef fi cient was proposed. It is found that the simulation results fi t the experimental data well and the breakthrough time of the bed layer is predicted accurately. By modeling the alkylation process, the time-space distribution of butene and point activity pro fi les of catalysts can be obtained. Furthermore, the reasons for the deactivation of solid acid catalysts were investigated. It indicates that the main reason for the deactivation of catalysts is the site coverage near the inlet of the reactor, while it is ascribed to the steric effect in the region far away from the inlet.

    mass transfer model; isobutane/butene alkylation; fi xed bed reactor; deactivation; internal diffusion

    1 Introduction

    As a refining process, alkylation of isobutane andn-butene can provide an ideal blendstock for production of high octane fuel. The existing processes are mostly catalyzed using liquid-phase catalysts, such as sulfuric acid and hydro fl uoric acid. However, due to the inherent characteristic of liquid-phase catalysts, there are some disadvantages and shortcomings involved[1]. Thus, plenty of research efforts have been made in searching for different heterogeneous catalysts as the alternative to liquid-phase catalysts[2-3]. In particular, solid acid catalysts which show high product selectivity have been studied as potential industrial catalysts[4-6]. The major problem for the large-scale application of solid acid catalysts is the rapid catalyst deactivation[7]. Consequently, it is a matter of great urgency to investigate the alkylation process and the deactivation behavior of solid acid catalysts.

    In literature, the format of the governing equations for the alkylation process and the deactivation behavior in different reactor systems have been attracting a lot of attention[8-11]. The model developed by Simpson shows that many factors, such as the isobutane ton-butene feed ratio, the olefin space velocity (OSV) and the operating temperature, could affect the alkylation process. Sahebdelfar found out that the internal diffusion limitation would promote the deactivation rate. In the research made by Hamzehlouyan, a CSTR model has been developed by implementing more appropriate assumptions and pore mouth plugging is considered as a major factor leading to the deactivation of solid acid catalysts. However, the alkylation process and the deactivation behavior of solid acid catalysts in a fi xed bed reactor have not been adequately explored. The fixed bed reactor is preferred in the practical application of alkylation process, as it could fulfill the industrial requirements, such as highly competitive economics, simple operation and the ability to retro fi t existing units[12].

    In view of the above background, the present work mainly developed a dynamic mass transfer model to simulate the alkylation process and the deactivation behavior of solid acid catalysts in a fi xed bed reactor. By virtue of the model, the time-space distribution of butene and point activity pro fi les of catalysts are obtained. Upon analyzing the information gained from the modeling work, a further understanding of the reason for the deactivation of solid acid catalysts is obtained.

    2 Modeling

    Isobutane/butene alkylation reaction is currentlyconsidered as the mechanism of carbenium ion reaction[2]. While alkylation reaction (Eqs. 1-2) is not always the preferred reaction pathway during alkylation process, there are many side reactions which can reduce the quality of alkylates and lead to deactivation of catalysts. Side reactions will result in the accumulation of heavier carbocations which could inhibit the diffusion of species in the catalyst pellets. For making a mathematical model closer to the real application, the site coverage and steric effect which can influence the activity of solid acid catalysts should be considered.

    For simpli fi ed computing, Simpson established equations suitable for the butene consumption rate (Eq. (3)) and the deactivation rate of active sites (Eq. (4))[9].

    By utilizing the above kinetic formulations, a mathematical model of the alkylation reaction and the deactivation process can be constructed. The schematic diagrams of the fi xed bed reactor and species diffusion in a catalyst pellet are shown as Figures 1 and 2.

    Figure 1 The schematic diagram of the fi xed bed reactor

    Figure 2 The schematic diagram of species diffusion in a catalyst pellet

    For modeling isobutane/butene alkylation in a fixed bed reactor, four assumptions should be identified: (1) The bulk fl ow in the bed is a plug fl ow; (2) The catalyst pellets in the bed are distributed uniformly; (3) The external diffusion is ignored; and (4) The alkylation reactions occur in catalysts. According to the assumptions mentioned above, the reactor bed is divided intoNcells of equal volume for the purpose of numerical computing and each cell is well mixed. The material balance equation of the bulk fl ow in the fi xed-bed reactor can be written as:

    whereCB,CA,iare the intra-pellet and bulk butene concentration, respectively. Moreover,Uis the velocity of the bulk flow,εlandεsrespectively represent the void fraction of bed and pellets in the reactor,Deffis the effective intra-pellet diffusion coef fi cient of butene.

    The radius of the catalyst pellet is divided intoMequal intervals, and the mass balance of butane in a spherical catalyst pellet in each cell of the reactor can be written as follows:

    whereεpis the pellet porosity, andCB,mrepresents butene concentration in themth shell of the pellet.

    The local effective diffusion coef fi cient is assumed as a function of local activity of the catalyst pellet and can be written as[10]:

    whereτis the tortuosity of the pellet,αis the point activity,DB0is the effective diffusion coef fi cient of butene in clean pores andDpis the effective diffusion coef fi cient in the completely poisoned area.

    Eq. (7) can be modi fi ed to Eq. (8):

    wherenis an index representing the effect of the point activity on the effective diffusion coefficient. Eq. (8) reveals the steric effect, while Eq. (4) describes the site coverage.

    In order to simulate the process of mass transfer in the reactor, the boundary and initial conditions are expressed as follows:

    For solving the olefin material balance model,k1,K,k3,nandDpare set as adjustable parameters. The values of the above parameters can be computed by fitting the calculated results of the model to experimental values using the least square function (Eq. (13))

    whereCexpandCcalare the experimental and the calculated concentration values, respectively.

    3 Results and Discussion

    Zuazo[13]researched the alkylation process of isobutane and butene on the FAU zeolite in a fi xed-bed reactor at a pressure of 20 bar and a temperature of 75 ℃, with OSV equating to 0.2 h-1. The other operating parameters in his work are depicted in Table 1.

    Table 1 Values of parameters for modeling[13]

    In literature, the value ofnin Eq. (8) was considered as a fi xed value of 1 and the form of the equation is expressed as Eq. (7)[10-11]. Becausenrepresents the influence of point activity on the effective diffusion coefficient, different values ofncould lead to different calculated results as shown in Figure 3. In case of a lower value ofn(n=0.25), butene would penetrate the catalyst bed layer in a shorter time, while it would penetrate the bed layer in a longer time when the value is higher. In other words, in the former case, the point activity has greater influence on the effective diffusion coefficient than that of the latter case. In real application, the operating period of a fi xed bed reactor is determined by the breakthrough time and then catalysts are necessary to be regenerated. Taking unsuitable values ofnwould underestimate or overestimate the effect of point activity on the effective diffusion coef fi cient, which would lead to miscalculation of breakthrough time. Therefore, an accurate evaluation ofnis essential to predict the breakthrough time.

    Figure 3 Experimental[13]and calculated buteneconversion for different values ofn

    Figure 4 shows the experimental data of Zuazo and the predicted data obtained from the present model and Hamzehoulouyan’s model[11]. When the conversion of butene is 100%, the present model is accurate enough, while there is a slight error in the region when the bed layer is penetrated. It indicates that the present model could simulate the alkylation process in a fixed-bed reactor quite well and predict the breakthrough time of the bed layer accurately. As the operating period of the reactor is determined by the breakthrough time in industrial application, the present model is more practical.

    Figure 4 Experimental[13]and calculated butene conversion rates of different models

    Figure 5 shows the point activity pro fi les of catalysts inthe reactor. Intra-pellet point activity values dropped fast to zero at the place near the inlet of the reactor, while the point activity values in the inner layer of catalysts would remain at a certain value in the upper place of the reactor. It can be found that the farther the catalysts from the inlet of the reactor are, the more obvious the effect of steric hindrance on diffusion of butene is.

    Figure 5 Point activity versus time at various heights away from the inlet of the reactor.

    Three formats to describe the mean activity of the catalyst pellets are applied: the fi rst is the resting activity of a single catalyst, the second is the resting activity of the whole catalysts, and the last is the effective resting activity of the whole catalysts which can take part in the reaction. The three activity values can be calculated respectively as follows:

    whereNandMrepresent theNth andMth cell of the reactor and the catalyst pellet, respectively. Furthermore,Vjis thejth volume of single pellet,Vis the volume of a single catalyst, and (-rB0) is the rate of the alkylation reaction in the fresh catalyst.

    Figure 6 shows the time-space distribution ofa1. Upon combining with Figure 5, it was found that the alkylation reaction occurred at a certain height. When butene reaches a certain height of the reactor, butene would rather diffuse into the pellets than flowing to the higher place of the reactor due to the effect of diffusion. Furthermore, catalysts in the upper part of the reactor still have good activity until the experiment fi nishes.

    Figure 6 The time-space distribution ofa1

    Comparison on the variation ofa2with that ofa3is shown in Figure 7. As illustrated in the Figure 7, the former was higher than the latter after 400 minutes. This indicates that steric effect plays an important role in deactivation of catalysts.

    Figure 7 Different kinds of pellet activity versus time

    Near the inlet of the reactor (see Figure 8), trends of local point activity and butene concentration in a catalyst pellet tend to be similar, while there is an apparent difference at the higher place of the reactor (see Figures 9, 10, and 11). Butene concentration gradient between in and out of catalyst pellets is large near the inlet because of step change of butene concentration leading to a great diffusion driving force. In this way, local concentrationof intra-pellet butene would quickly become the same as that of bulk butene (see Figure 8(b)). Therefore the steric hindrance could be neglected and the site coverage becomes the main reason for the deactivation of catalysts near the inlet. Catalysts are poisoned completely (see Figure 8(a)).

    At the higher place of the reactor (see Figures 9(b), 10(b), 11(b)), the bulk butene concentration increases from zero gradually instead of a step change. When butene reaches a certain height of the reactor, it would diffuse into the pellets and the alkylation reactions start. In the beginning, the alkylation process depends on the diffusion of butene the rate of which is much larger than the rate of the reaction. At this stage, the intra-pellet butene concentration increases quickly. As the reactions proceed, the solid acid catalysts lose activity and the heavier carbocations would block the pores of pellets gradually. With the resultant steric hindrance, the diffusion driving force decreases and it is difficult for species to diffuse into the inner layers of catalysts. During this period, the reaction rate is much larger than the diffusion rate causing rapid consumption of intra-pellet butene in inner layers of catalysts. With the deactivation of point activity in outer layers of catalysts, the reaction rate decreases gradually and the species restart to diffuse into inner layers which would induce the accumulation of intra-pellet butene. At the end of the alkylation process, the local concentration of intra-pellet butene tends to be stable at different values being lower than the bulk butene concentration, and the inner layers of catalysts located at the higher place of the reactor still have good activity (see Figures 9(a), 10(a), and 11(a)). Therefore the steric effect is the main reason for deactivation of catalysts in the region that is far away from the inlet. Furthermore, the farther the catalysts from the inlet of the reactor are, the more obvious the steric effect is.

    Figure 8 Point activity and concentrations of bulk and intra-pellet butene versus time at a height of 0.1 cm away from the inlet of the reactor

    Figure 9 Point activity and concentrations of bulk and intra-pellet butene versus time at a height of 3 cm away from the inlet of the reactor

    Figure 10 Point activity and concentrations of bulk and intra-pellet butene versus time at a height of 4 cm away from the inlet of the reactor

    Figure 11 Point activity and concentrations of bulk and intra-pellet butene versus time at a height of 5 cm away from the inlet of the reactor

    4 Conclusions

    A dynamic mass transfer model was developed for the isobutane/butene solid acid alkylation process in a fi xed bed reactor. A modified equation for the relationship between effective diffusion coef fi cient and point activity was proposed. Upon utilizing the modi fi ed equation, the simulation results could fit experimental values better and the breakthrough time could be predicted accurately. Also, the model could provide the time-space distribution of butene concentration and point activity pro fi les.

    The alkylation reaction occurred at a certain height in a fixed-bed reactor. Catalysts in the upper place of the reactor still had good activity after the breakthrough time of the fi xed bed.

    Based on the trends of local point activity and butene concentrations, reasons for the deactivation of solid acid catalysts were well understood. It indicates that the main reason for the deactivation of catalysts is the site coverage near the inlet of the reactor, while it is caused by the steric effect in the region that is far away from the inlet.

    [1] Rao P, Vatcha S R. Solid-acid alkylation process development is at crucial stage[J]. Oil and Gas Journal, 1996, 94(37): 56-61

    [2] Corma A, Martinez A. Chemistry, catalysts, and processes for isoparaf fi n–ole fi n alkylation: Actual situation and future trends[J]. Catalysis Reviews—Science and Engineering, 1993, 35(4): 483-570

    [3] Sarsani V R, Wang Y, Subramaniam B. Toward stable solid acid catalysts for 1-butene+isobutane alkylation: Investigations of heteropolyacids in dense CO2media[J].Industrial & Engineering Chemistry Research, 2005, 44(16): 6491-6495

    [4] Clark M C, Subramaniam B. Extended alkylate production activity during fixed-bed supercritical 1-butene/isobutane alkylation on solid acid catalysts using carbon dioxide as a diluent[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1243-1250

    [5] Feller A, Lercher J A. Chemistry and technology of isobutane/alkene alkylation catalyzed by liquid and solid acids[J]. Advances in Catalysis, 2004, 48: 229-295

    [6] Taylor R J, Sherwood D E. Effects of process parameters on isobutane/2-butene alkylation using a solid acid catalyst[J]. Applied Catalysis A: General, 1997, 155(2): 195-215

    [7] Weitkamp J, Traa Y. Isobutane/butene alkylation on solid catalysts. Where do we stand?[J]. Catalysis Today, 1999, 49(1): 193-199

    [8] De Jong K P, Mesters C, Peferoen D G R, Van Brugge P T M. Paraf fi n alkylation using zeolite catalysts in a slurry reactor: Chemical engineering principles to extend catalyst lifetime[J]. Chemical Engineering Science, 1996, 51(10): 2053-2060

    [9] Simpson M, Wei J, Sundaresan S. Kinetic analysis of isobutane/butene alkylation over ultrastable HY zeolite[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 3861-3873

    [10] Sahebdelfar S, Kazemeini M, Khorasheh F, Badakhshan A. Deactivation behavior of the catalyst in solid acid catalyzed alkylation: effect of pore mouth plugging[J]. Chemical Engineering Science, 2002, 57(17): 3611-3620

    [11] Hamzehlouyan T, Kazemeini M, Khorasheh F. Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutane with 2-butene[J]. Chemical Engineering Science, 2010, 65(2): 645-650

    [12] Jensen A B, Hommeltoft S I. Recent developments in fixed-bed alkylation FBATM[C]//NPRA Annual Meeting, AM-03-24, San Antonio, TX, 2003

    [13] Zuazo I. Deactivation routes in zeolite catalyzed isobutane/2-butene alkylation and regeneration procedures[D]. Universit?t München, 2004

    Received date: 2016-03-11; Accepted date: 2016-05-20.

    Dr. Tang Xiaojin, Telephone: +86-10-82369270; E-mail: tangxj.ripp@sinopec.com.

    免费不卡黄色视频| 国产在视频线精品| 一级片免费观看大全| 天天躁夜夜躁狠狠躁躁| 青春草亚洲视频在线观看| 国产一区二区三区综合在线观看| 在线十欧美十亚洲十日本专区| e午夜精品久久久久久久| 国产av一区二区精品久久| 亚洲专区字幕在线| 免费观看a级毛片全部| 国产在线视频一区二区| 国产精品久久久久久精品电影小说| 一区二区三区精品91| 18禁国产床啪视频网站| 国产成+人综合+亚洲专区| 久久久精品国产亚洲av高清涩受| 久久毛片免费看一区二区三区| 精品国产乱子伦一区二区三区 | 18在线观看网站| 波多野结衣av一区二区av| 亚洲欧美清纯卡通| 国产精品秋霞免费鲁丝片| 精品少妇黑人巨大在线播放| 一区二区三区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美xxⅹ黑人| 日韩制服丝袜自拍偷拍| 国产在视频线精品| 一本—道久久a久久精品蜜桃钙片| av网站免费在线观看视频| 欧美精品高潮呻吟av久久| 咕卡用的链子| 免费看十八禁软件| 国产淫语在线视频| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 日韩欧美国产一区二区入口| 国产1区2区3区精品| 美女脱内裤让男人舔精品视频| videos熟女内射| 国精品久久久久久国模美| 亚洲av国产av综合av卡| 亚洲精品一二三| 久热爱精品视频在线9| 精品一区在线观看国产| 欧美日韩一级在线毛片| 青春草视频在线免费观看| 亚洲欧美一区二区三区久久| 国产成人免费观看mmmm| 深夜精品福利| 秋霞在线观看毛片| 91麻豆av在线| 亚洲五月婷婷丁香| 亚洲,欧美精品.| 一级a爱视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费鲁丝| 久久精品久久久久久噜噜老黄| 19禁男女啪啪无遮挡网站| 亚洲少妇的诱惑av| 亚洲第一欧美日韩一区二区三区 | 一本综合久久免费| 中国国产av一级| 嫁个100分男人电影在线观看| 亚洲国产精品999| 老司机靠b影院| 在线观看免费高清a一片| 国产精品自产拍在线观看55亚洲 | 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区久久| 热99re8久久精品国产| 人人妻人人澡人人爽人人夜夜| 亚洲国产成人一精品久久久| 日韩大片免费观看网站| 狠狠狠狠99中文字幕| 美国免费a级毛片| 国产一卡二卡三卡精品| 一本综合久久免费| 国产97色在线日韩免费| 国产精品九九99| 欧美日韩av久久| 亚洲av片天天在线观看| 高清av免费在线| 伊人亚洲综合成人网| 一二三四社区在线视频社区8| 国产一级毛片在线| 高清欧美精品videossex| 久久人人爽av亚洲精品天堂| svipshipincom国产片| 亚洲av男天堂| 亚洲一区二区三区欧美精品| 亚洲国产日韩一区二区| 91成人精品电影| 一边摸一边抽搐一进一出视频| 中文字幕色久视频| 一区二区av电影网| 久久亚洲精品不卡| 久久精品国产综合久久久| 黄片播放在线免费| 可以免费在线观看a视频的电影网站| 亚洲人成77777在线视频| 一个人免费看片子| 亚洲精品国产区一区二| av在线播放精品| 国产色视频综合| 国产精品九九99| 亚洲va日本ⅴa欧美va伊人久久 | av网站免费在线观看视频| 日韩精品免费视频一区二区三区| 美女福利国产在线| 成人免费观看视频高清| 99国产极品粉嫩在线观看| 亚洲欧美清纯卡通| www.精华液| 欧美精品一区二区免费开放| 欧美黑人欧美精品刺激| 国产一区有黄有色的免费视频| 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 老熟妇仑乱视频hdxx| 在线观看舔阴道视频| 免费av中文字幕在线| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久人妻精品电影 | 91国产中文字幕| 亚洲五月婷婷丁香| 久久久国产成人免费| 亚洲精品久久久久久婷婷小说| 国产麻豆69| 国产成人av教育| 黑人猛操日本美女一级片| 欧美久久黑人一区二区| 亚洲avbb在线观看| 国产主播在线观看一区二区| 久久亚洲国产成人精品v| kizo精华| 亚洲第一av免费看| a级片在线免费高清观看视频| 青春草视频在线免费观看| 男人爽女人下面视频在线观看| 国产高清国产精品国产三级| 精品一区二区三区四区五区乱码| 性高湖久久久久久久久免费观看| 国产日韩欧美视频二区| 国内毛片毛片毛片毛片毛片| 精品国产乱码久久久久久男人| 亚洲精品美女久久av网站| 中文字幕人妻丝袜一区二区| 嫩草影视91久久| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 大陆偷拍与自拍| 男女之事视频高清在线观看| 亚洲精品中文字幕一二三四区 | 我要看黄色一级片免费的| 老司机午夜福利在线观看视频 | 99精品欧美一区二区三区四区| 亚洲精品粉嫩美女一区| 欧美xxⅹ黑人| 欧美日韩精品网址| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区激情| 亚洲三区欧美一区| 一级黄色大片毛片| 老熟妇仑乱视频hdxx| 久久国产精品男人的天堂亚洲| 久久久久久久大尺度免费视频| 青春草亚洲视频在线观看| 欧美人与性动交α欧美软件| 嫩草影视91久久| 老司机影院成人| 法律面前人人平等表现在哪些方面 | 欧美精品亚洲一区二区| 不卡av一区二区三区| 五月天丁香电影| 黑人操中国人逼视频| 国产1区2区3区精品| 脱女人内裤的视频| 国产成人a∨麻豆精品| 免费一级毛片在线播放高清视频 | 精品熟女少妇八av免费久了| 久久免费观看电影| 叶爱在线成人免费视频播放| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 欧美乱码精品一区二区三区| 欧美少妇被猛烈插入视频| 夫妻午夜视频| 中国美女看黄片| 亚洲精品中文字幕一二三四区 | 一区二区三区激情视频| 黄色 视频免费看| 考比视频在线观看| 性色av乱码一区二区三区2| av超薄肉色丝袜交足视频| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看| 国产成人精品久久二区二区91| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| 天堂俺去俺来也www色官网| av在线app专区| 99国产精品免费福利视频| 汤姆久久久久久久影院中文字幕| 久久久久视频综合| 久久人人爽av亚洲精品天堂| 久久午夜综合久久蜜桃| 午夜91福利影院| 亚洲欧美清纯卡通| 在线观看免费午夜福利视频| 亚洲国产欧美一区二区综合| 日韩三级视频一区二区三区| 欧美黄色片欧美黄色片| 1024香蕉在线观看| 久久天堂一区二区三区四区| 考比视频在线观看| 99国产精品免费福利视频| 亚洲精品美女久久久久99蜜臀| 欧美老熟妇乱子伦牲交| 欧美激情 高清一区二区三区| 在线十欧美十亚洲十日本专区| 下体分泌物呈黄色| 在线观看舔阴道视频| 久久99热这里只频精品6学生| 精品一区在线观看国产| 男女高潮啪啪啪动态图| 精品欧美一区二区三区在线| 国产精品亚洲av一区麻豆| 青草久久国产| 欧美成狂野欧美在线观看| 国产成人影院久久av| 亚洲黑人精品在线| 天堂中文最新版在线下载| 大陆偷拍与自拍| 美女脱内裤让男人舔精品视频| 涩涩av久久男人的天堂| 午夜免费成人在线视频| 日本五十路高清| 国产免费视频播放在线视频| 精品少妇久久久久久888优播| 久久综合国产亚洲精品| 国产男女内射视频| 夫妻午夜视频| 成人影院久久| 淫妇啪啪啪对白视频 | 满18在线观看网站| 久热这里只有精品99| 久久狼人影院| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 久久影院123| 国产高清videossex| 777米奇影视久久| 日本猛色少妇xxxxx猛交久久| 成年女人毛片免费观看观看9 | 精品少妇内射三级| 青春草亚洲视频在线观看| 一本—道久久a久久精品蜜桃钙片| 免费观看a级毛片全部| 热99re8久久精品国产| 亚洲色图 男人天堂 中文字幕| 日韩熟女老妇一区二区性免费视频| 丰满饥渴人妻一区二区三| 欧美精品亚洲一区二区| 国产精品1区2区在线观看. | 国产片内射在线| 国产成人啪精品午夜网站| 国产片内射在线| 国产亚洲欧美精品永久| 制服人妻中文乱码| 一级毛片女人18水好多| 美女福利国产在线| 咕卡用的链子| 精品福利观看| 在线观看www视频免费| 好男人电影高清在线观看| 丝袜喷水一区| 久久精品aⅴ一区二区三区四区| 亚洲专区字幕在线| 久久国产精品人妻蜜桃| 日韩大片免费观看网站| 一级片'在线观看视频| 青草久久国产| 午夜精品久久久久久毛片777| 99精品久久久久人妻精品| 18禁黄网站禁片午夜丰满| 日本撒尿小便嘘嘘汇集6| 亚洲精品中文字幕一二三四区 | √禁漫天堂资源中文www| 高清在线国产一区| 黄片播放在线免费| 免费一级毛片在线播放高清视频 | 两个人免费观看高清视频| 免费少妇av软件| 国产不卡av网站在线观看| 欧美亚洲日本最大视频资源| 久久免费观看电影| 中文欧美无线码| 一区二区av电影网| 日韩中文字幕视频在线看片| 精品熟女少妇八av免费久了| av片东京热男人的天堂| 99热国产这里只有精品6| 久久这里只有精品19| 亚洲精品国产一区二区精华液| 高清在线国产一区| 人人妻人人添人人爽欧美一区卜| 国产免费一区二区三区四区乱码| 无限看片的www在线观看| 不卡av一区二区三区| 国产精品1区2区在线观看. | 人成视频在线观看免费观看| 一区二区三区精品91| 女警被强在线播放| 国产国语露脸激情在线看| 婷婷丁香在线五月| 青青草视频在线视频观看| 在线观看舔阴道视频| 亚洲国产成人一精品久久久| 日本五十路高清| 亚洲人成77777在线视频| 中文欧美无线码| 久久热在线av| 侵犯人妻中文字幕一二三四区| 欧美在线黄色| 国产男女超爽视频在线观看| 亚洲一区二区三区欧美精品| 欧美中文综合在线视频| 天天躁日日躁夜夜躁夜夜| 男女午夜视频在线观看| 91成年电影在线观看| 免费在线观看黄色视频的| 啦啦啦中文免费视频观看日本| 国产无遮挡羞羞视频在线观看| 国产免费av片在线观看野外av| 欧美精品人与动牲交sv欧美| 国产亚洲欧美精品永久| 在线 av 中文字幕| 国产成人系列免费观看| 男女之事视频高清在线观看| 爱豆传媒免费全集在线观看| av不卡在线播放| 老汉色av国产亚洲站长工具| 国产伦人伦偷精品视频| 成人国产av品久久久| 中国美女看黄片| 多毛熟女@视频| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 一区二区av电影网| 九色亚洲精品在线播放| 精品一区二区三区四区五区乱码| 欧美日韩精品网址| 国产精品av久久久久免费| 久久久久精品国产欧美久久久 | 最近最新免费中文字幕在线| 夫妻午夜视频| 秋霞在线观看毛片| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| 真人做人爱边吃奶动态| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 少妇 在线观看| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 悠悠久久av| 丁香六月天网| 国产精品偷伦视频观看了| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 国产成人一区二区三区免费视频网站| 亚洲一区中文字幕在线| 精品人妻熟女毛片av久久网站| 亚洲成国产人片在线观看| 悠悠久久av| 久久人妻熟女aⅴ| 国产成人免费无遮挡视频| h视频一区二区三区| 国产精品秋霞免费鲁丝片| 99热全是精品| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 一区福利在线观看| 欧美日韩一级在线毛片| av不卡在线播放| 美女高潮到喷水免费观看| 多毛熟女@视频| 男女午夜视频在线观看| 亚洲人成电影免费在线| 国产日韩欧美视频二区| 亚洲欧美精品自产自拍| 久久 成人 亚洲| kizo精华| 在线av久久热| 少妇粗大呻吟视频| 啪啪无遮挡十八禁网站| xxxhd国产人妻xxx| 另类亚洲欧美激情| 日本wwww免费看| 国产精品久久久久久精品古装| 51午夜福利影视在线观看| 亚洲色图综合在线观看| 亚洲精品久久成人aⅴ小说| 人人妻人人澡人人看| 午夜两性在线视频| 黄频高清免费视频| 欧美久久黑人一区二区| 国产成人系列免费观看| 一进一出抽搐动态| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 9191精品国产免费久久| 人妻一区二区av| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 国产成人精品在线电影| 91大片在线观看| 新久久久久国产一级毛片| 嫁个100分男人电影在线观看| 国产免费一区二区三区四区乱码| 国产一卡二卡三卡精品| 成人国产av品久久久| 制服人妻中文乱码| 欧美黑人精品巨大| 性少妇av在线| 亚洲欧美激情在线| 久久久国产精品麻豆| 一级毛片电影观看| 十八禁高潮呻吟视频| 涩涩av久久男人的天堂| 亚洲欧美精品自产自拍| 亚洲国产欧美网| 91成人精品电影| 国产福利在线免费观看视频| 精品卡一卡二卡四卡免费| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产精品一区二区三区在线| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 后天国语完整版免费观看| 老司机深夜福利视频在线观看 | 国产精品免费大片| 婷婷成人精品国产| 日本a在线网址| 免费在线观看日本一区| kizo精华| 国产亚洲欧美精品永久| 男女午夜视频在线观看| 国产黄频视频在线观看| 日韩 亚洲 欧美在线| 丝袜美腿诱惑在线| 人人妻人人添人人爽欧美一区卜| 日韩视频在线欧美| 一进一出抽搐动态| 少妇 在线观看| 亚洲av电影在线进入| 久久久久久久精品精品| 国产日韩欧美在线精品| 视频区图区小说| 日韩中文字幕欧美一区二区| 国产伦人伦偷精品视频| 色视频在线一区二区三区| 国产真人三级小视频在线观看| 国产一区二区三区av在线| 日韩 亚洲 欧美在线| 国产免费现黄频在线看| 国产激情久久老熟女| 91字幕亚洲| 久久性视频一级片| 国产老妇伦熟女老妇高清| 亚洲一区中文字幕在线| 国产精品九九99| 丰满迷人的少妇在线观看| 国产xxxxx性猛交| 免费在线观看黄色视频的| 国产亚洲一区二区精品| 欧美激情高清一区二区三区| 脱女人内裤的视频| 人妻 亚洲 视频| 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 免费女性裸体啪啪无遮挡网站| 亚洲色图综合在线观看| 久久精品国产亚洲av香蕉五月 | 欧美 日韩 精品 国产| 午夜福利在线观看吧| 久久精品亚洲熟妇少妇任你| 国产免费现黄频在线看| 中国国产av一级| 青春草视频在线免费观看| 少妇人妻久久综合中文| 亚洲 国产 在线| 国产黄频视频在线观看| 亚洲一区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久午夜乱码| 欧美激情 高清一区二区三区| 亚洲欧洲日产国产| a 毛片基地| 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情久久久久久爽电影 | 国产精品国产三级国产专区5o| 亚洲五月婷婷丁香| 性色av一级| 午夜福利在线观看吧| 一边摸一边做爽爽视频免费| 免费看十八禁软件| 欧美激情久久久久久爽电影 | 日韩中文字幕欧美一区二区| av网站免费在线观看视频| 国产精品久久久久成人av| 国产精品二区激情视频| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 久久精品成人免费网站| 久久青草综合色| 国产欧美日韩一区二区三 | 国产97色在线日韩免费| 老汉色∧v一级毛片| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 中亚洲国语对白在线视频| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 免费久久久久久久精品成人欧美视频| 欧美精品高潮呻吟av久久| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 视频区欧美日本亚洲| 亚洲色图综合在线观看| 亚洲成av片中文字幕在线观看| 久久午夜综合久久蜜桃| 1024香蕉在线观看| 成人影院久久| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 男人添女人高潮全过程视频| 成人国产av品久久久| 色老头精品视频在线观看| 肉色欧美久久久久久久蜜桃| 在线观看免费高清a一片| 日韩三级视频一区二区三区| 免费在线观看日本一区| 亚洲国产日韩一区二区| 亚洲精品久久午夜乱码| 国产欧美日韩精品亚洲av| av在线播放精品| 性高湖久久久久久久久免费观看| 精品高清国产在线一区| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕制服av| 一进一出抽搐动态| 亚洲伊人色综图| 在线av久久热| 美女中出高潮动态图| 午夜久久久在线观看| 在线永久观看黄色视频| 久久影院123| 十八禁网站网址无遮挡| 久久 成人 亚洲| 天天添夜夜摸| 国产精品熟女久久久久浪| 天天操日日干夜夜撸| 一级黄色大片毛片| 久久九九热精品免费| 天天躁夜夜躁狠狠躁躁| 热99re8久久精品国产| 涩涩av久久男人的天堂| 91麻豆av在线| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 国产一卡二卡三卡精品| 人人澡人人妻人| 日韩,欧美,国产一区二区三区| 国产99久久九九免费精品| 亚洲中文av在线| 亚洲精品国产av成人精品| 69av精品久久久久久 | 不卡av一区二区三区| 亚洲av欧美aⅴ国产| 秋霞在线观看毛片| 两性夫妻黄色片| 成年av动漫网址| 99久久精品国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 女人精品久久久久毛片| 欧美97在线视频| 免费av中文字幕在线| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 母亲3免费完整高清在线观看| 午夜激情av网站| 在线观看免费日韩欧美大片| 好男人电影高清在线观看| 首页视频小说图片口味搜索| 国产xxxxx性猛交| 国产精品一区二区在线不卡| 十八禁网站网址无遮挡| 国产成+人综合+亚洲专区| 国产精品 国内视频| 亚洲精品在线美女| bbb黄色大片| 日本91视频免费播放|