• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Considering temperature dependence of thermo-physical properties of sandy soils in two scenarios of oil pollution

    2014-12-15 05:55:30AlekseyMalyshevAnatolyTimofeev
    Sciences in Cold and Arid Regions 2014年4期

    Aleksey V.Malyshev ,Anatoly M.Timofeev

    Institute of Physical-Technical Problems of the North.V.P.Larionov,Siberian Branch of the Russian Academy of Sciences,Yakutsk 677000,Russia

    1 Introduction

    The knowledge of thermophysical properties of sandy soils subject to oil pollution and similar contamination is essential in applied geoecology,specifically to predict the temperature regime for containment of contaminated sites and further recovery.Thermophysical properties of soils are determined experimentally.However,the experimental determination of thermophysical properties such as thermal conductivity of,for example,coarse rocks containing large inclusions is more difficult.The only viable solution is to calculate heat conductivity based on the generalized conductivity theory.The heat conductivity of oil-contaminated sandy soils can be determined by analysis of multicomponent dispersion systems calculations (Stepanov and Timofeev,1994;2003),with varying degrees of contamination and humidity.

    In this paper we calculate the heat conductivity of river sand contaminated with oil products according to the model of polydispersive systems (Stepanov and Timofeev,1994),using data of particle size distribution,coordination number (which indicates the number of contacts per particle),porosity,density,volume concentrations of gas-air mixture,oil,water,ice and sand particles.The heat capacity of the contaminated sandy soil was estimated by the formula proposed by Malyshev and Timofeev (2006) utilizing experimental data on the specific heat and density of the components comprising the contaminated soil,such as oil,water,ice,the mixture of air and gas hydrocarbons and the skeleton of the soil.Earlier,we had calculated the thermophysical properties of river sand contaminated with oil in two scenarios of pollution,depending on concentration and order of soil contamination with oil(Malyshev and Timofeev,2008).In this paper we continue our studies within the framework of the presented calculation models,but now take into account the temperature dependence of the amount of unfrozen water.

    2 The objects of study

    River sand with a bulk density of 1,560 kg/m3was taken as our object of modeling thermophysical properties of contaminated sandy soil.Distilled water with a density of 998.9 kg/m3and diesel fuel of 813 kg/m3was selected as the liquid phase.The sand moisture content was determined by the ratio of the water mass to the mass of dry sand,W=Pw/P.The concentration of oil product in the sand was set with a ratio by analogy with humidity,z=Po/P.The moisture content in the sand was taken as equal to 7.5%,and the concentration of the diesel fuel was 10.5%.To calculate the thermal conductivity of such a multicomponent dispersion system,it was necessary to know the thermophysical properties of the components;some of the data were taken from reference materials (Table 1).

    Table 1 Thermophysical properties of polluted sand components

    The calculation of the thermophysical properties of the contaminated sand was performed by taking into account the phase transition of pore moisture in two different pollution scenarios:in the first case (Figure 1a),an oil product was introduced into wet sand,and in the second case (Figure 1b),dry sand was polluted by the oil product and then moistened with water.

    The location of water and oil in the second pollution scenario can be presented as follows.First,oil was introduced into dry river sand,the sand particles were moistened with it,and then the water was introduced into the polluted sand.The water was mostly adsorbed into areas that were not affected by oil product,that is,into the pores that were free from oil products.In some areas,water with better moisturizing ability could partially occupy space in the pores which was previously occupied by the oil product.It was assumed that the oil product did not completely soak the mineral particles,but only stayed in the vicinity.At temperatures below 0 °C all the water except unfrozen water freezes thus turns into ice.In the second scenario,pollution,despite the fact that the particle is soaked with oil in some places the water is still in contact with mineral particle,so at temperature below 0 °C during ice formation relations and a certain amount of unfrozen water,this fact,as we will see below confirmed by experiment.

    Figure 1 Model location of components in the dispersion medium in both pollution scenarios

    3 Research methods

    To calculate the porosity of sand,upon which the coordination number depends,it was necessary to know the density of the mineral particles.By use of a densimeter,this was found to be 2,750 kg/m3.Porosity,defined by the ratioΠ=1-γ/ρ,amounted to 0.43.We used a method of continuous heat input (Efimov,1986)to determine the composition of the pore moisture phase.The obtained results are given in table 2 and figure 2.

    Table 2 Temperature dependence of the amount of unfrozen water amount in the sand

    Figure 2 Amount of unfrozen water in the sand

    4 Heat capacity

    The heat capacity of the moistened sand at low temperatures was an effective value,since it was characterized by the heat of the water–ice phase transition.To determine the volumetric heat capacity of the sand polluted in the two scenarios,we used the concept that each component of a dispersion system is additive and contributes to the total heat capacity of that system(Gavriliev,1970).In our case,the value of the volumetric heat capacity was determined by the expression:

    wherecsc,co,cw,andciare the specific heat capacities of the soil skeleton,oil,water,and ice,respectively(units:J/(kg·K));Lis the heat of the phase transition(units:J/kg);andWufis the amount of unfrozen water(units:kg/kg).Cγis a volumetric heat capacity of polluted soil (units:J/(m3·K));Wis a total moisture of soil(units:kg/kg);zis a weight concentration of impurities(units:kg/kg);Tis an independent variable temperature of soil (units:K);γis a volumetric weight of the skeleton (units:kg/m3).

    The specific heat capacity of the sand included in expression(1)was determined by the method of continuous heat input (Efimov,1986),and its value was 782 J/(kg·K).The heat of the phase transition was taken as equal to the heat of crystallization of the free water,which was 334,000 J/kg.

    5 The model for calculating the heat conductivity of polluted soil

    In the first stage of the calculation,the multicomponent system containing water,ice,air,oil,and mineral particles was reduced a two-component mixture with different values of the volume concentration.The volumetric concentrations of air and oil werema+mo=1.

    The volumetric concentration of the oil product in the air-oil product system was:

    whereΠ,ρ,ρo,ρw,z,andWare,respectively,porosity,density of particles,oil,water,weight concentration of impurities,and moisture content of the sand.

    The air in this case was considered as a matrix,and the oil product as an inclusion.Therefore,to calculate the effective conductivity of the mixtures with closed inclusions,this formula (Odelevsky,1951)was applied:

    whereλaois the air-oil product system coefficient of heat conductivity,andλa,λoare the values of the heat conductivity of air and oil,respectively,mais a volume fraction of air (units:dimensionless),vaois a ratio heat conduct of oil product to heat conduct of air (units:dimensionless).

    In the second step,heat conductivity of a rigid particle–water film–ice-adjacent binary mixture(air-oil product) system was calculated according to the known model of a granular system.Figure 3 shows the averaged element of the soil particles with a film of unfrozen water,ice,and the mixture (air-oil product).The averaged element was divided into adiabatic rings,and there were thermal resistances in each section of the element.In the case of frozen sandy soil,the derivation of the expressions for thermal resistances of the averaged element’s sections (taking into account the variable thickness of water cuffs and ice) was taken from Malyshev and Timofeev (2008).

    Figure 3 Averaged element of the soil particles and its equivalent electrical circuit corresponding to thermal resistances of the averaged element’s sections

    In wet dispersed material,calculation of thermal conductivity is done by taking into account the thickness of a water film:

    whereNkis the coordination number indicating the number of contacts per one particle,this depends on the porosity;ris the radius of the particle (units:m);Δris the thickness of the layer of water;W0is the moisture content of the soil in a thawed state,in a frozen state it is equal to the amount of unfrozen water.

    In the case of the frozen state,we used the thermal conductivity of iceλi,instead of the thermal conductivity of waterλw;also,the thickness of the water film was set equal to the thickness of the ice,that is,the difference between the thickness of the water film of the melt sample atW0=W-W1moisture and the unfrozen water film thickness of corresponding moisture atW0=Wuf+W1,whereW1is the ice content (units:kg/kg).It was necessary to consider the expansion of water in the process of freezing:

    where Δriis the thickness of the ice layer (units:m);Δrmis the thickness of the cuff water (units:m);ρiis a density of the ice (units:kg/m3).

    The heat resistances of the discrete sections were defined by integrals:

    whereR1is the thermal resistance the spherical parts of a segment of a particle starting from the horizontal dotted lines and part of the part water cuff (units:(m·K)/W);λcis a heat conduct of the particle (units:W/(m·K));ymis the dimensionless value equal to ratio of the radius of the water cuff to the radius of the particle (units:dimensionless);υwis the dimensionless value equal to the ratio of the heat conductivity of the water (λw) to heat conductivity of the particle (λc)(units:dimensionless);yis a dimensionless variable of integration coordinate (units:dimensionless).

    whereR2is a thermal resistance the spherical parts of a segment of a particle starting from the horizontal dotted lines,part water cuff and part ice layer (units:(m·K)/W);yiis the dimensionless value is equal to ratio of the radius of the ice layer to the radius of the particle (units:dimensionless);υiis the dimensionless value equal to the ratio of the heat conductivity of the ice (λi) to heat conductivity of the particle(λc) (units:dimensionless).

    whereR3is a thermal resistance of the particles to the horizontal dotted lines in figure 3 (units:(m·K)/W).

    whereR4is a thermal resistance of the mixture of air and oil product (units:(m·K)/W);the value ofAis introduced for the compactness of the expression(10).υaois a ratio heat conduct of oil product to heat conduct of air (units:dimensionless).

    whereR5is the thermal resistance the spherical parts of a segment of a particle starting from the horizontal dotted lines,part water cuff,part ice layer and part mixture air-oil product (units:(m·K)/W).

    whereR6is a thermal resistance adjacent to the particle part of the water cuff (units:(m·K)/W);λwis a heat conduct of the water cuff (units:W/(m·K)).

    whereR7is a thermal resistance adjacent to the water cuff part of the ice layer (units:(m·K)/W);λiis a heat conduct of the ice layer (units:W/(m·K)).

    whereR8is a thermal resistance part of the water cuff,part of the ice layer and part of the mixture air-oil product (units:(m·K)/W).

    whereR9is a thermal resistance part of ice layer and part of the mixture air-oil product (units:(m·K)/W).

    The total resistance of the circuit,and thus the thermal conductivity of the whole system,was found on the basis of the equivalent electric circuit shown in figure 3:

    whereRis a total thermal resistance of the multicomponents dispersion system (units:(m·K)/W).

    The calculation of the heat conductivity in the second pollution scenario took into account the temperature dependence of unfrozen water (Figure 1).In the first stage of the calculation,the heat conductivity of a binary mixture of interlinked components (unfrozen water and air) was determined.The volume fraction of water and air was determined from the ratiosmw′=mw/(mw+ma) andma′=1-mw′,wheremaandmware volume fraction of air and unfrozen water,respectively,defined asma=Π-mw-zγ/ρoandmw=W0γ/ρw.Calculations were made for models with penetrating components of the air and water,and the heat conductivity was equal to (Dulnev and Zarichnak,1974):

    Cwwas determined by the solution of the cubic equation:

    The dimensionless parameterCwis equal to the ratio of the rod thickness to its length.The rod stands for the unfrozen water.In a frozen condition,Cwis variable and depends on the temperature.

    In the second stage of the calculation,the conductivity of a binary mixture of interlinked components (ice and system air-unfrozen water) was determined.The calculation was similar according to the formula(17).

    whereλiis a heat conductivity of the ice (units:W/(m·K));λawis a heat conductivity of the mixture air–unfrozen water system (units:W/(m·K));mawis a relative volume fraction air–unfrozen water system(units:dimensionless);miis a volume fraction ice;mi′is a relative volume fraction ice;υawiis a ratio heat conductivity of the mixture air–unfrozen water system to heat conductivity of ice (units:dimensionless);Wis a total moisture content of the soil (units:kg/kg);Wufis the amount of unfrozen water (units:kg/kg);γis a volumetric weight of the sceleton (units:kg/m3);ρiis a density of ice.

    In the third stage,the heat conductivity of the binary mixturesλawiand heat conductivityλowas calculated according to formula(3).

    whereλois a heat conductivity of the oil product(units:W/(m·K));λawiis a heat conductivity of the mixture air–unfrozen water–ice system (units:W/(m·K));mawiis a relative volume fraction air–unfrozen water–ice system (units:dimensionless);υawiois a ratio heat conductivity of the mixture air–unfrozen water–ice system to heat conductivity of oil product (units:dimensionless).

    Finally,in the fourth and final stage,the calculation was made according to formula(3)and a air-unfrozen water-ice-oil product system with a heat conductivity ofλawiowas considered as a matrix,and an particlewith a heat conductivity ofλcwas an inclusion.

    whereλcis a heat conductivity of the particle (units:W/(m·K));λawiois a heat conductivity of the mixture air–unfrozen water-ice-oil product system (units:W/(m·K));mawiois a volume fraction air–unfrozen water–ice–oil product system equal a porosity (units:dimensionless);υawiocis a ratio heat conductivity of the mixture air–unfrozen water-ice-oil product system to heat conductivity of particle (units:dimensionless).

    The results of the temperature dependence calculation of the contaminated sand thermal properties are given in table 3.

    Table 3 Temperature dependence of thermal properties sand in both pollution scenarios

    6 Conclusion

    The calculation of heat conductivity in the first scenario of diesel pollution showed that this characteristic was increased by 5% in the frozen state and by 9%in the thawed state,compared to the uncontaminated sand.In contrast,in the second pollution scenario the heat conductivity was decreased by 11% in the frozen state and by 17% in the thawed state compared to uncontaminated sand.Thus,the overall impact of pollution on volumetric heat capacity of sandy soil appeared to increase this characteristic,and this increase was apparently proportional to the increase of pollution.At pollution concentration of about 10% and humidity of 7.7% the increase in volumetric heat capacity amounted to 18%.However,the increase of volumetric heat capacity was not dependent on the pollution scenario (the different methods by which pollution was introduced).This indicates that the most significant impact of oil pollution on the thermophysical properties of sandy soil was to change the heat conductivity and volumetric heat capacity of the sandy soil.By determining these characteristics of the temperature dependencies,we can predict the temperature field of contaminated sandy soil with various structures and densities.

    Dulnev GN,Zarichnak P,1974.Heat Conductivity of Mixtures and Composite Materials.Energiya,Leningrad,pp.263.

    Efimov SS,1986.Moisture Absorbent Materials.Nauka,Novosibirsk,pp.160.

    Gavriliev RI,1970.Determination of the effective heat capacity temperature dependence of freezing-thawing soils and the unfrozen water content in one experiment.In:Methods of Rocks Thermal Properties Determination.Nauka,Moscow,pp.16–24.

    Malyshev AV,Timofeev AM,2006.Calculation of heat conductivity of damp sand contaminated by oil products in frozen and thawed state.In:Proceedings of the III EURASTRENCOLD Symposium on Problems of Materials Strength and Machines for Regions of Cold Climate.Part V.Heat and Mass Transfer,Thermomechanic Dispersive IPTPN SB RAS 2006,Yakutsk(CD-ROM),State registration No.0320601278,pp.55–62.

    Malyshev AV,Timofeev AM,2008.Calculation of the temperature dependence of heat conductivity of wet sandy ground contaminated with oil products,pore moisture in the phase transition.In:Proceedings of the IV EURASTRENCOLD Symposium on Problems of Materials Strength and Machines for Regions of Cold Climate.Part IV.Heat and Mass Transfer,Thermomechanic Dispersive IPTPN SB RAS 2008,Yakutsk(CD-ROM),State registration No.0320900128,pp.144–149.

    Odelevsky VI,1951.Calculation of the generalized conductivity of heterogeneous systems.Journal of Technical Physics,21(1):667–685.

    Stepanov AV,Timofeev AM,1994.Thermophysical Properties of Dispersed Materials.YSC SB RAS,Yakutsk,Russia,pp.123.

    Stepanov AV,Timofeev AM,2003.Determination of thermophysical properties wet dispersed materials in the temperatures of phase transitions of water.Izvestiya Vuzov.J.Instrumentation,46(1):60–65.

    观看av在线不卡| 啦啦啦中文免费视频观看日本| 女人爽到高潮嗷嗷叫在线视频| 午夜两性在线视频| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 国产精品偷伦视频观看了| 夫妻午夜视频| 欧美国产精品va在线观看不卡| 国产深夜福利视频在线观看| 视频区欧美日本亚洲| 久久九九热精品免费| 日本猛色少妇xxxxx猛交久久| 丝袜美足系列| 亚洲精品国产区一区二| 91精品三级在线观看| 亚洲激情五月婷婷啪啪| 色综合欧美亚洲国产小说| 亚洲中文日韩欧美视频| 好男人电影高清在线观看| 一二三四社区在线视频社区8| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美日韩在线播放| 日本黄色日本黄色录像| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| a 毛片基地| 嫩草影视91久久| 久久精品国产亚洲av涩爱| 亚洲激情五月婷婷啪啪| av一本久久久久| www日本在线高清视频| 亚洲图色成人| 成年人免费黄色播放视频| 汤姆久久久久久久影院中文字幕| 久久久国产一区二区| 99久久99久久久精品蜜桃| 欧美日韩亚洲高清精品| www.av在线官网国产| 日本av免费视频播放| 欧美少妇被猛烈插入视频| 超碰成人久久| 无遮挡黄片免费观看| 亚洲久久久国产精品| 亚洲人成电影观看| av一本久久久久| 午夜激情av网站| 国产xxxxx性猛交| 久久中文字幕一级| √禁漫天堂资源中文www| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品| 国产亚洲精品久久久久5区| 老司机午夜十八禁免费视频| 久久 成人 亚洲| 亚洲精品在线美女| 亚洲国产日韩一区二区| 黄色片一级片一级黄色片| 伦理电影免费视频| 国产亚洲一区二区精品| 成年人免费黄色播放视频| 午夜av观看不卡| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 赤兔流量卡办理| 交换朋友夫妻互换小说| 青春草亚洲视频在线观看| 黄色视频在线播放观看不卡| 久久久精品免费免费高清| 国产成人精品无人区| 久久久久视频综合| 国产精品一区二区精品视频观看| 久久亚洲国产成人精品v| 麻豆av在线久日| 一级毛片电影观看| 99热全是精品| 赤兔流量卡办理| 日韩大码丰满熟妇| 丁香六月欧美| 日韩制服骚丝袜av| 欧美乱码精品一区二区三区| 男人添女人高潮全过程视频| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频| 黄色 视频免费看| 亚洲精品美女久久久久99蜜臀 | 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情久久久久久久| 亚洲精品成人av观看孕妇| 成人午夜精彩视频在线观看| 久久精品亚洲av国产电影网| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久国产电影| 色网站视频免费| 女人精品久久久久毛片| a级毛片黄视频| 精品视频人人做人人爽| 汤姆久久久久久久影院中文字幕| xxxhd国产人妻xxx| 久久久久久久大尺度免费视频| 亚洲国产精品999| 亚洲五月婷婷丁香| 啦啦啦在线观看免费高清www| 咕卡用的链子| 另类精品久久| 亚洲少妇的诱惑av| 男女免费视频国产| 亚洲精品国产色婷婷电影| 欧美性长视频在线观看| 国产精品一区二区免费欧美 | 手机成人av网站| 国产欧美日韩一区二区三区在线| 久久人妻福利社区极品人妻图片 | 免费看不卡的av| 高清黄色对白视频在线免费看| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 操出白浆在线播放| 一本大道久久a久久精品| 天天影视国产精品| 欧美亚洲 丝袜 人妻 在线| 国产高清国产精品国产三级| 国产欧美日韩一区二区三区在线| 亚洲国产精品一区二区三区在线| 男女国产视频网站| 成年av动漫网址| 精品久久久久久久毛片微露脸 | 国产视频首页在线观看| 在线亚洲精品国产二区图片欧美| 香蕉丝袜av| 亚洲综合色网址| 午夜激情av网站| a级片在线免费高清观看视频| 香蕉国产在线看| av国产精品久久久久影院| 韩国精品一区二区三区| 伊人亚洲综合成人网| 国产精品一区二区在线不卡| 久久久久久久国产电影| 丰满人妻熟妇乱又伦精品不卡| 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 成年美女黄网站色视频大全免费| 制服人妻中文乱码| 亚洲图色成人| 久久99一区二区三区| 男女国产视频网站| 伊人久久大香线蕉亚洲五| 人体艺术视频欧美日本| 成人三级做爰电影| 超碰97精品在线观看| 国产精品一区二区在线观看99| 一级毛片 在线播放| 热99国产精品久久久久久7| 考比视频在线观看| 精品一区二区三区四区五区乱码 | 国产三级黄色录像| 可以免费在线观看a视频的电影网站| www日本在线高清视频| 国产又色又爽无遮挡免| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 91麻豆精品激情在线观看国产 | 亚洲av片天天在线观看| avwww免费| 久久99精品国语久久久| 女人爽到高潮嗷嗷叫在线视频| 青春草视频在线免费观看| 最新的欧美精品一区二区| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 国产在视频线精品| 久久久精品免费免费高清| 成人黄色视频免费在线看| 精品高清国产在线一区| 美女中出高潮动态图| 久久精品亚洲av国产电影网| 五月天丁香电影| 国产欧美日韩一区二区三 | 少妇的丰满在线观看| 狂野欧美激情性bbbbbb| 视频区欧美日本亚洲| 777米奇影视久久| 99热全是精品| 亚洲人成77777在线视频| 91麻豆av在线| 激情视频va一区二区三区| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| av一本久久久久| 中文字幕制服av| 亚洲欧美一区二区三区黑人| 国产高清videossex| 在线亚洲精品国产二区图片欧美| 亚洲国产欧美一区二区综合| 亚洲 欧美一区二区三区| 日本欧美视频一区| 一区二区av电影网| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 国产精品 欧美亚洲| 久久久久久久国产电影| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| a级片在线免费高清观看视频| 久久这里只有精品19| a级毛片黄视频| 日本黄色日本黄色录像| 高清av免费在线| 超碰97精品在线观看| 成年美女黄网站色视频大全免费| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一区蜜桃| 久久99精品国语久久久| 热99国产精品久久久久久7| 深夜精品福利| 成人三级做爰电影| 国产在线一区二区三区精| 国产精品 国内视频| 国产免费视频播放在线视频| 国产主播在线观看一区二区 | avwww免费| 最黄视频免费看| 99国产精品一区二区三区| 尾随美女入室| 91麻豆av在线| 亚洲精品国产av蜜桃| cao死你这个sao货| 丝袜美足系列| 久久久精品免费免费高清| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品啪啪一区二区三区 | 少妇裸体淫交视频免费看高清 | 一本综合久久免费| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 中文欧美无线码| 欧美人与性动交α欧美软件| 美女高潮到喷水免费观看| 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 777久久人妻少妇嫩草av网站| av有码第一页| 丰满迷人的少妇在线观看| av天堂在线播放| 嫁个100分男人电影在线观看 | 日韩一本色道免费dvd| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精| 亚洲精品乱久久久久久| 欧美+亚洲+日韩+国产| 久久精品成人免费网站| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 晚上一个人看的免费电影| 母亲3免费完整高清在线观看| 久久人人爽av亚洲精品天堂| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 成年美女黄网站色视频大全免费| 王馨瑶露胸无遮挡在线观看| 久久av网站| 久久久久国产一级毛片高清牌| 亚洲精品在线美女| 国产精品 国内视频| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| av一本久久久久| 久久久国产欧美日韩av| 久久久精品国产亚洲av高清涩受| 另类精品久久| 亚洲国产欧美一区二区综合| 不卡av一区二区三区| 久久精品人人爽人人爽视色| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 久久久国产一区二区| 久久精品国产a三级三级三级| 亚洲一区二区三区欧美精品| 在现免费观看毛片| 天堂中文最新版在线下载| 久久青草综合色| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| 天天躁夜夜躁狠狠躁躁| 亚洲精品日韩在线中文字幕| 国产精品熟女久久久久浪| www.999成人在线观看| 国产亚洲欧美精品永久| 十八禁高潮呻吟视频| 麻豆国产av国片精品| 丝袜脚勾引网站| 色94色欧美一区二区| 我的亚洲天堂| 赤兔流量卡办理| 亚洲免费av在线视频| 国产成人欧美| 亚洲人成电影观看| 亚洲欧美激情在线| 日韩人妻精品一区2区三区| 99国产精品一区二区三区| 免费高清在线观看日韩| 国精品久久久久久国模美| 人妻一区二区av| 夫妻午夜视频| 99久久人妻综合| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久| 在线精品无人区一区二区三| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 精品一区在线观看国产| 国产精品久久久人人做人人爽| 欧美黄色淫秽网站| 三上悠亚av全集在线观看| 国产成人影院久久av| 中文乱码字字幕精品一区二区三区| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 看免费成人av毛片| 一区二区三区四区激情视频| 久久av网站| 国产高清国产精品国产三级| 蜜桃在线观看..| 高清av免费在线| 人成视频在线观看免费观看| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 亚洲中文日韩欧美视频| 九草在线视频观看| 免费一级毛片在线播放高清视频 | 国产一卡二卡三卡精品| 男女国产视频网站| 亚洲人成网站在线观看播放| 国产高清videossex| 在线观看免费视频网站a站| 亚洲精品乱久久久久久| 欧美在线黄色| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 亚洲av男天堂| 精品人妻1区二区| 亚洲av成人精品一二三区| 免费在线观看影片大全网站 | 国产黄色视频一区二区在线观看| 伊人亚洲综合成人网| 老司机影院成人| 中文字幕人妻丝袜制服| av电影中文网址| 精品久久久久久久毛片微露脸 | 不卡av一区二区三区| 丝袜美腿诱惑在线| 99久久综合免费| 国产欧美亚洲国产| 91精品国产国语对白视频| 91精品三级在线观看| 欧美久久黑人一区二区| 亚洲成人国产一区在线观看 | 天天添夜夜摸| 91九色精品人成在线观看| 国产三级黄色录像| 99久久99久久久精品蜜桃| 看十八女毛片水多多多| 在线观看免费高清a一片| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 国产在线免费精品| 高清不卡的av网站| 国产在线免费精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成77777在线视频| 热re99久久国产66热| 国产在线免费精品| 一区二区三区乱码不卡18| 精品久久久久久久毛片微露脸 | 国产精品免费视频内射| 丝袜人妻中文字幕| 亚洲欧美日韩另类电影网站| 制服诱惑二区| 热re99久久精品国产66热6| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人片av| 国产黄色免费在线视频| 国产精品国产三级国产专区5o| 国产成人影院久久av| 精品国产超薄肉色丝袜足j| 久久99精品国语久久久| 一区二区三区激情视频| 在线观看免费午夜福利视频| 亚洲伊人色综图| 亚洲av男天堂| 亚洲第一av免费看| √禁漫天堂资源中文www| 久久久欧美国产精品| 免费av中文字幕在线| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 亚洲欧美色中文字幕在线| 欧美日韩视频精品一区| 国产亚洲一区二区精品| 麻豆国产av国片精品| 好男人电影高清在线观看| 少妇人妻 视频| 婷婷成人精品国产| 天天躁夜夜躁狠狠久久av| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 亚洲,一卡二卡三卡| 人妻 亚洲 视频| 美女扒开内裤让男人捅视频| 亚洲视频免费观看视频| 亚洲色图综合在线观看| 色网站视频免费| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o | 一区二区av电影网| 午夜福利视频在线观看免费| 777米奇影视久久| 80岁老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 天天添夜夜摸| 女性被躁到高潮视频| 母亲3免费完整高清在线观看| 亚洲成人免费电影在线观看 | 午夜福利视频在线观看免费| 亚洲精品国产一区二区精华液| h视频一区二区三区| av一本久久久久| 久久精品国产亚洲av涩爱| 免费在线观看日本一区| 视频区欧美日本亚洲| 女人爽到高潮嗷嗷叫在线视频| 在线亚洲精品国产二区图片欧美| 一区二区三区精品91| 免费看av在线观看网站| 黄色片一级片一级黄色片| 国产日韩欧美亚洲二区| 日韩av免费高清视频| 国产欧美日韩一区二区三 | 天堂8中文在线网| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频| 性色av乱码一区二区三区2| 午夜激情av网站| 欧美日韩成人在线一区二区| 亚洲精品国产av蜜桃| 最新在线观看一区二区三区 | 操美女的视频在线观看| 久久狼人影院| 精品一区二区三区av网在线观看 | 成年av动漫网址| 国产成人免费观看mmmm| 国产主播在线观看一区二区 | 中文字幕另类日韩欧美亚洲嫩草| 下体分泌物呈黄色| 日本午夜av视频| 丝瓜视频免费看黄片| 亚洲成国产人片在线观看| 欧美在线黄色| 黄色a级毛片大全视频| 亚洲av日韩精品久久久久久密 | 国产一区二区激情短视频 | 男人添女人高潮全过程视频| 两个人看的免费小视频| 99精国产麻豆久久婷婷| 久久国产精品影院| 国产欧美日韩综合在线一区二区| 国产真人三级小视频在线观看| 国产视频首页在线观看| 女人久久www免费人成看片| 最近手机中文字幕大全| 这个男人来自地球电影免费观看| 中文字幕制服av| 国产精品亚洲av一区麻豆| 国产午夜精品一二区理论片| 久久久久久久精品精品| 久久国产精品大桥未久av| a级毛片黄视频| 在线观看免费日韩欧美大片| 嫩草影视91久久| 一级片'在线观看视频| 久久久欧美国产精品| av在线播放精品| 亚洲九九香蕉| 久热爱精品视频在线9| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 一级毛片电影观看| 黄色一级大片看看| 欧美 亚洲 国产 日韩一| 亚洲av国产av综合av卡| 午夜视频精品福利| av又黄又爽大尺度在线免费看| 久久狼人影院| av在线播放精品| 国产亚洲精品久久久久5区| 97精品久久久久久久久久精品| 国产极品粉嫩免费观看在线| 巨乳人妻的诱惑在线观看| 亚洲欧洲精品一区二区精品久久久| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 国产色视频综合| 午夜福利视频在线观看免费| 搡老乐熟女国产| 看十八女毛片水多多多| 国产黄色视频一区二区在线观看| 精品国产乱码久久久久久小说| 国产精品久久久av美女十八| 精品第一国产精品| 午夜福利在线免费观看网站| 欧美精品亚洲一区二区| 99热国产这里只有精品6| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区在线不卡| 亚洲av电影在线进入| 丝袜脚勾引网站| 国产欧美日韩综合在线一区二区| 日韩 欧美 亚洲 中文字幕| 我的亚洲天堂| 国产伦人伦偷精品视频| 精品国产超薄肉色丝袜足j| av片东京热男人的天堂| 考比视频在线观看| 国产成人精品久久二区二区免费| 麻豆av在线久日| 韩国精品一区二区三区| 黑人猛操日本美女一级片| 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区 | 日韩大片免费观看网站| 熟女av电影| 咕卡用的链子| 1024视频免费在线观看| 亚洲 国产 在线| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 无限看片的www在线观看| 免费高清在线观看视频在线观看| 极品少妇高潮喷水抽搐| 国产视频首页在线观看| 成人亚洲欧美一区二区av| 九色亚洲精品在线播放| 99热国产这里只有精品6| 日韩 欧美 亚洲 中文字幕| 久久青草综合色| 大话2 男鬼变身卡| 免费在线观看影片大全网站 | 亚洲少妇的诱惑av| 欧美大码av| 欧美日韩综合久久久久久| 一边摸一边做爽爽视频免费| 日本一区二区免费在线视频| 搡老岳熟女国产| svipshipincom国产片| 亚洲精品美女久久久久99蜜臀 | 久久久亚洲精品成人影院| 久久人人爽人人片av| 嫁个100分男人电影在线观看 | 大码成人一级视频| 黄片小视频在线播放| 婷婷色综合www| 国产黄色免费在线视频| 亚洲av成人不卡在线观看播放网 | 一边摸一边抽搐一进一出视频| 如日韩欧美国产精品一区二区三区| 丁香六月天网| 久久午夜综合久久蜜桃| 国产av精品麻豆| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 一区二区日韩欧美中文字幕| 国产免费视频播放在线视频| av网站免费在线观看视频| 亚洲国产欧美日韩在线播放| 国产一区亚洲一区在线观看| 99re6热这里在线精品视频| 国产在视频线精品| 后天国语完整版免费观看| 美女中出高潮动态图| 久久精品久久精品一区二区三区| 欧美精品一区二区大全| 黑人巨大精品欧美一区二区蜜桃| 国产高清国产精品国产三级| 老司机影院毛片| 亚洲专区国产一区二区| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 亚洲美女黄色视频免费看| 悠悠久久av| 亚洲国产av影院在线观看| 亚洲图色成人| 国产精品人妻久久久影院| 欧美av亚洲av综合av国产av| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 亚洲精品国产一区二区精华液| 黄片小视频在线播放| 中文字幕av电影在线播放| 国产一区二区激情短视频 | 老司机影院成人| av网站免费在线观看视频| 亚洲熟女毛片儿| 亚洲熟女精品中文字幕|