• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cooling effect of convection-intensifying composite embankment with air doors on permafrost

    2014-12-15 05:55:40HongSunXiuRunGeFuJunNiuGeLiuJinZhaoZhang
    Sciences in Cold and Arid Regions 2014年4期

    Hong Sun ,XiuRun Ge ,FuJun Niu ,Ge Liu ,JinZhao Zhang

    1.School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2.State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    3.CCCC First Highway Consultants Co.,Ltd.,Xi’an,Shaanxi 710075,China

    1 Introduction

    Engineering construction activities in permafrost regions disturb the original heat balance of the underlying frozen soil.Numerous thaw settlement problems were caused by roadway construction in the Qinghai-Tibetan Plateau (QTP).Therefore,it is imperative in protecting the underlying permafrost and to provide embankment stability in roadway engineering of permafrost regions.

    At present,a series of cooling techniques have been adopted to protect the underlying permafrost in railway engineering,e.g.,duct-ventilated,crushed-rock,and thermosyphon embankments (Maet al.,2002;Liet al.,2006;Niuet al.,2006;Chenget al.,2009).However,the underlying permafrost in some highway engineering projects is still in a warming or thawing trend due to high temperatures of the asphalt pavement surface,even if cooling measures have been adopted in permafrost regions (Zhanget al.,2009).Therefore,the cooling measures in railway engineering cannot be directly applied to the highway,especially to wide expressways with an asphalt-paved surface.Thus,it is necessary to study new cooling measures to construct high-grade large-width highways in permafrost regions (Laiet al.,2009;Donget al.,2012).

    Both duct-ventilated and crushed-rock embankments are good cooling measures.With perforated ducts,the cooling effects can be intensified because of increased contact surface between the air and the embankment soil (Huet al.,2004;Jiang and Ge,2006;Liuet al.,2008;Donget al.,2010).Crushed-rock embankment can cool the underlying frozen soil by airflow in porous media (Wuet al.,2005).The composite embankment with ventilation ducts and crushed-rock can intensify the thermal air convection among the ducts and crushed-rock,strengthening the thermal conduction between air and porous media.

    The temperature fields of the composite embankment installed with air doors at two sides of the duct and without air doors were simulated in QTP,in which the air doors were closed in warmer days to prevent embankment heat absorption from thermal winds.It is expected that the composite embankment would be highly efficient in protecting permafrost stability.

    2 Numerical model of the composite embankment

    A perforated ventilation duct is embedded in the middle of a large porosity crushed-rock layer so as to intensify the air flow within this layer (Figure 1).

    Figure 1 Embankment structure

    Air flow within a composite embankment is a typical multiphysics coupling problem of temperature and air flow fields in porous media.Air flow is divided into two zones (Figure 1):'a' is ventilation duct;'b' is porous media,i.e.,crushed-rock layer zone and perforated walls of ventilation duct.The air flow problem within this configuration is solved by the simplified Navier-Stokes equations inside ventilation ducts and the Brinkman equations in crushed-rock and perforated walls of duct region,and the continuity boundary condition of the velocity and stress in interface between ducts and crushed-rock layers.

    The model consists of mass and energy conservation equations,and heat transfer of internal ventilation duct and embankment fill complies with their respective governing equations:Inside the duct,air convection and heat exchange are considered;For the porous medium region,the heat transfer governing equation should consider the influence of air in which the volumetric heat capacity of permafrost and the coefficient of thermal conductivity of crushed-rock are expressed by comprehensive influence of solid and air.For the embankment fill region,the heat transfer governing equation is expressed by volumetric heat capacity of permafrost and the thermal conductivity of permafrost without the influence of air.The phase changes occur in the process of frost heave and thawing subsidence,so the thermal physical parameters through temperature of phase change interface are adopted for the heat conduction problem.The apparent heat capacity method is used in this paper.

    3 The composite embankment model

    The calculating geometric model of the composite embankment is presented in figure 2.The upper surface of the composite embankment is 10 m in width and 3 m in height,with a slope of 1:1.5.The computational grid is composed of 223,406 triangular elements and 112,114 nodes in total,in which regions of perforated ventilation duct and crushed-rock layer are in a refinement mesh.

    Figure 2 The calculation area for the embankment temperature field

    From top to bottom,there are fill layers of 1.8 m in thickness,crushed-rock layer of 1.2 m in thickness(void ratio is 0.4,coefficient of permeability is 3.48×10–6m2),silty clay of 6.6 m in thickness,and mudstone at the bottom.Soil physical parameters are obtained by Niuet al.(2013).

    Initial temperatures were obtained from measurements of the natural foundation (Sunet al.,2011).Heat flux was 0.06 W/m2at the bottom boundary,while side boundaries of AH and FG were adiabatic.Embankment boundary temperatures were sinusodial to time,embankment construction was completed in August,and initial phase of temperature was π/2.Niuet al.(2013) provided thermal boundary conditions considering the effect of asphalt albedo and emissivity obtained by Wuet al.(1988)

    In this study,perforated ventilation duct was 0.4 m in diameter,0.08 m in thickness,placed at 0.25 m above the ground surface,and holes were drilled in two sides of the duct wall.To eliminate the influence of summer heat,the ducts were closed by air doors from May to October,while opened at other times.Wind velocity of the porous media system in composite embankment was set to 0 m/s when the air doors were closed.Wind velocity at the inlet of the perforated ventilation duct was 4 m/s when the air doors were opened.Pressure of the outlet boundary was atmospheric pressure in the plateau.

    4 Results and analyses

    4.1 Wind velocity field of the composite embankment

    The wind velocity field in the porous media of the composite embankment is closely related to the cooling effect.Wind velocity of the transverse section in the embankment centerline is presented in figure 3.

    Figure 3 Wind velocity in the middle section of the composite embankment

    The air flow velocity field in the composite embankment is divided into ventilation duct and porous media zones.The highest wind velocity was along the axis of the perforated ventilation duct at 4.069 m/s.The velocities decreased quickly from the duct wall,and wind velocity in the crushed-rock zone decreased to 0.051 m/s.Due to the perforated ventilation duct,wind velocity in the crushed-rock zone increased more than that of the crushed-rock zone without a duct in which the air velocity was 10-3–10-4order of magnitude.Jianget al.(2004) reported that air velocity in a crushed-rock layer of a railway embankment was 0.000277–0.00553 m/s obtained by a porous model.Therefore,the perforated duct wall allowed more air flow into the crushed-rock zone,and the natural convection in the crushed-rock zone was intensified.

    4.2 Temperature field of the composite embankment with and without air doors

    Figure 4 presents the relationship between temperature and time at depths of-1 m and-2 m under the composite embankment centerline with and without air doors.The embankment foundation temperature was sinusodial to time,and continuously decreased.The highest temperature occured basicly from August to October.The temperature obviously decreased at the first years,and fell to below 0 °C at 12 months after construction.The composite embankment temperature with air doors decreased continuously with an increase of time after 24 months.However,the composite embankment temperature without air doors basicly decreased,although slightly increased due to heat absorption from summer winds.In a word,the composite embankment temperature with air doors continously decreased,more than that without air doors.Thus,the cooling effect is more distinctive for the composite embankment with air doors.

    Figure 4 Temperature vs.time at different depths under the composite embankment centerline with and without air doors

    The embankment is most dangerous with highest temperature at the warmest time of the year.Figures 5 and 6 present composite embankment temperature fields with and without air doors in August.This shows that the temperature field is basicly symmetric and obviously changes with time.The permafrost temperature under the embankment with air doors was lower than that without air doors at the same depth.Moreover,a low-temperature frozen-soil core existed under the embankment and enlarged with time.In the fourth year,the scope of frozen-soil core below-2 °C with air doors was larger than that without air doors,and its depth was nearer to the ground surface.

    Figure 5 Composite embankment temperature fields with air doors at the highest temperature stage at different times after construction (unit:°C)

    Figure 6 Composite embankment temperature fields without air doors at the highest temperature stage at different times after construction (unit:°C)

    Figures 7 and 8 present the relationships between temperature and depth under the composite embankment centerline with and without air doors in the first and fourth years after construction.The composite embankment worked during the first year,the temperature under the embankment with air doors decreased to below 0 °C except in August and October.However,temperatures were higher than 0 °C in June,August and October for the embankment without air doors.In the fourth year,the former temperature decreased to below 0 °C in all months,while the latter temperature was higher than 0 °C in June and August.Therefore,the composite embankment with air doors works better than that without air doors.

    4.3 0 °C isotherm depth variations due to composite embankment with and without air doors

    Table 1 presents 0 °C isotherm depths under the composite embankment for six years after construction.This shows that the 0 °C isotherm depth in the left embankment is similar to the right embankment with a difference of 1–2 cm,which indicates that the temperature field is symmetric again.The 0 °C isotherm depth obviously rises,especially under the embankment centerline and shoulders.In the first year after construction,the 0 °C isotherm rose slightly;in the second year,the 0 °C isotherm obviously rose above the ground surface;in the third–fifth year,the 0 °C isotherm was located near the low wall of the perforated ventilation duct.The 0 °C isotherm depth under the embankment shoulder and centerline with airs doors rose with similar degrees.This was obviously higher than that without air doors,which was up to about 0.40 m in the fifth year.Compared with that of the first year,the 0 °C isotherm position under the embankment centerline and shoulders with air doors rose over 2.6 m in the fifth year.

    Figure 7 Temperature vs.depth under the composite embankment centerline with air doors at different months in the first and fourth years after construction (unit:°C)

    Figure 8 Temperature vs.depth under the composite embankment centerline without air doors at different months in the first and fourth years after construction (unit:°C)

    Table 1 The 0 °C isotherm depths under the composite embankment for six years (unit:m)

    Therefore,the composite embankment is advantageous for release of heat energy and protecting the underlying permafrost,and the composite embankment with air doors can be a more effective measure to ensure permafrost stability.In the future,it should be applied to practical engineering and studied much further.

    5 Concluding remarks

    For construction requirements in permafrost regions,the temperature field and cooling effect of the convection-intensified composite embankment with perforated ventilation duct and crushed-rock were studied by numerical simulation.The main research results are as follows:

    1) In permafrost regions,a composite embankment with perforated ventilation ducts and crushed-rock are required,in which the perforated ventilation ducts are embedded in the middle of the crushed-rock layer,and the holes are drilled in two sides of the duct wall.

    2) Due to the perforated ventilation duct,wind velocity in the crushed-rock zone increases more than that outside the crushed-rock zone,and the natural convection is intensified within the crushed-rock zone.

    3) The composite embankment is highly efficient in cooling and protecting the underlying permafrost in permafrost regions.The temperature of the underlying permafrost obviously reduces,and the 0 °C isotherm position rises significantly,especially under the embankment centerline and shoulders.

    4) The composite embankment with air doors is more effective than that without air doors due to heat prevention by closed doors in warmer seasons.

    5) The convection-intensifying composite embankment is a potential cooling measure for high-grade large-width highway construction in permafrost regions,which should be studied much further in practical engineering.

    The authors greatly appreciate the financial support of the National Natural Science Foundation of China(No.41121061),the National Basic Research Program (973) of China (Nos.2012CB026101 and 2011CB013505),the Western Project Program of the Chinese Academy of Sciences (No.KZCX2-XB3-19),and the Open Fund of State Key Laboratory of Frozen Soil Engineering (No.SKLFSE201209).The authors are very thankful to two reviewers for proposing good suggestions.

    Cheng GD,Wu QB,Ma W,2009.Innovative designs of permafrost roadbed for the Qinghai–Tibet Railway.Science in China (Series E),52(2):530–538.

    Dong YH,Lai YM,Chen W,2012.Cooling effect of combined L-shaped thermosyphon crushed-rock revetment and insulation for high-grade highways in permafrost regions.Chinese Journal Geotechnical Engineering,34(6):1043–1049.

    Dong YH,Lai YM,Xu XT,et al.,2010.Using perforated ventilation ducts to enhance the cooling effect of interlayer on embankments crushed rock in permafrost regions.Cold Regions Science and Technology,62(1):76–82.

    Hu MJ,Wang R,Ge XR,et al.,2004.An experimental study on cooling effect of the perforated ventilation pipes on Qinghai-Tibet Railway roadbed.Chinese Journal of Rock Mechanics and Engineering,23(24):4195–4199.

    Jiang F,Liu S,Wang HG,et al.,2004.Numerical simulation on the cooling effect of gravels embankment in permafrost areas.Journal of the China Railway,26(4):109–115.

    Jiang WJ,Ge XR,2006.Application of double-energy equation to porous media of ventilated embankment.Chinese Journal of Rock Mechanics and Engineering,25(6):1170–1176.

    Lai YM,Guo HX,Dong YH,2009.Laboratory investigation on the cooling effect of the embankment with L-shaped thermosyphon and crushed-rock revetment in permafrost regions.Cold Regions Science and Technology,58(3):143–150.

    Li N,Wei QC,Ge JJ,2006.Structure type and work state study on heat pipe subgrade of Qinghai–Tibet Railway.Journal of Beijing Jiaotong University,30(4):22–25.

    Liu Q,Sun BX,Yang LJ,et al.,2008.Cooling effect of embankment with perforated ventilation pipe.Chinese Journal of Geotechnical Engineering,30(8):1152–1157.

    Ma W,Cheng GD,Wu QB,2002.Preliminary study on technology of cooling foundation in permafrost regions.Journal of Glaciology Geocryology,24(5):579–587.

    Niu FJ,Cheng GD,Xia HM,et al.,2006.Field experiment study on effects of duct ventilated railway embankment on protecting the underlying permafrost.Cold Regions Science and Technology,45(3):178–192.

    Niu FJ,Sun H,Ge XR,et al.,2013.Temperature adjustment mechanism of composite embankment with perforated ventilation pipe and blocky stone.Journal of Shanghai Jiao Tong University (Sci.),18(6):729–732.

    Sun H,Niu FJ,Ge XR,2011.Stochastic temperature field of frozen soil roadbed based on Monte-Carlo Method.Journal of Shanghai Jiaotong University,45(5):738–742.

    Wu QB,Zhao SY,Ma W,et al.,2005.Monitoring and analysis of cooling effect of block-stone embankment for Qinghai-Tibet Railway.Chinese Journal of Geotechnical Engineering,27(12),1386–1390.

    Wu ZW,Cheng GD,Zhu LN,1988.The Frozen Ground Roadbed.Lanzhou University Press,Lanzhou.

    Zhang MY,Lai YM,Dong YH,2009.Numerical study on temperature characteristics of expressway embankment with crushed-rock revetment and ventilated ducts in warm permafrost regions.Cold Regions Science and Technology,59(1):19–24.

    老熟妇仑乱视频hdxx| 偷拍熟女少妇极品色| cao死你这个sao货| 美女高潮的动态| 成人欧美大片| 午夜福利在线观看免费完整高清在 | 麻豆国产97在线/欧美| 成人无遮挡网站| 成人亚洲精品av一区二区| 国产亚洲精品av在线| 久久久久久九九精品二区国产| 国产精品一及| 欧美成狂野欧美在线观看| 亚洲第一电影网av| 黄色日韩在线| 精品国产美女av久久久久小说| 偷拍熟女少妇极品色| 美女 人体艺术 gogo| 精品久久久久久久久久免费视频| 美女被艹到高潮喷水动态| tocl精华| 国产黄片美女视频| 看免费av毛片| 看黄色毛片网站| 国产精品国产高清国产av| 每晚都被弄得嗷嗷叫到高潮| 午夜福利18| 美女黄网站色视频| 亚洲中文av在线| 国产成人精品久久二区二区91| 黄色女人牲交| 亚洲激情在线av| 岛国视频午夜一区免费看| 亚洲成人中文字幕在线播放| 日本 av在线| 久久久久精品国产欧美久久久| 亚洲人成电影免费在线| 国产成人精品无人区| 99riav亚洲国产免费| 男人和女人高潮做爰伦理| av女优亚洲男人天堂 | 后天国语完整版免费观看| 国内毛片毛片毛片毛片毛片| 亚洲七黄色美女视频| 日本 欧美在线| 久久午夜亚洲精品久久| 麻豆成人午夜福利视频| 成年女人毛片免费观看观看9| 老司机福利观看| 免费看日本二区| 热99re8久久精品国产| 午夜精品在线福利| 黄色片一级片一级黄色片| 很黄的视频免费| 国内精品久久久久久久电影| 99久国产av精品| 狂野欧美激情性xxxx| 欧美中文日本在线观看视频| www国产在线视频色| 国产精品亚洲av一区麻豆| 国产久久久一区二区三区| 在线播放国产精品三级| 久久热在线av| 国产探花在线观看一区二区| 国产成人精品久久二区二区免费| netflix在线观看网站| 天天一区二区日本电影三级| 欧美乱色亚洲激情| 99国产精品一区二区三区| 在线观看舔阴道视频| 无限看片的www在线观看| 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 999久久久精品免费观看国产| 老司机深夜福利视频在线观看| 日韩成人在线观看一区二区三区| 国产伦精品一区二区三区视频9 | 亚洲 国产 在线| 一级黄色大片毛片| 全区人妻精品视频| 日本黄色视频三级网站网址| 午夜视频精品福利| 日韩精品青青久久久久久| 少妇人妻一区二区三区视频| 国内揄拍国产精品人妻在线| 国产蜜桃级精品一区二区三区| 精品乱码久久久久久99久播| 天堂动漫精品| 久久中文看片网| 老汉色av国产亚洲站长工具| 国产精品九九99| av在线天堂中文字幕| 搡老妇女老女人老熟妇| 久久久久久久精品吃奶| 18禁裸乳无遮挡免费网站照片| 最近在线观看免费完整版| 亚洲成a人片在线一区二区| 成年免费大片在线观看| 人妻久久中文字幕网| 桃色一区二区三区在线观看| 欧美成人免费av一区二区三区| 国产综合懂色| 看黄色毛片网站| 在线十欧美十亚洲十日本专区| 亚洲国产精品合色在线| 一级黄色大片毛片| 人人妻人人澡欧美一区二区| 国产伦精品一区二区三区视频9 | 午夜影院日韩av| 婷婷六月久久综合丁香| 日本精品一区二区三区蜜桃| 国产精品自产拍在线观看55亚洲| 禁无遮挡网站| 色综合欧美亚洲国产小说| 看片在线看免费视频| 国语自产精品视频在线第100页| 欧美日韩黄片免| 美女大奶头视频| 黄片小视频在线播放| 亚洲乱码一区二区免费版| 国内精品久久久久精免费| 又黄又爽又免费观看的视频| 在线观看免费视频日本深夜| 人人妻,人人澡人人爽秒播| 五月伊人婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 老司机午夜福利在线观看视频| 观看免费一级毛片| 欧美乱码精品一区二区三区| 在线观看舔阴道视频| 手机成人av网站| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩无卡精品| 日韩欧美三级三区| av视频在线观看入口| 国产精品美女特级片免费视频播放器 | 99热精品在线国产| 国产精品一区二区三区四区免费观看 | 一区福利在线观看| 成在线人永久免费视频| 国产亚洲av嫩草精品影院| 国产69精品久久久久777片 | 亚洲熟妇熟女久久| 国产精品久久视频播放| 成人性生交大片免费视频hd| 成熟少妇高潮喷水视频| 色综合欧美亚洲国产小说| 首页视频小说图片口味搜索| av片东京热男人的天堂| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| www.自偷自拍.com| 97超视频在线观看视频| 1024香蕉在线观看| 天堂动漫精品| 日韩欧美免费精品| 国产成人av教育| 美女扒开内裤让男人捅视频| 欧美高清成人免费视频www| 国产一区二区三区视频了| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| 少妇裸体淫交视频免费看高清| 男人的好看免费观看在线视频| 免费看日本二区| 国内精品一区二区在线观看| 在线观看免费午夜福利视频| 国产成+人综合+亚洲专区| 午夜a级毛片| 香蕉国产在线看| 亚洲无线观看免费| 99精品欧美一区二区三区四区| bbb黄色大片| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 91字幕亚洲| 精品福利观看| 1024香蕉在线观看| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 国产精品自产拍在线观看55亚洲| 精品久久久久久久久久免费视频| avwww免费| 久9热在线精品视频| 无限看片的www在线观看| 香蕉av资源在线| 麻豆成人午夜福利视频| 亚洲av电影不卡..在线观看| 国产激情欧美一区二区| 夜夜看夜夜爽夜夜摸| avwww免费| 亚洲七黄色美女视频| 日本在线视频免费播放| 久久久久久九九精品二区国产| 我要搜黄色片| 免费一级毛片在线播放高清视频| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 久久香蕉精品热| 亚洲无线在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产高潮美女av| 日本免费a在线| 一本精品99久久精品77| 好男人电影高清在线观看| 欧美成人性av电影在线观看| 少妇的逼水好多| 日韩欧美精品v在线| 18禁裸乳无遮挡免费网站照片| 在线国产一区二区在线| 免费av毛片视频| 18禁黄网站禁片午夜丰满| 少妇熟女aⅴ在线视频| 亚洲精品美女久久av网站| 亚洲精品456在线播放app | 麻豆国产av国片精品| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 久久久色成人| 白带黄色成豆腐渣| 最近视频中文字幕2019在线8| 亚洲男人的天堂狠狠| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 国内精品久久久久精免费| 午夜影院日韩av| 毛片女人毛片| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区久久| 首页视频小说图片口味搜索| 亚洲成人久久性| 免费搜索国产男女视频| 天堂av国产一区二区熟女人妻| 最好的美女福利视频网| 久久中文字幕一级| 两人在一起打扑克的视频| 婷婷丁香在线五月| 久久精品国产亚洲av香蕉五月| 午夜免费观看网址| 十八禁人妻一区二区| 蜜桃久久精品国产亚洲av| 99久久成人亚洲精品观看| 国产精品亚洲一级av第二区| avwww免费| 色精品久久人妻99蜜桃| 亚洲精品乱码久久久v下载方式 | 白带黄色成豆腐渣| 中文字幕熟女人妻在线| 国产高清videossex| 免费看a级黄色片| 俺也久久电影网| 特级一级黄色大片| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av在线| 黄片大片在线免费观看| 免费无遮挡裸体视频| 国产精品自产拍在线观看55亚洲| 日日夜夜操网爽| 国产蜜桃级精品一区二区三区| 国产69精品久久久久777片 | 午夜成年电影在线免费观看| 少妇人妻一区二区三区视频| 两人在一起打扑克的视频| 国产极品精品免费视频能看的| 亚洲精品中文字幕一二三四区| 看免费av毛片| 天堂动漫精品| 久久午夜综合久久蜜桃| 热99在线观看视频| 成年女人毛片免费观看观看9| 18禁观看日本| 18禁裸乳无遮挡免费网站照片| 99国产精品一区二区三区| 国产午夜精品久久久久久| 级片在线观看| 丰满的人妻完整版| 99久国产av精品| 日韩人妻高清精品专区| 久久九九热精品免费| 国产黄片美女视频| 久久精品国产99精品国产亚洲性色| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 人妻丰满熟妇av一区二区三区| 亚洲片人在线观看| 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 成人性生交大片免费视频hd| 99久久久亚洲精品蜜臀av| 免费搜索国产男女视频| 婷婷亚洲欧美| 狠狠狠狠99中文字幕| 欧美高清成人免费视频www| 亚洲av免费在线观看| 99久久综合精品五月天人人| 搡老岳熟女国产| 亚洲欧美激情综合另类| 好男人电影高清在线观看| tocl精华| 精品一区二区三区视频在线观看免费| 久久久久国内视频| 欧美日韩精品网址| 91久久精品国产一区二区成人 | 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 日日夜夜操网爽| 88av欧美| 黄色丝袜av网址大全| 啦啦啦免费观看视频1| 亚洲人成电影免费在线| 两个人的视频大全免费| 香蕉国产在线看| 精品不卡国产一区二区三区| 这个男人来自地球电影免费观看| 曰老女人黄片| 91久久精品国产一区二区成人 | 成年女人看的毛片在线观看| 一本久久中文字幕| 久久精品aⅴ一区二区三区四区| 一本久久中文字幕| 亚洲专区国产一区二区| 亚洲五月天丁香| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| netflix在线观看网站| 成年女人永久免费观看视频| 人妻丰满熟妇av一区二区三区| 他把我摸到了高潮在线观看| 午夜久久久久精精品| 99re在线观看精品视频| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 在线观看免费午夜福利视频| 一进一出抽搐gif免费好疼| 国产三级黄色录像| 国产激情久久老熟女| 亚洲精品一区av在线观看| 日韩有码中文字幕| 亚洲av成人不卡在线观看播放网| 国产日本99.免费观看| 色老头精品视频在线观看| 91麻豆精品激情在线观看国产| 嫁个100分男人电影在线观看| 最新在线观看一区二区三区| 成人18禁在线播放| 精品一区二区三区视频在线观看免费| 精品久久久久久久毛片微露脸| 午夜成年电影在线免费观看| 老司机在亚洲福利影院| 久久精品国产清高在天天线| 男人的好看免费观看在线视频| 小蜜桃在线观看免费完整版高清| 精品久久久久久,| 高清毛片免费观看视频网站| 亚洲午夜理论影院| 色吧在线观看| 免费看美女性在线毛片视频| 国产精华一区二区三区| 亚洲第一电影网av| 日韩 欧美 亚洲 中文字幕| 熟女人妻精品中文字幕| 一级毛片女人18水好多| avwww免费| 日本黄色片子视频| 麻豆久久精品国产亚洲av| av视频在线观看入口| 亚洲av成人精品一区久久| 此物有八面人人有两片| 18美女黄网站色大片免费观看| 一级毛片精品| 村上凉子中文字幕在线| 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 搡老岳熟女国产| 两性夫妻黄色片| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 女警被强在线播放| 国产精品1区2区在线观看.| 国产av不卡久久| 欧美成人免费av一区二区三区| 亚洲成人免费电影在线观看| 偷拍熟女少妇极品色| 国产 一区 欧美 日韩| 天天躁狠狠躁夜夜躁狠狠躁| 欧美xxxx黑人xx丫x性爽| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| av女优亚洲男人天堂 | 长腿黑丝高跟| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 两性夫妻黄色片| 一本综合久久免费| 熟妇人妻久久中文字幕3abv| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清专用| 国产成人精品久久二区二区免费| 88av欧美| 亚洲国产中文字幕在线视频| 国产三级在线视频| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| a级毛片a级免费在线| 两个人看的免费小视频| 人人妻人人看人人澡| 久久精品国产99精品国产亚洲性色| 国产精品99久久99久久久不卡| 精品乱码久久久久久99久播| 操出白浆在线播放| 噜噜噜噜噜久久久久久91| 久久亚洲真实| 中文字幕最新亚洲高清| 精品电影一区二区在线| 一级黄色大片毛片| 露出奶头的视频| 久久午夜综合久久蜜桃| 久久国产乱子伦精品免费另类| 欧美成狂野欧美在线观看| 制服人妻中文乱码| av国产免费在线观看| 99热6这里只有精品| 岛国在线观看网站| 成年女人永久免费观看视频| 黄色丝袜av网址大全| 狠狠狠狠99中文字幕| 99久久精品一区二区三区| 搡老岳熟女国产| 国产成人aa在线观看| 99视频精品全部免费 在线 | 99久久综合精品五月天人人| 国产三级在线视频| 老司机福利观看| 久久天堂一区二区三区四区| 窝窝影院91人妻| 听说在线观看完整版免费高清| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 久久精品91蜜桃| 国产真实乱freesex| 午夜免费成人在线视频| 美女高潮的动态| 日韩 欧美 亚洲 中文字幕| 成人三级做爰电影| 国产三级中文精品| 免费看日本二区| 国内揄拍国产精品人妻在线| 久久热在线av| 亚洲av电影在线进入| 又黄又粗又硬又大视频| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 偷拍熟女少妇极品色| 中文字幕高清在线视频| 亚洲av美国av| 美女扒开内裤让男人捅视频| 97碰自拍视频| 欧美成狂野欧美在线观看| 久久精品91蜜桃| 亚洲国产欧美人成| 日本三级黄在线观看| 精品久久久久久,| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 亚洲av熟女| 特级一级黄色大片| 天天添夜夜摸| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| xxx96com| 丰满人妻一区二区三区视频av | 成人性生交大片免费视频hd| 亚洲一区二区三区色噜噜| 美女cb高潮喷水在线观看 | 国产成人影院久久av| 国产精品99久久99久久久不卡| 国产成人精品无人区| 日本熟妇午夜| 亚洲九九香蕉| 好看av亚洲va欧美ⅴa在| 国产精品精品国产色婷婷| 9191精品国产免费久久| 久久久精品欧美日韩精品| 国产激情偷乱视频一区二区| www.999成人在线观看| 午夜久久久久精精品| www日本在线高清视频| 精品国产三级普通话版| 午夜激情福利司机影院| 1000部很黄的大片| 在线观看午夜福利视频| h日本视频在线播放| cao死你这个sao货| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 特级一级黄色大片| 国产精品一及| 国产aⅴ精品一区二区三区波| 在线永久观看黄色视频| 亚洲第一电影网av| 亚洲激情在线av| 国产高清videossex| 色综合亚洲欧美另类图片| 国产久久久一区二区三区| 国产高清激情床上av| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 国产久久久一区二区三区| 九九久久精品国产亚洲av麻豆 | 91在线观看av| 女生性感内裤真人,穿戴方法视频| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 99精品在免费线老司机午夜| 在线免费观看的www视频| 久久久久久久久免费视频了| 亚洲精品色激情综合| 老司机午夜十八禁免费视频| 亚洲 欧美一区二区三区| 一二三四社区在线视频社区8| 亚洲欧美日韩高清在线视频| 亚洲精品色激情综合| 国产高清videossex| 18禁国产床啪视频网站| 国产 一区 欧美 日韩| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 久久久久久久午夜电影| 日韩欧美在线乱码| 天天添夜夜摸| 天天一区二区日本电影三级| 日韩av在线大香蕉| 变态另类成人亚洲欧美熟女| 午夜a级毛片| 亚洲第一欧美日韩一区二区三区| 亚洲成人中文字幕在线播放| 午夜福利成人在线免费观看| 最新中文字幕久久久久 | 亚洲最大成人中文| 真人一进一出gif抽搐免费| 日韩欧美精品v在线| 亚洲在线观看片| 18禁美女被吸乳视频| 久久精品国产综合久久久| 99久久无色码亚洲精品果冻| 嫩草影视91久久| 黄色丝袜av网址大全| 真人一进一出gif抽搐免费| 无遮挡黄片免费观看| 精品一区二区三区av网在线观看| 狠狠狠狠99中文字幕| 一区二区三区高清视频在线| 丁香欧美五月| 久久久久国内视频| 人人妻人人澡欧美一区二区| 亚洲人成网站高清观看| 91在线精品国自产拍蜜月 | 一区二区三区高清视频在线| 深夜精品福利| 国产亚洲av嫩草精品影院| 小说图片视频综合网站| 国产精品 国内视频| 日韩欧美在线乱码| 视频区欧美日本亚洲| 99在线视频只有这里精品首页| www.自偷自拍.com| 两性夫妻黄色片| 999久久久国产精品视频| 很黄的视频免费| 日韩 欧美 亚洲 中文字幕| 国产精品爽爽va在线观看网站| 99热精品在线国产| 国产私拍福利视频在线观看| 嫩草影院入口| 国产高潮美女av| 久久久久国产一级毛片高清牌| 国产精品免费一区二区三区在线| 成人欧美大片| 18禁美女被吸乳视频| 日韩中文字幕欧美一区二区| 毛片女人毛片| 国产精品久久久久久久电影 | 一个人免费在线观看电影 | 这个男人来自地球电影免费观看| 两个人的视频大全免费| 别揉我奶头~嗯~啊~动态视频| 久久国产乱子伦精品免费另类| www.精华液| 日本精品一区二区三区蜜桃| 亚洲午夜理论影院| 一个人观看的视频www高清免费观看 | 人妻夜夜爽99麻豆av| 成人鲁丝片一二三区免费| 日韩欧美一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 欧美激情在线99| 亚洲中文字幕一区二区三区有码在线看 | 亚洲在线观看片| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 亚洲黑人精品在线| 国产一区二区三区视频了| 最新在线观看一区二区三区| 男女下面进入的视频免费午夜| 免费观看精品视频网站| 久久中文字幕人妻熟女| 亚洲午夜精品一区,二区,三区| 国产欧美日韩一区二区精品| 日韩欧美精品v在线| 国产成人啪精品午夜网站| 色吧在线观看|