• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent changes in ground surface thermal regimes in the context of air temperature warming over the Heihe River Basin,China

    2014-12-15 05:55:24QingFengWangTingJunZhangXiaoQingPengBinCao
    Sciences in Cold and Arid Regions 2014年4期

    QingFeng Wang ,TingJun Zhang ,XiaoQing Peng ,Bin Cao

    1.State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    2.College of Earth and Environmental Sciences,Lanzhou University,Lanzhou,Gansu 730000,China

    3.National Snow and Ice Data Center,Cooperative Institute for Research in Environmental Sciences,University of Colorado at Boulder,Boulder,80309,USA

    1 Introduction

    Global warming is a non-controversial scientific fact (Qinet al.,2007).The Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change (IPCC) points out that,the earth surface temperature has warmed by 0.74 °C in the last four decades (Solomonet al.,2007).Global surface temperature has generally warmed for the entire instrumental record,and the most significant and strongest warming occurred in the most recent 40 years (Cohenet al.,2012).Moreover,changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology,ecosystem diversity and productivity(Frauenfeldet al.,2007),and global thermal,water and carbon budgets (Jinet al.,2009) as well as climate change.Numerous studies on climate warming in the Heihe River Basin,the Qilian Mountains region,and the Hexi Corridor were published in the past decade.They mainly focused on the spatiotemporal distribution characteristics,especially the regional difference,and the catastrophe of climate change (e.g.,Gong and Li,2001;Lanet al.,2004;Jiaet al.,2008a,b),as well as the impacts of climate change on surface runoff(e.g.,Dinget al.,2000;Lanet al.,2001;Wang and Li,2005;Zhang,2009).But the ground surface thermal regimes in the context of air temperature warming are still poorly understood over the Heihe River Basin.

    There are two main indices that could directly react to changes in ground surface thermal regimes,including ground surface temperature and freezing/thawing index.Soil temperature,especially ground surface temperature,is a sensitive climate indicator,which integrates meteorological elements and all processes occurring at/above the ground surface.Ground surface temperature is of great importance for monitoring of the surface-to-air energy budget by affecting sensible and latent heat fluxes (Okuet al.,2006;Wuet al.,2013).In addition,it could influence the physical and biogeochemistry processes occurring in the soil.Generally speaking,the freezing/thawing index is defined as the cumulative number of degree days for air or surface temperatures which are below/above 0 °C (Associate Committee on Geotechnical Research,1988;van Everdingen,2005).Therefore,it is a measure of the duration and temperature in cold/warm season during a year(Johnson and Hartman,1971).It can be used to predict and map permafrost and seasonally frozen ground distribution (Nelson and Outcalt,1987),estimate active layer thickness (ALT) (Nelsonet al.,1997;Shiklomanov and Nelson,1999,2002;Zhanget al.,2005),depth of ground frost penetration(Zhanget al.,2001),provide information for engineering designs in cold regions (US Army/Air Force 1966;Lunardini,1981;Steurer,1996;Steurer and Crandell,1995),as well as a possible useful indicator of climate change (Frauenfeldet al.,2007;Wuet al.,2011b).These indices can also be used to estimate the maximum thickness of sea,river,and lake ice (Johnson and Hartman,1971).

    The main purpose of this study is to investigate the observed trends of air temperature warming and ground surface thermal regimes response to air temperature warming in recent years over the Heihe River Basin in Northwest China.

    2 Study area

    The Heihe River Basin is located in the central part of the Eurasian continent,far from the oceans and surrounded by high mountains.It is the second largest inland river basin in Northwest China,located in the central part of Hexi Corridor and roughy between 98°00'E–101°30'E,38°N–42°N (Gao and Li,1991).The basin originates in the watershed between the Zoulangnanshan and Tuolainanshan Mts.in Qilian Mts..Geographically,the basin is divided into three parts from south to north,the upper reaches (from Yingluoxia valley upstream),the middle reaches (between Yingluoxia and Zhengyixia valleys),and the lower reaches (from Zhengyixia valley downstream) (Cheng,2009) (Figure 1).

    The upper reaches,with elevation ranging from 2,000 m a.s.l.to 5,500 m a.s.l.,belong to the cold semi-arid mountain zone dominated by shrubs and trees.The vegetation displays obviously altitudinal zonation from bottom upwards,i.e.,desert steppe,alpine steppe,alpine frost-steppe,alpine shrub-meadow,alpine meadow,and alpine cushion vegetation zones.Mean annual air temperature (MAAT) in the area is lower than 2 °C,and mean annual precipitation (MAP) increases from about 250 mm in the low-mountain or hill zone to about 500 mm in the high-mountain zone (Chen and Qu,1992).It is calculated that average decreasing rate of MAAT and increasing rate of annual precipitation with elevation from Yingluoxia valley to Yeniugou is 0.80 °C/(100m) and 15 mm/(100m),respectively (Chenget al.,2010).The middle reaches belong to the temperate zone controlled by crops like wheat and corn,with MAAT less than 6–8 °C.With the elevation in the middle reaches decreases from<2,000 m a.s.l.to 1,000 m a.s.l.,the MAP decreases from 250 mm to <100 mm from south to north (Liet al.,2001).Mainly occupied by gobi with mean elevation of about 1,000 m a.s.l.,the lower reaches pertain to the downstream warm temperate zone,with MAAT of 8–10 °C and MAP of <50 mm (Qi and Luo,2005;Liet al.,2012).

    3 Data source and method

    In this study,we collected daily surface temperatures (including mean,maximum and minimum) and monthly air temperatures at 18 meteorological stations from the China Meteorological Administration (CMA)located over the Heihe River Basin and its adjacent area.There are 12 meteorological stations located over the Heihe River Basin (including Qilian,Yeniugou,Tuole,Shandan,Zhangye,Gaotai,Jiuquan,Jinta,Dingxin,Wutonggou,Jihede,and Ejinaqi) and 6 meteorological stations are located in the adjacent area of the basin (including Yongchang,Menyuan,Gangcha,Yumen,Mazongshan,and Guaizihu) (Figure 1).

    Mean annual ground surface temperature (MAGST)is the mean daily ground surface temperatures in a year.Maximum annual ground surface temperature(MaxAGST) and minimum annual ground surface temperature (MinAGST) are the maximum and minimum daily ground surface temperature in a year,respectively.

    Figure 1 The distribution map of the meteorological stations from CMA over the Heihe River Basin and its adjacent area.The black line is the river system of Heihe River

    Generally,when performing the calculation based on daily data we compute the annual freezing/thawing index as the sum of surface temperature for all days with below/above 0 °C during the freezing/thawing period.Moreover,the freezing index is computed over a period from Jul.1 through to Jun.30 of the following calendar year,while the thawing index is calculated from Jan.1 through Dec.31 of the same calendar year(Zhanget al.,1997;Frauenfeldet al.,2007;Wuet al.,2011b).The freezing/thawing index (FI/TI) is calculated by the following formulae:

    whereFIandTIare the surface freezing and thawing index,respectively;Tiis daily surface temperature;MFandMTrepresent to the ending date of freezing and thawing period,respectively.

    MAGST and surface freezing/thawing index time series at meteorological stations all contained continuous observation data over the 1972/1959–2006/2005 period except Yeniugou,Ejinaqi,Wutonggou,Jinta and Jihede.For data comparability in 1960/1959–2006/2005,we recovered the missing data at these 5 stations through the linear regression method based on nearby station data at significant level of at leastp≤0.05.The missing data of air temperature at Wutonggou and Jihede was also recovered in a similar way.

    4 Results

    4.1 Air temperature warming

    The linear tendency rate for spring,summer,autumn and winter air temperatures as well as MAAT estimated by the linear least squares regression method at meteorological stations in 1960–2008 over the Heihe River Basin is presented in table 1.The tendency rate for summer air temperature at Shandan station is not significant at significant level ofp≤0.05.Significant increases in summer air temperature are observed at 11 other meteorological stations,with the linear tendency rate ranging from 0.18 °C/decade to 0.41 °C/decade.Winter air temperature in 1960–2008 is significantly increased except at Wutonggou and Dingxin,with the linear tendency rate of 0.44–0.85 °C/decade.Spring and autumn air temperatures as well as MAAT in 1960–2008 at the 12 meteorological stations reveal significant trends of 0.19–0.45 °C/decade,0.20–0.55 °C/decade,and 0.26–0.52 °C/decade,respectively.

    Table 1 The linear tendency rate for spring,summer,autumn and winter air temperatures as well as MAAT (°C/decade) estimated by the linear least squares regression method at the 12 meteorological stations in 1960–2008 over the Heihe River Basin

    Based on monthly air temperature data of the 12 meteorological stations of CMA from 1960 through 2008,all the meteorological stations are composited in order to structure an integrated long-term time series over the Heihe River Basin.Estimating spring,summer,autumn and winter air temperatures from 1960 through 2008 reveals a statistically significant trend of 0.31 °C /decade,0.28 °C/decade,0.37 °C/decade and 0.50 °C /decade,and a net change of 1.5 °C,1.4 °C,1.8 °C,and 2.5 °C over the 49-year period,respectively(Figure 2).The linear tendency rate for winter air temperature is obviously bigger than others.The coefficients of determinationR2of the fitting trend line are 0.25,0.30,0.37 and 0.33,respectively,at significant level ofp<0.001.In a similar way,MAAT for 1960–2008 reveals a statistically significant trend of 0.37 °C /decade (R2=0.57,p<0.001) and a net change of 1.8 °C over the 49-year period (Figure 3).

    The aforementioned conclusion is consistent with the following studies in Northwest China and on the Qinghai-Tibet Plateau (QTP).For example,the linear tendency rate of MAAT was from-0.34 to 0.88 °C/decade in 1951–2006 in Northwest China,and the mean value was 0.3 °C/decade (Zhai,2008).Analyzing data at 72 meteorological stations on the QTP,Weiet al.,(2003) thought that air temperature on the QTP was becoming warmer.The tendency rate of air temperature for most meteorological stations was between 0.2–0.3 °C/decade in winter and spring,and it was between 0.1–0.2 °C/decade from June through September.MAAT revealed a statistically significant trend of 0.28 °C/decade for 1961–2004 in Qinghai Province (Wanget al.,2007).The tendency rate for MAAT was 0.32 °C/decade for 1959–2008 in Northwest China (Zhaoet al.,2011).

    4.2 Ground surface temperature trend

    The MAGSTs for 1972–2006 at the 12 meteorological stations reveal significant trends of 0.44–0.90 °C/decade (shown in table 2).The tendency rate for MaxAGST at Qilian,Tuole,Wutonggou and Jihede is not significant at significant level ofp≤0.05.The MaxAGSTs for 1972–2006 at 8 other meteorological stations reveal significant trends of 0.59–2.05 °C/decade (Table 2).The averaged MAGST time series in the period between 1972 and 2006 indicates a statistically significant trend of 0.58 °C/decade (Figure 4).Estimating MaxAGSTs from 1972 through 2006 reveals a statistically significant trend of 1.27 °C/decade,and a net change of 5.2 °C over the 41-year period.The averaged MinAGST time series in the same period remains unchanged as a whole (Figure 5).

    Figure 2 Averaged time series of seasonal air temperature in 1960–2008 over the Heihe River Basin.Grey and dotted lines in bold present three years moving lines and the linear least squares regression lines,respectively (same in figures 3,4,5,6)

    Figure 3 Averaged time series of MAAT in 1960–2008 over the Heihe River Basin

    Figure 4 Averaged time series of MAGST for 1972–2006 over the Heihe River Basin

    4.3 Freezing/thawing index trend

    The surface freezing index time series in 1959–2005 show significant decreasing trends except at Wutonggou,Gaotai and Jihede,with the linear tendency rate ranging from-74.9 °C/decade to-20.6 °C/decade.The surface thawing index in 1960–2006 show significant increasing trends of 33.6–172.7 °C/decade except at Tuole.Significant trends in the ratio of freezing index to thawing index(RFT) are observed at 9 other meteorological stations except at Qilian,Wutonggou and Gaotai,with the linear tendency rate ranging from-0.05/decade to 0.00/decade (Table 2).

    In a similar way,the composite time series of freezing/thawing index and the RFT in 1959–2006 are structured.Estimating surface freezing/thawing index reveals a statistically significant trend of-42.5 °C-day/decade and 85.4 °C-day/decade in 1959–2006,respectively.The RFT in 1960–2005 over the basin exhibits a statistically significant trend of-0.018 per decade and a net change of-0.083 over the 46-year period (Figure 6).And it is determined by the decreasing freezing index and the increasing thawing index trends.

    Similar results have been determined by other studies.Based on the analysis of ERA-40,CRU TS2.1 and CAI 1.02 datasets,Frauenfeldet al.,(2007) reveals a similar trend for air freezing/thawing index in 1958–2002 in the seasonally frozen ground regions between 20°N and 50°N on the Northern Hemisphere.The air freezing/thawing index at 7 meteorological stations along the Qinghai-Tibet Railway has decreased by 16.7–59.1 °C-day/decade and increased by 19.8–45.6 °C-day/decade in 1966–2004,respectively (Jianget al.,2007).The surface freezing/thawing index is also undergoing a negative/positive trend in 1961–2001 on the QTP,albeit of different magnitude (Wuet al.,2008).The surface freezing index displays decreasing trends (-120 to-20 °C-day/decade) at 6 meteorological stations over the period 1987–2005 in Mongolia,while exhibiting increasing trends (10 to 390 °C-day/decade) at 14 other stations.However,the surface thawing index all shows a statistically significant increase with a rate of 16–37 °C-day/decade at a significance level of 0.05 except at Baruunturuu station (Wuet al.,2011b).The freezing/thawing index at 16 meteorological stations,which are located in or adjacent to permafrost regions on the central QTP,has decreased by 111.2 °C-day/decade and increased 125.0 °C-day/decade in 1980–2007,respectively (Wuet al.,2013).

    Table 2 The linear tendency rate for MAGST (°C/decade),MaxAGST (°C/decade),surface freezing/thawing index (°C-day/decade) and the RFT (/decade) estimated by the linear least squares regression method at the 12 meteorological stations in 1972/1959–2006/2005 over the Heihe River Basin

    Figure 6 Averaged time series of (a) surface freezing index,(b) thawing index and (c) the RFT in 1959–2006 over the Heihe River Basin

    5 Discussion

    The land surface and atmosphere could adjust the ground surface thermal regimes and air temperature changes to make their changing tendency accordant,through various thermodynamic processes of the land-atmosphere interaction,such as,radiative flux transfer,and sensible heat flux exchange.

    The MAGST,MaxAGST and RFT time series are significantly correlated with MAAT atR=0.96,R=0.61 andR=-0.80 at significant level ofp<0.01,indicating that a variance of 92% in MAGST,37% in MaxAGST and 64% in RFT can be accounted for by changes in MAAT,respectively.Freezing index time series is correlated with winter air temperature atR=-0.82 (p<0.01),indicating that 67% of freezing index variability can be accounted for by winter air temperature.The correlation between thawing index and summer air temperature is statistically significant and strongR=0.85 (p<0.01),indicating that 72% of thawing index variability can be accounted for by summer air temperature.

    Undoubtedly,the increase in MAGST and the decline in freezing index will greatly weaken maximum seasonal freeze depth.It is calculated that maximum seasonal freeze depth in 1960–2007 exhibits a statistically significant trend of-4.0 cm/decade and a net change of-19.2 cm in the 48-year period over the Heihe River Basin (Wang,2013).

    The increase in thawing index implies a profound influence on the southern/lower limit of permafrost,ALT,expansion of taliks,as well as permafrost temperature and depth.Since the 1980s,the lower limit of permafrost has risen about 50–80 m in the source area of the Yellow River on the QTP (Jinet al.,2009).ALT and ground temperatures at the bottom of the ALT for the 3 observation fields (China01,China02 and China04) have increased by 4 cm/a and 0.06 °C/a from 1999 through 2007/08 along the Qinghai-Tibet Highway (Zhaoet al.,2010).The increase in ALT has been observed at a rate of about 6.3 cm/a from 2006 through 2010 along the Qinghai-Tibet Railway.The mean rising rate of permafrost temperature at the depth of 6.0 m and the mean annual ground temperature(MAGT) at depth of zero amplitude is about 0.02 °C/a and 0.012 °C/a,respectively (Wuet al.,2011a).

    It is estimated that the total area of permafrost region occupies approximately 11% of the Heihe River Basin (Zhanget al.,2012).Both the significant decline in freezing index and increase in thawing index might be expected to accelerate the permafrost degradation in the upper reaches of the Heihe River Basin.The extensive permafrost degradation will exert profound influence on the surface energy and water exchanges,carbon budgets,ecosystem dynamics,hydrological processes,and engineering infrastructures (Cheng and Zhao,2000;Nelsonet al.,2001;Zhanget al.,2005;Cheng and Wu,2007;Jinet al.,2009;Zhaoet al.,2010;Wuet al.,2013).

    6 Conclusions

    Significant increases in summer and winter air temperatures are observed at meteorological stations over the Heihe River Basin,with the linear tendency rate of 0.18–0.41 °C/decade except at Shandan and 0.44–0.85 °C/decade except at Wutonggou as well as Dingxin,respectively.Spring and autumn air temperatures as well as MAAT in 1960–2008 at the 12 stations reveal significant trends of 0.19–0.45 °C/decade,0.20–0.55 °C/decade,and 0.26–0.52 °C/decade,respectively.Estimating spring,summer,autumn and winter air temperatures and MAAT from 1960 through 2008 reveals a statistically significant trend of 0.31 °C/decade,0.28 °C/decade,0.37 °C/decade,0.50 °C/decade and 0.37 °C/decade,respectively.Due to the warming air temperature,MAGSTs,MaxAGSTs,and surface thawing index time series exhibit increasing trend for most or even all the meteorological stations over the basin,while the surface freezing index and the RFT time series reveal a decreasing trend.

    The MAGSTs for 1972–2006 at the 12 meteorological stations reveal significant trends of 0.44–0.90 °C/decade.The MaxAGSTs for 1972–2006 at eight other meteorological stations except at Qilian,Tuole,Wutonggou and Jihede reveal significant trends of 0.59–2.05 °C/decade.The averaged MAGST time series in the period between 1972 and 2006 indicates a statistically significant trend of 0.58 °C/decade.Estimating MaxAGST from 1972 through 2006 reveals a statistically significant trend of 1.27 °C/decade.The MinAGST time series remains unchanged as a whole.

    The surface freezing index time series in 1959–2005 show significant decreasing trends except at Wutonggou,Gaotai and Jihede,with the linear tendency rate ranging from-74.9 °C/decade to-20.6 °C/decade.The surface thawing index in 1960–2006 show significant increasing trend of 33.6–172.7 °C/decade except at Tuole.Significant trends in RFT are observed at 9 other meteorological stations except at Qilian,Wutonggou and Gaotai,with the linear tendency rate ranging from-0.05/decade to 0.00/decade.Estimating surface freezing/thawing index and RFT reveals a statistically significant trend of-42.5 °C-day/decade,85.4 °C-day/decade and-0.018/decade in 1959–2006,respectively.

    This study is supported by the Chinese Academy of Sciences Key Research Program (No.KZZD-EW-13),the Natural Science Foundation of China (Nos.91025013,91325202),the State Key Laboratory of Frozen Soil Engineering (No.SKLFSE-ZY-06),CAS,and the Major Research Plan of the National Natural Science Foundation of China (No.2013CBA01802).

    Associate Committee on Geotechnical Research,1988.Glossary of permafrost and related ground-ice terms.Technical Memorandum 142,National Research Council of Canada,Ottawa,Ontario.

    Chen LH,Qu YG,1992.Rational Development and Utilization on Water and Soil Resources in Hexi Region.Science Press,Beijing,China,pp.9–13.

    Cheng GD,2009.Water-Ecology-Economic System in Heihe River Basin.Meteorological Press,Beijing,China,pp.1–2.

    Cheng GD,Wu TH,2007.Responses of climate change and their environmental significance,Qinghai-Tibet Plateau.Journal of Geophysical Research,112:FO2S03.DOI:10.1029.2006JF000631,2007.s.

    Cheng GD,Xiao HL,Chen YN,2010.Ecological-hydrological Research in the Typical Inland River in West China.Meteorological Press,Beijing,China,pp.28–29.

    Cheng GD,Zhao L,2000.The problems associated with permafrost in the development of the Qinghai–Xizang Plateau.Quaternary Science,20(6):521–531.

    Cohen JL,Furtado JC,Barlow MA,et al.,2012.Arctic warming,increasing snow cover and widespread boreal winter cooling.Environment Research Letters,7:014007 (8pp).DOI:10.1088/1748-9326/7/1/014007.

    Ding YJ,Ye BS,Liu SY,2000.Impact of climate change on the alpine stream flow during the past 40a in the middle part of the Qilian Mountains,Northwest China.Journal of Glaciology and Geocryology,22(3):193–199.

    Frauenfeld OW,Zhang T,McCreight JL,2007.Northern hemisphere freezing/thawing index variations over the twentieth century.International Journal of Climatology,27:47–63.DOI:10.1002/joc.1372.

    Gao QZ,Li FX,1991.Case Study of Rational Development and Utilization of Water Resources in the Heihe River Basin.Gansu Science and Technology Press,Lanzhou,China,pp.1–5.

    Gong JD,Li XY,2001.Spatial variation of climate for different landscape area in the Heihe River Basin.Journal of Glaciology and Geocryology,23(4):423–431.

    Jia WX,He YQ,Li ZX,et al.,2008a.Spatiotemporal distribution characteristics of climate change in Qilian Mountains and Hexi Corridor.Journal of Desert Research,28(6):1151–1155.

    Jia WX,He YQ,Li ZX,et al.,2008b.The regional difference and catastrophe of climate change in Qilian Mountains region.Acta Geographica Sinica,63(3):257–269.

    Jiang FQ,Hu RJ,Li Z,2007.Variation trends of the freezing and thawing index along the Qinghai-Xizang Railway for the period 1966–2004.Acta Geographica Sinica,62(9):935–945.

    Jin HJ,He RX,Cheng GD,et al.,2009.Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau,China,and their eco-environmental impacts.Environment Research Letters,4:045206.DOI:10.1088/1748–9326/4/4/045206.

    Johnson PR,Hartman CW,1971.Environmental Atlas of Alaska,2nd edition.College,Alaska,pp.111.

    Lan YC,Ding YJ,Kang ES,2004.Variations and trends of temperature and precipitation in the mountain drainage basin of the Heihe River in recent 50 years.Plateau Meteorology,23(5):723–727.

    Lan YC,Yu YQ,Kang ES,et al.,2001.Response of runoff on the northern slope of the Qilian Mountain to global climate change.Journal of Lanzhou University (Natural Sciences),37(4):125–132.

    Li X,Lu L,Cheng GD,et al.,2001.Quantifying landscape structure of the Heihe River Basin,north-west China using FRAGSTATS.Journal of Arid Environments,48:521–535.DOI:10.1006/jare.2000.0715.

    Li ZL,Li ZJ,Xu ZX,et al.,2012.Temporal variations of reference evapotranspiration in Heihe River Basin of China.Hydrology Research.DOI:10.2166/nh.2012.125.

    Lunardini VJ,1981.Heat Transfer in Cold Climates.CRREL:Van Nostrand Reinhold Company,New York,pp.1–671.

    Nelson FE,Anisimov OE,Shiklomonov OI,2001.Subsidence risk from thawing permafrost.Nature,410:889–890.DOI:10.1038/35073746.

    Nelson FE,Outcalt SI,1987.A computational method for prediction and regionalization of permafrost.Arctic and Alpine Research,19(3):279–288.

    Nelson FE,Shiklomanov NI,Mueller GR,et al.,1997.Estimating active-layer thickness over a large region:Kuparuk River basin,Alaska,U.S.A..Arctic Antarctic and Alpine Research,29(4):367–378.

    Oku Y,Ishikawa H,Haginoya S,et al.,2006.Recent trends in land surface temperature on the Tibetan Plateau.Journal of Climate,19:2995–3003.DOI:http://dx.doi.org/10.1175/JCLI3811.1.

    Qi SZ,Luo F,2005.Water environmental degradation of the Heihe River Basin in arid northwestern China.Environmental Monitoring and Assessment,108:205–215.DOI:10.1007/s10661-005-3912-6.

    Qin DH,Chen ZL,Luo Y,et al.,2007.Updated understanding of climate change sciences.Advances in Climate Change Research,3(2):63–73.

    Shiklomanov NI,Nelson FE,1999.Analytic representation of the active layer thickness filed,Kuparuk River Basin,Alaska.Ecological Modelling,123:105–125.

    Shiklomanov NI,Nelson FE,2002.Active-layer mapping at regional scales:a 13-year spatial time series for the Kuparuk Region,North-Central Alaska.Permafrost and Periglacial Processes,13:219–230.DOI:10.1002/ppp.425.

    Solomon S,Qin D,Manning M,et al.(eds.),2007.Climate Change 2007:The Physical Science Basis.Cambridge University Press,Cambridge,UK.

    Steurer PM,1996.Comparison of probability distributions used in estimating the 100-year return period of the air-freezing index.Journal of Cold Regions Engineering,10:25–35.

    Steurer PM,Crandell JH,1995.Comparison of methods used to create an estimate of the air-freezing index.Journal of Cold Regions Engineering,9:64–74.

    U.S.Army/Air Force.1966.Arctic and subarctic construction:general provisions.U.S.Government Printing Office:Washington,DC.,USA.Technical Manual TM-852-1/AFM 88–19,48.

    van Everdingen R (ed.),1998.(revised 2005).Multi-Language Glossary of Permafrost and Related Ground-Ice Terms.National Snow and Ice Data Center/World Data Center for Glaciology.Boulder,CO.

    Wang J,Li S,2005.Impact of climate change on snowmelt runoff in the mountainous regions of Northest China.Science in China (Series D),35(7):664–670.

    Wang QC,Qin NS,Tang HY,et al.,2007.Study on climate change facts and their characteristics on Qinghai-Tibet Plateau in recent 44 years.Arid Zone Research,24(3):234–239.

    Wang QF,2013.Study on the relationship of soil seasonal freezing/thawing processes and permafrost with climate over the Heihe River Basin.Doctoral Thesis,University of Chinese Academy of Sciences,pp.74–76.

    Wei ZG,Huang RH,Dong WJ,2003.Interannual and interdecadal variations of air temperature and precipitation on Qinghai-Tibet Plateau.Chinese Journal of Atmospheric Sciences,27(2):157–170.

    Wu QB,Zhang T,Liu YZ,2011a.Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) railway from 2006 to 2010.The Cryosphere,5:2465–2481.DOI:10.5194/tcd-5-2465-2011.

    Wu TH,Wang QX,Zhao L,et al.,2011b.Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia.Cold Regions Science and Technology,69:105–111.DOI:10.1016/j.coldregions.2011.07.003.

    Wu TH,Zhao L,Li R,et al.,2013.Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau.International Journal of Climatology,33(4):920–930.DOI:10.1002/joc.3479.

    Wu TH,Zhao L,Li SX,et al.,2008.Freezing/thawing index variations during the last 40 years over the Tibet Plateau.Proceedings:the Ninth International Conference of Permafrost,Fairbanks,University of Alaska,pp.1969–1973.

    Zhai LX,2008.Climate change and the analysis of its impact on hydrology in northwest China.Doctoral Thesis,Lanzhou University,pp.29–34.

    Zhang H,2009.Impact of climate change and human activity on water resources in the Heihe River Basinn.M.S.Thesis,Lanzhou University,pp.12–29.

    Zhang T,Barry RG,Gilichinsky D,et al.,2001.An amplified signal of climatic change in soil temperatures during the last century at Irkutsk Russia.Climatic Change,49:41–76.DOI:10.1023/A:1010790203146.

    Zhang T,Frauenfeld OW,Serreze MC,et al.,2005.Spatial and temporal variability in active layer thickness over the Russian arctic drainage basin.Journal of Geophysical Research-Atmospheres,110:D16101.DOI:10.1029/2004JD005642.

    Zhang T,Osterkamp TE,Stamnes K,1997.Effect of climate on the active layer and permafrost on the North Slope of Alaska,U.S.A.Permafrost Periglacial Processes,8:45–47.DOI:10.1002/(SICI)1099-1530(199701)8:1<45:AID-PPP240>3.0.CO;2-K.

    Zhang T,Wang QF,Wu JC,et al.,2012.Preliminary investigation on permafrost distribution over the upper reaches of Heihe River Basin in western China.Proceedings of the 10th International Conference on Permafrost.Volume 4:International Contributions,Salekhard,Russia,pp.585–586.

    Zhao CC,Wang Y,Ding YJ,et al.,2011.Spatial-temporal variations of temperature and precipitation in northwestern China in recent 50 years.Plateau Meteorology,30(2):386–390.

    Zhao L,Wu QB,Marchenko SS,et al.,2010.Thermal state of permafrost and active layer in Central Asia during the international polar year.Permafrost and Periglacial Processes,21:198–207.DOI:10.1002/ppp.688.

    国产精品久久久久久精品古装| 极品人妻少妇av视频| 法律面前人人平等表现在哪些方面| 国产精品一区二区在线不卡| 男女下面插进去视频免费观看| 日韩免费av在线播放| 国产老妇伦熟女老妇高清| 欧美日韩黄片免| 久久久精品区二区三区| 成人特级黄色片久久久久久久 | 日本欧美视频一区| 人人妻人人爽人人添夜夜欢视频| 久久人妻福利社区极品人妻图片| 夜夜爽天天搞| a级毛片在线看网站| 母亲3免费完整高清在线观看| 午夜福利在线观看吧| 免费在线观看黄色视频的| 国产精品免费大片| 成人影院久久| av又黄又爽大尺度在线免费看| www.自偷自拍.com| 在线观看66精品国产| 久久精品亚洲精品国产色婷小说| 亚洲av成人一区二区三| 无限看片的www在线观看| 757午夜福利合集在线观看| 国产无遮挡羞羞视频在线观看| 91成人精品电影| av欧美777| 亚洲精品美女久久av网站| 99精国产麻豆久久婷婷| 亚洲av电影在线进入| 亚洲一码二码三码区别大吗| 免费观看av网站的网址| 69av精品久久久久久 | 我的亚洲天堂| 怎么达到女性高潮| 免费在线观看日本一区| 王馨瑶露胸无遮挡在线观看| 欧美精品啪啪一区二区三区| 久热爱精品视频在线9| 亚洲中文字幕日韩| 久久人人97超碰香蕉20202| 在线观看人妻少妇| 亚洲精品久久成人aⅴ小说| 精品少妇黑人巨大在线播放| 国产av精品麻豆| 色精品久久人妻99蜜桃| 99热网站在线观看| 国产aⅴ精品一区二区三区波| 美国免费a级毛片| 十八禁高潮呻吟视频| 国产男女超爽视频在线观看| 欧美成人免费av一区二区三区 | 无限看片的www在线观看| videos熟女内射| 国产av精品麻豆| 成人国语在线视频| 欧美精品亚洲一区二区| 男女床上黄色一级片免费看| 中文欧美无线码| 久久国产精品人妻蜜桃| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 在线 av 中文字幕| 亚洲色图av天堂| 在线亚洲精品国产二区图片欧美| 欧美在线黄色| 在线永久观看黄色视频| 高清视频免费观看一区二区| 欧美老熟妇乱子伦牲交| 黄片大片在线免费观看| 美女福利国产在线| 国产在线观看jvid| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清 | 亚洲av欧美aⅴ国产| 2018国产大陆天天弄谢| 久热爱精品视频在线9| 蜜桃在线观看..| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 老熟妇仑乱视频hdxx| 五月开心婷婷网| 国产成人一区二区三区免费视频网站| 久久精品亚洲熟妇少妇任你| 国产伦理片在线播放av一区| 国产欧美日韩综合在线一区二区| 久久精品亚洲精品国产色婷小说| 国产精品久久久人人做人人爽| 久久免费观看电影| 怎么达到女性高潮| 亚洲美女黄片视频| 麻豆av在线久日| 久久影院123| 精品一区二区三区视频在线观看免费 | 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 亚洲成人手机| 新久久久久国产一级毛片| 狠狠婷婷综合久久久久久88av| 国产单亲对白刺激| 国产日韩欧美视频二区| 五月开心婷婷网| 亚洲成a人片在线一区二区| 日韩免费高清中文字幕av| 国产又爽黄色视频| 久久性视频一级片| 欧美日韩亚洲国产一区二区在线观看 | 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 日韩制服丝袜自拍偷拍| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 91成人精品电影| 国产成人精品久久二区二区91| 大片电影免费在线观看免费| 久久婷婷成人综合色麻豆| 成人免费观看视频高清| 国产男女内射视频| 亚洲欧美一区二区三区久久| 国产精品国产高清国产av | 天堂中文最新版在线下载| 两性夫妻黄色片| 午夜成年电影在线免费观看| 欧美国产精品va在线观看不卡| 久久精品国产a三级三级三级| 91精品三级在线观看| 亚洲一区二区三区欧美精品| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 国产淫语在线视频| 少妇被粗大的猛进出69影院| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区四区五区乱码| 久久影院123| 欧美日韩国产mv在线观看视频| 亚洲精品在线美女| 另类亚洲欧美激情| 男女免费视频国产| 亚洲国产av影院在线观看| 亚洲成人手机| 久久毛片免费看一区二区三区| 国产黄色免费在线视频| 日日爽夜夜爽网站| 久久亚洲精品不卡| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 色精品久久人妻99蜜桃| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 男人操女人黄网站| 久久久久网色| 日韩三级视频一区二区三区| 法律面前人人平等表现在哪些方面| 另类精品久久| 一夜夜www| 中文字幕最新亚洲高清| 国产亚洲精品第一综合不卡| 国产精品偷伦视频观看了| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| 欧美乱码精品一区二区三区| 亚洲男人天堂网一区| 日本wwww免费看| 757午夜福利合集在线观看| 亚洲,欧美精品.| 日本wwww免费看| 美女国产高潮福利片在线看| 性高湖久久久久久久久免费观看| 伦理电影免费视频| 一个人免费看片子| 99精品久久久久人妻精品| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 久久久久久亚洲精品国产蜜桃av| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| 精品人妻在线不人妻| a级毛片在线看网站| 别揉我奶头~嗯~啊~动态视频| 午夜福利,免费看| 免费观看人在逋| 别揉我奶头~嗯~啊~动态视频| 丰满迷人的少妇在线观看| 九色亚洲精品在线播放| 另类亚洲欧美激情| tocl精华| 精品国内亚洲2022精品成人 | 少妇猛男粗大的猛烈进出视频| 日韩免费高清中文字幕av| 悠悠久久av| 18禁国产床啪视频网站| 18在线观看网站| 午夜成年电影在线免费观看| 欧美精品亚洲一区二区| 在线观看一区二区三区激情| 欧美在线一区亚洲| 国产单亲对白刺激| 中文字幕精品免费在线观看视频| 丝袜喷水一区| 中文字幕人妻丝袜制服| bbb黄色大片| 色视频在线一区二区三区| 久久久久久免费高清国产稀缺| 成年动漫av网址| 国产福利在线免费观看视频| av网站在线播放免费| 一区二区三区乱码不卡18| 久久久久久久大尺度免费视频| 国产主播在线观看一区二区| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕 | 久久午夜综合久久蜜桃| 在线观看www视频免费| 高清视频免费观看一区二区| 日韩大码丰满熟妇| 国产在线精品亚洲第一网站| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 高清毛片免费观看视频网站 | 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 99久久精品国产亚洲精品| 咕卡用的链子| 久久久国产欧美日韩av| 极品教师在线免费播放| 91麻豆av在线| 久久精品亚洲熟妇少妇任你| 久久久久久久国产电影| 人人妻人人爽人人添夜夜欢视频| 国产黄频视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 黄色成人免费大全| 亚洲成av片中文字幕在线观看| 操出白浆在线播放| 啦啦啦在线免费观看视频4| 在线观看免费视频日本深夜| 搡老岳熟女国产| 中文字幕另类日韩欧美亚洲嫩草| 一区二区av电影网| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 国产一区二区三区在线臀色熟女 | 国产在线观看jvid| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 脱女人内裤的视频| 久久婷婷成人综合色麻豆| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 国产片内射在线| 中文字幕精品免费在线观看视频| 亚洲国产毛片av蜜桃av| 国产福利在线免费观看视频| 大码成人一级视频| 97人妻天天添夜夜摸| 亚洲成av片中文字幕在线观看| 国产黄频视频在线观看| 精品国产乱子伦一区二区三区| 老汉色∧v一级毛片| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 久久人人97超碰香蕉20202| 捣出白浆h1v1| 久9热在线精品视频| 亚洲 欧美一区二区三区| 亚洲全国av大片| 在线天堂中文资源库| 视频区图区小说| 丁香六月欧美| av天堂在线播放| videosex国产| 亚洲第一欧美日韩一区二区三区 | 欧美av亚洲av综合av国产av| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一小说 | 日本av手机在线免费观看| 亚洲专区中文字幕在线| 黑丝袜美女国产一区| aaaaa片日本免费| 咕卡用的链子| 国产日韩欧美在线精品| 69av精品久久久久久 | 涩涩av久久男人的天堂| 精品国产乱码久久久久久男人| 亚洲欧洲日产国产| 丰满饥渴人妻一区二区三| 1024香蕉在线观看| 91国产中文字幕| 国产一区二区 视频在线| 国产精品久久久久久精品古装| videosex国产| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 日韩视频在线欧美| a级毛片在线看网站| 一级毛片女人18水好多| 久久人人97超碰香蕉20202| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 手机成人av网站| 他把我摸到了高潮在线观看 | 在线 av 中文字幕| 少妇被粗大的猛进出69影院| 最黄视频免费看| 美国免费a级毛片| h视频一区二区三区| 69精品国产乱码久久久| 99九九在线精品视频| 国产91精品成人一区二区三区 | 日韩中文字幕欧美一区二区| 精品人妻熟女毛片av久久网站| 免费在线观看黄色视频的| 国产亚洲精品一区二区www | 国产精品国产av在线观看| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| 亚洲欧美色中文字幕在线| 日本wwww免费看| 午夜精品国产一区二区电影| 一进一出抽搐动态| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久 | av不卡在线播放| 国产精品av久久久久免费| 大片免费播放器 马上看| 日韩三级视频一区二区三区| 日日摸夜夜添夜夜添小说| 老汉色av国产亚洲站长工具| 国产av国产精品国产| 亚洲久久久国产精品| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 人人妻人人添人人爽欧美一区卜| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频 | 国产精品久久久久成人av| 久久国产精品大桥未久av| 少妇猛男粗大的猛烈进出视频| 岛国毛片在线播放| 精品少妇内射三级| 国产男女超爽视频在线观看| 国产亚洲精品一区二区www | 成人三级做爰电影| 美女午夜性视频免费| 少妇的丰满在线观看| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 亚洲精品在线观看二区| 首页视频小说图片口味搜索| 国产xxxxx性猛交| 老司机午夜福利在线观看视频 | 日本wwww免费看| 成人国产一区最新在线观看| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| 日韩中文字幕视频在线看片| av在线播放免费不卡| 欧美日韩亚洲国产一区二区在线观看 | 超碰97精品在线观看| 大香蕉久久成人网| 成人av一区二区三区在线看| 视频区图区小说| www.自偷自拍.com| 十分钟在线观看高清视频www| 精品亚洲成a人片在线观看| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| e午夜精品久久久久久久| 亚洲美女黄片视频| 欧美日韩亚洲国产一区二区在线观看 | 纯流量卡能插随身wifi吗| 日韩有码中文字幕| 精品人妻1区二区| 桃花免费在线播放| 国产又色又爽无遮挡免费看| www.熟女人妻精品国产| 亚洲av美国av| 中文字幕av电影在线播放| 女性生殖器流出的白浆| 精品久久久精品久久久| 国产精品av久久久久免费| 一本大道久久a久久精品| 日本a在线网址| 女性被躁到高潮视频| 久久久久久久精品吃奶| 麻豆乱淫一区二区| 国产av又大| 亚洲国产欧美日韩在线播放| 久久这里只有精品19| 新久久久久国产一级毛片| 一本色道久久久久久精品综合| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 美女午夜性视频免费| 性少妇av在线| 亚洲精品中文字幕在线视频| svipshipincom国产片| 亚洲av成人不卡在线观看播放网| 久久久久久久精品吃奶| 高潮久久久久久久久久久不卡| avwww免费| 久久久久视频综合| 嫩草影视91久久| 日韩有码中文字幕| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av高清一级| 久久 成人 亚洲| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站| 亚洲全国av大片| 中文欧美无线码| 精品福利观看| 久久婷婷成人综合色麻豆| 免费看十八禁软件| 久久精品亚洲熟妇少妇任你| 成人亚洲精品一区在线观看| 9色porny在线观看| 精品视频人人做人人爽| 女人精品久久久久毛片| 天天操日日干夜夜撸| 久久久久久久久久久久大奶| 精品高清国产在线一区| 亚洲成人国产一区在线观看| 久久久久久亚洲精品国产蜜桃av| 女人被躁到高潮嗷嗷叫费观| 最新的欧美精品一区二区| 欧美性长视频在线观看| 人人妻人人澡人人爽人人夜夜| 人人澡人人妻人| 精品人妻在线不人妻| 老司机午夜福利在线观看视频 | 国产精品.久久久| 91老司机精品| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产色婷婷电影| 日韩 欧美 亚洲 中文字幕| 久久久久视频综合| 久久久欧美国产精品| 黄色a级毛片大全视频| 成年人免费黄色播放视频| 亚洲欧美一区二区三区久久| av网站免费在线观看视频| 动漫黄色视频在线观看| 极品人妻少妇av视频| 国产真人三级小视频在线观看| 在线播放国产精品三级| 亚洲熟妇熟女久久| 亚洲自偷自拍图片 自拍| 色精品久久人妻99蜜桃| 亚洲国产成人一精品久久久| 成人国语在线视频| 国产免费av片在线观看野外av| 久久人妻av系列| 岛国毛片在线播放| 热99国产精品久久久久久7| 亚洲精品自拍成人| 一区二区三区激情视频| 人人妻人人澡人人看| 在线观看一区二区三区激情| 国产aⅴ精品一区二区三区波| 国产精品九九99| 我要看黄色一级片免费的| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 99久久精品国产亚洲精品| 在线观看免费视频网站a站| 国产一区二区 视频在线| 视频区欧美日本亚洲| 老司机亚洲免费影院| 超色免费av| 嫩草影视91久久| 亚洲综合色网址| 宅男免费午夜| 国产成人精品久久二区二区免费| 人成视频在线观看免费观看| 美女视频免费永久观看网站| 首页视频小说图片口味搜索| 久久中文看片网| 丝袜美足系列| a级毛片在线看网站| 少妇粗大呻吟视频| 91麻豆av在线| 99re6热这里在线精品视频| 精品久久久精品久久久| 丝袜人妻中文字幕| 国产深夜福利视频在线观看| 午夜成年电影在线免费观看| 国产一区二区激情短视频| www日本在线高清视频| 亚洲人成电影观看| 好男人电影高清在线观看| 高清av免费在线| 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 黄片大片在线免费观看| 免费看a级黄色片| 国产片内射在线| 国产免费现黄频在线看| 午夜激情av网站| 日韩有码中文字幕| 在线观看免费视频网站a站| 亚洲 欧美一区二区三区| 国产免费福利视频在线观看| 蜜桃国产av成人99| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 老司机深夜福利视频在线观看| 91国产中文字幕| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 狠狠婷婷综合久久久久久88av| 成人特级黄色片久久久久久久 | 国产欧美日韩一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲久久久国产精品| 亚洲自偷自拍图片 自拍| 久久精品亚洲av国产电影网| 大型黄色视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 人妻 亚洲 视频| 亚洲成人手机| 又大又爽又粗| videos熟女内射| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久5区| 亚洲精品在线美女| 精品欧美一区二区三区在线| 亚洲熟妇熟女久久| 欧美日韩av久久| 99久久国产精品久久久| 考比视频在线观看| 欧美日韩国产mv在线观看视频| a在线观看视频网站| 国产亚洲精品第一综合不卡| 人人澡人人妻人| 亚洲精品中文字幕一二三四区 | 大码成人一级视频| 国产一区二区三区综合在线观看| 久久精品亚洲熟妇少妇任你| 美女主播在线视频| 国产主播在线观看一区二区| 丝袜美足系列| 十八禁人妻一区二区| 精品亚洲成国产av| 色视频在线一区二区三区| 在线看a的网站| 纯流量卡能插随身wifi吗| 夫妻午夜视频| 成人亚洲精品一区在线观看| 女同久久另类99精品国产91| 欧美黄色淫秽网站| 人妻一区二区av| 成人永久免费在线观看视频 | 无遮挡黄片免费观看| 淫妇啪啪啪对白视频| 狠狠狠狠99中文字幕| 久久久久久久国产电影| av一本久久久久| 国内毛片毛片毛片毛片毛片| 欧美亚洲日本最大视频资源| 大片电影免费在线观看免费| videosex国产| 亚洲欧美精品综合一区二区三区| 久久久国产成人免费| 一区二区日韩欧美中文字幕| 久久精品国产综合久久久| 91国产中文字幕| 精品国产一区二区三区四区第35| 久久 成人 亚洲| 又大又爽又粗| 国产在线观看jvid| 国产成人免费无遮挡视频| 男女下面插进去视频免费观看| 久久人人97超碰香蕉20202| 久久ye,这里只有精品| 肉色欧美久久久久久久蜜桃| 国产高清视频在线播放一区| 黑人猛操日本美女一级片| 欧美日韩亚洲综合一区二区三区_| 国产一区二区三区视频了| www.精华液| 99国产综合亚洲精品| 丝袜在线中文字幕| 免费av中文字幕在线| 亚洲九九香蕉| 女人被躁到高潮嗷嗷叫费观| 高清在线国产一区| 欧美激情高清一区二区三区| 久久久久久免费高清国产稀缺| 亚洲精品国产一区二区精华液| 国产一区二区三区在线臀色熟女 | 国产精品一区二区精品视频观看| 99热网站在线观看| 国产欧美日韩精品亚洲av| 亚洲欧美精品综合一区二区三区| 成人国产av品久久久| 午夜免费鲁丝| 久久免费观看电影|