• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    2014-12-15 11:38:02JiePanWeiJiaoLiuChaoHuaLiLiWangDongWanJunBoGong
    Cancer Biology & Medicine 2014年2期

    Jie Pan, Wei-Jiao Liu, Chao Hua, Li-Li Wang, Dong Wan, Jun-Bo Gong

    1State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering,Tianjin Polytechnic University, Tianjin 300387, China; 2Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China; 3Department of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

    Introduction

    With the advances in molecular and cellular techniques, research about the diagnosis of disease has been directed toward the underlying molecular and genomic aberrations, rather than toward clinical signs and symptoms alone.Molecular imaging is a developing research discipline aimed at visually characterizing normal and pathologic processes in living organisms at the cellular and molecular levels1-4.Modalities used in molecular imaging includes positron emission tomography, magnetic resonance imaging, single-photon emission computed tomography, optical imaging, and ultrasound5.These modalities differ in terms of spatial resolution, temporal resolution,sensitivity in probe detection, depth of signal penetration,availability of biocompatible molecular imaging agents, and cost.Optical imaging, an emerging molecular imaging mode,is based on the detection of photons after their interaction with the tissue.This technique has high sensitivity and spatial resolution, features fast and easy to perform procedures, and requires inexpensive and available optical reporters and dyes for simultaneous imaging of multiple processes3.As an optical approach, fluorescence imaging is used for molecular imaging.

    As hydroxyapatite (HAP) is the main inorganic component of bones and teeth of humans and animals, it exhibits good biocompatibility in biological applications6-8.HAP doped with rare earth elements has been used as luminescent materials for biological imaging8-17.Hui et al.16used a hydrothermal approach to dope rare earth elements with fluorine ions to fabricate fluoridated HAP nanocrystals, which demonstrated excellent luminescent properties for biological imaging.The quenching of the excited state of rare earth elements is caused by ?OH ions in the lattice, which were replaced with F?ions to prepare materials with low vibrational energies for rare earth fluorescent transition8.Hui et al.16described doped HAP nanoparticles (NPs) as fluorescing probes with excellent biocompatibility, good biodegradability, and prominent luminescent features.Compared to traditional fluorescent dyes, doped HAP NPs exhibit high fluorescence intensity,enhanced photostability, improved stability, and high resistance to photobleaching.Quantum dots (QDs) have been widely used as luminescence probes.QDs have various advantages,including tunable emission from visible to infrared wavelengths by changing their size and composition, broad excitation spectra because of high absorption coefficients, high quantum yield of fluorescence, strong brightness, photostability, and high resistance to photobleaching18-20.Although QDs are suitable for biological imaging, they exhibit toxicity caused by the oxidative degradation of their heavy metal contents, thereby limiting their applications in biological fields21-23.The toxicity of QDs can only be partly resolved through surface modification or encapsulation in biodegradable NPs24-29.As an alternative to QDs, fluoridated HAP:Ln3+NPs present lower toxicity; these NPs are also inexpensive and feature anti-corrosion properties.Therefore,fluoridated HAP:Ln3+NPs can be potentially used for molecular imaging.

    Targeted molecular imaging of cancer is generally achieved through passive and active targeting30-33.In passive targeting,probes accumulate at tumor sites through an enhanced permeability and retention effect, which can be attributed to two factors34-36.First, angiogenic tumors produce vascular endothelial growth factor, which hyperpermeabilizes tumorassociated neovasculature and results in the leakage of circulating probes.Second, tumors lack an effective lymphatic drainage system, which causes subsequent probe accumulation33.In active targeting, targeting agents, such as ligands, attach on the surface of small particles through various conjugation mechanisms2,33,37,38.The targeted probes can recognize and bind to specific ligands unique to cancer cells; subsequently, the probes largely accumulate in cancer cells while minimizing distribution in noncancerous cells adjacent to the targeted tissue.Although active targeting is superior in molecular imaging, it is limited for clinical applications because of patient-to-patient variation in receptor expression levels and non-specific expression of receptors in normal tissues.Unlike active targeting, magnetic targeting utilizes magnetic field to accumulate magnetic probes in the cellular area where the magnet is placed39-47.Magnetic targeting is a general targeting approach because it is based on physical interactions and not limited by specific receptor expression.Gu et al.46fabricated magnetic mesoporous silica nanoparticles(M-MSNs) and found that the internalization of M-MSNs by A549 cancer cells could be accelerated and enhanced under magnetic field; the internalization is mainly through an energydependent pathway, namely, clathrin-induced endocytosis,rather than passive diffusion or magnetic pull-down process.

    In this study, a facile method was used to fabricate novel nanocomposites for magnetic targeted cellular imaging of cancer.Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers[such as poly(D,L-lactide-co-glycolide), PLGA] via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide.The fabricated composite can be used to improve specificity and sensitivity of cellular imaging through magnetic targeting.In this study, an external magnetic field was used for targeting to allow the nanocomposites to be as close as possible to A549 cancer cells.Most nanocomposites around A549 cells can be internalized by the cells via an energy-dependent pathway.This study utilizes magnetic field to achieve targeted cellular imaging of cancer with fluoridated Ln3+-HAP NPs for cancer diagnosis.The scheme of synthesis and applications of fluoridated Ln3+-HAP/IOs PLGA nanocomposites is presented in Figure 1.

    Materials and methods

    Materials

    Ca(NO3)2·4H2O, Na3PO4·12H2O, NaF, NaOH, octadecylamine,oleic acid, ethanol, cyclohexane, FeSO4·(NH4)2SO4·6H2O,dichloromethane (DCM), and PVA (MW: 30,000-70,000) were obtained from Beijing Chemical Reagents Company (China).Eu(NO3)3·6H2O, Tb(NO3)3·6H2O, and PLGA (L:G molar ratio:75:25, MW: 100,000-130,000) were purchased from Sigma(St.Louis, MO, USA).Dulbecco’s modified Eagle’s medium(DMEM), antibiotics (penicillin-streptomycin solution), Triton X-100, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), diethyl ether, chloroform, and cholesterol were purchased from Sigma-Aldrich (St.Louis, MO, USA).Fetal bovine serum (FBS) was purchased from Gibco (Life Technologies, AG, Switzerland).Millipore water was produced using the Milli-Q Plus System (Millipore Corporation, Bedford,USA).

    Figure 1 Scheme of the synthesis and applications of the fluoridated Ln3+-HAP/IOs PLGA nanocomposites.

    Preparation of fluoridated Ln3+-HAP (Ln = Eu or Tb) NPs

    Fluoridated Ln3+-HAP NPs were prepared using the protocol described in the literature8.Briefly, octadecylamine (0.5 g)were dissolved in oleic acid, (4 mL) in a Teflon-lined autoclave(50 mL).The solution was mixed with ethanol (16 mL) and an aqueous solution of Ca(NO3)2(0.28 M, 7 mL) under agitation.The solution was then added with aqueous solutions of Eu(NO3)3or Tb(NO3)3(0.28 M, 0.7 mL), NaF (0.28 M,1.4 mL), and Na3PO4(0.16 M, 7 mL).The mixture was agitated for 5 min, sealed, and hydrothermally treated at 180 ℃ for 12 h.The obtained fluoridated Ln3+-HAP NPs were collected through centrifugation and washed several times with cyclohexane and ethanol.

    Preparation of IOs

    IOs were fabricated according to the method reported in the literature48.Briefly, 0.6275 g of FeSO4·(NH4)2SO4·6H2O was dissolved in 16 mL of water.The solution was mixed with 0.8 g of NaOH, 8 mL of oleic acid and 8 mL of ethanol under stirring at room temperature.The solution was then added with an aqueous solution of FeSO4·(NH4)2SO4·6H2O.The mixed reactants were then transferred to a 50 mL sealed autoclave and heated at 180 ℃for 10 h.The products were collected through centrifugation and washed at least 3 times with cyclohexane and ethanol.Finally,IOs were obtained through drying and stored for further use.

    Preparation of fluoridated Ln3+-HAP/IOs PLGA nanocomposites

    Fluoridated Ln3+-HAP/IOs PLGA nanocomposites were prepared through a modified solvent exaction/evaporation technique.Briefly, 30 mg of the mixture of fluoridated Ln3+-HAP NPs and IOs (2:1, 1:1, and 1:2; mass ratio) were dissolved in 4 mL of DCM containing 50 mg of PLGA.The solution was added to 60 mL of aqueous solution with 300 mg of PVA.The mixture was then sonicated for 100 s at 75 W.The emulsion was agitated overnight to evaporate DCM.The formed suspension was centrifuged with deionized water.Finally, fluoridated Ln3+-HAP/IOs PLGA nanocomposites were obtained through centrifugation.

    Characterization

    The morphologies of the nanocomposites were observed with a HITACHI H-7650B transmission electron microscope (TEM)at 100 kV and a FEI Tecnai G2 F20 S-Twin high-resolution TEM at 200 kV.The nanocomposite suspension was dropped on the surface of copper grid with carbon film and dried at room temperature.The fluorescence spectra of the nanocomposites were recorded using a HITACHI F-4500 fluorescence spectrophotometer with an excitation wavelength of 405 and 488 nm for the fluoridated Eu3+-HAP/IOs PLGA nanocomposites and fluoridated Tb3+-HAP/IOs PLGA nanocomposites, respectively.The magnetic properties of the fluoridated Ln3+-HAP/IOs PLGA nanocomposites were determined with a vibrating sample magnetometer (VSM) at room temperature.Dried nanocomposites of known mass were placed in non-magnetic aluminum sheet and then subjected to varied magnetic fields that ranged from ?2×104to 2×104Oe.

    Cell experiments

    Cell culture

    Human cervical HeLa cell line A549 were obtained from the American Type Culture Collection.All cell culture related reagents were purchased from Invitrogen.The cells were grown in DMEM with 10% FBS and 1% penicillin/streptomycin.The fluoridated Ln3+-HAP/IOs PLGA nanocomposites containing a 1:1 mass ratio of the fluoridated Eu3+-HAP and IOs were used for cell experiments.

    Cytotoxicity of nanocomposites

    The viability of A549 cells incubated with the nanocomposites was evaluated with MTT assay.Briefly, the cells were seeded in 96-well microplates at a density of 5×104cells/mL.After 24 h of cell attachment, the cells were incubated with 10, 20, 40, 80, 150, and 300 μg/mL nanocomposites for 8 and 24 h.The nanocomposites were then removed, and the cells were washed with PBS three times.The wells were washed twice with PBS and added with 10 μL of MTT supplemented with a culture medium.After 4 h of incubation, the culture medium was removed and the precipitate was dissolved in isopropanol.The absorbance of the wells was determined with a microplate reader (VictorШ, Perkin-Elmer)with a wavelength of 570 nm and reference wavelength of 620 nm.Cell viability was calculated with the following equation:

    where Intsis the absorbance intensity of the cells incubated with the nanocomposites suspension and Intcontrolis the absorbance intensity of the cells incubated with the incubation medium only(positive control).

    Magnetic targeted cellular imaging

    A549 cells were maintained at 37 ℃ in a culture medium under a humidified condition of 5% CO2.On the day prior to treatment,the cells were seeded in a glass bottom dish with a density of 50,000 cells/mL.For magnetic targeted cellular imaging, a cubic permanent magnet (1.3T) was placed under the edge of the dish and the cells were incubated with 250 μg/mL nanocomposites for 2 h at 37 ℃.Control groups were incubated with the nanocomposites at the same concentration for 2 h without the magnetic field.The cells were then washed with PBS, and the nuclei were stained with 4',6-diamidino-2-phenylindole dihydrochloride for 30 min.The stained cells were washed twice with PBS, and cell images were obtained using a confocal laser scanning microscope (CLSM, Zeiss 710 3-channel; Zeiss,Germany) with an excitation wavelength of 405 nm.

    Results and discussion

    Charactarization of fluoridated Ln3+-HAP/IOs PLGA nanocomposites

    Surface morphology

    Figure 2 (A) TEM image of hydrophobic fluoridated Eu3+-HAP NPs.(B) TEM image of hydrophobic IOs.(C) XRD patterns of fluoridated Eu3+-HAP NPs.(D) XRD patterns of IOs.TEM, transmission electron microscope; HAP, hydroxyapatite; NP, nanoparticle; IO, iron oxide.

    The TEM images of fluoridated Eu3+-HAP NPs and IOs are shown in Figure 2A,B.The length of the fluoridated Eu3+-HAP NPs is about 100 nm, the size of IOs is around 8 nm, and both are well monodispersed.Figure 2C,D represent the XRD patterns of fluoridated Eu3+-HAP NPs and IOs, respectively.The XRD image of fluoridated Eu3+-HAP NPs shows the absence of impurities in the final products, thereby demonstrating that Eu3+has been successfully doped into HAP.The XRD image of IOs displays that the final product is a pure phase of IOs.Figure 3A-C show the TEM images of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites with different Eu3+-HAP and IOs mass ratios (2:1, 1:1, and 1:2).These nanocomposites are dispersed as individual nanocomposite with a uniform size of about 200 nm in diameter under each ratio.Figure 3D displays the high-resolution TEM image of the nanocomposite at 1:1 mass ratio of fluoridated Eu3+-HAP and IOs.Fluoridated Eu3+-HAP and IOs can be well encapsulated into PLGA NPs, and the encapsulation does not result in morphological changes.The EDS map in Figure 4 presents the element distribution of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites,thereby demonstrating that fluoridated Eu3+-HAP and IOs can be well encapsulated into PLGA NPs.The nanocomposites with fluoridated Eu3+-HAP and IOs at a mass ratio of 1:1 were used for the following study because of their fluorescence and magnetic property.

    Figure 3 TEM images of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites under different mass ratios of fluoridated Eu3+-HAP and IOs.(A) 2:1.(B) 1:1.(C)1:2.(D) HTEM image of the fluoridated Ln3+-HAP/IOs PLGA nanocomposites at 1:1 mass ratio of fluoridated Eu3+-HAP and IOs.TEM, transmission electron microscope; HAP, hydroxyapatite; IO, iron oxide.

    Emission spectrum

    The emission spectra of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites and fluoridated Tb3+-HAP/IOs PLGA nanocomposites in water are demonstrated in Figure 5.The emission spectrum of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites was determined from 550 to 750 nm under 405 nm excitation (Figure 5A), and the main emission peak of nanocomposites is located at 615 nm.Figure 5B shows the emission spectrum of the fluoridated Tb3+-HAP/IOs PLGA nanocomposites under 488 nm exitation, and the main emission peak is located at 548 nm.The spectra of the fluoridated Ln3+-HAP/IOs PLGA nanocomposites demonstrate that the strong fluorescence of the nanocomposites remains, despite the encapsulation of fluoridated Ln3+-HAP NPs into PLGA NPs.As the nanocomposites are stable with the existence of IOs, they are considered suitable for targeted cellular imaging.

    Magnetic property

    Figure 4 EDS map of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites.HAP, hydroxyapatite; IO, iron oxide.

    The magnetic properties of IOs and the fluoridated Eu3+-HAP/IOs PLGA nanocomposites were obtained with a VSM.The hysteresis M–H curves are shown in Figure 6.Saturation magnetizations are 38.4 and 11.5 emu/g for IOs and the nanocomposites, respectively.The decrease in saturation magnetization for the nanocomposites may be due to the encapsulation of the PLGA matrix..

    Figure 5 (A) Luminescent spectrum of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites under excitation at 405 nm.(B) Luminescent spectrum of the fluoridated Tb3+-HAP/IOs PLGA nanocomposites under excitation at 488 nm.HAP, hydroxyapatite; IO, iron oxide.

    Figure 6 Hysteresis curve at room temperature.(A) Hydrophobic IOs NPs.(B) Fluoridated Eu3+-HAP/IOs PLGA nanocomposites.IO, iron oxide; NP,nanoparticle; HAP, hydroxyapatite.

    In vitro cytotoxicity of nanocomposites

    The cytotoxity of the fluoridated Ln3+-HAP/IOs PLGA nanocomposites to A549 cells was evaluated using MTT assay to examine their suitability for biological applications.Figure 7 shows that the fluoridated Ln3+-HAP/IOs PLGA nanocomposites display low cytotoxicity to A549 cells.The cell viability values are higher than 90% even when the concentration of the nanocomposites reached 300 μg/mL.This finding further confirms the low toxicity of the nanocomposites.Therefore, the fluoridated Ln3+-HAP/IOs PLGA nanocomposites could be potentially used for biological applications.

    Magnetic targeted cellular imaging

    The application of the fluoridated Ln3+-HAP/IOs PLGA nanocomposites for magnetic targeted cellular imaging was investigated with CLSM with or without magnetic field.Figure 8 demonstrates the CLSM images of A549 cells incubated with 250 μg/mL fluoridated Eu3+-HAP/IOs PLGA nanocomposites at 37 ℃ for 2 h without the magnetic field (Row 1) and under a magnetic field of 1.3T (Row 2).The CLSM images in red channel in Figure 8 show the fluorescence images of fluoridated Eu-HAP NPs at an excitation wavelength of 405 nm.The enhanced fluoresence signals in Row 2 reveal the high cellular uptake of the fluoridated Eu3+-HAP/IOs PLGA nanocomposites under external magnetic field for 2 h, whereas fluoresence signals are low witout external magnetic field (Row 1).The enhanced uptake of the nanocomposites by A549 cancer cells under magnetic field may result from the internalization of A549 cells via an energy-dependent pathway.These findings indicate that the fluoridated Eu3+-HAP/IOs PLGA nanocomposites can be efficiently used for magnetic targeted cellular imaging of cancer.

    Figure 7 Cell viability of A549 cells at 37 ℃ under different nanocomposite concentrations.(A) Fluoridated Eu3+-HAP/IOs PLGA nanocomposites cultured for 8 h.(B) Fluoridated Tb3+-HAP/IOs PLGA nanocomposites cultured for 8 h.(C) Fluoridated Eu3+-HAP/IOs PLGA nanocomposites cultured for 24 h.(D)Fluoridated Tb3+-HAP/IOs PLGA nanocomposites cultured for 24 h.HAP,hydroxyapatite; IO, iron oxide.

    Figure 8 Confocal laser scanning microscopy images of A549 cells incubated with 250 μg/mL fluoridated Eu3+-HAP/IOs PLGA nanocomposites at 37 ℃ for 2 h without magnetic field (Row 1) and under a magnetic field of 1.3T (Row 2).(A) The blue channel with excitation at 340 nm.(B) The red channel with excitation at 405 nm.(C)The combined red and blue channels.HAP, hydroxyapatite; IO, iron oxide.

    Conclusion

    Fluoridated Ln3+-HAP/IOs PLGA nanocomposites were prepared through a modified solvent exaction/evaporation technique.The fabricated nanocomposites show excellent photoluminescence, magnetic properties, and stability in aqueous solutions.Thus, the composites are suitable for targeted cellular imaging.The results of in vitro experiments further confirm that the nanocomposites exhibit low toxicity and can be successfully applied to improve the specificity and sensitivity of cellular imaging under magnetic field.The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specification and enhanced selection.

    Acknowledgements

    This work was supported by National Natural Science Foundation of China (Grant No.21506161, 31270019),National Key Basic Research Program of China (973 Program)(Grant No.2011CB933100, 2011CB932402), Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No.2014A030306036) and open funds from the Key Laboratory of Biomedical Materials in Tianjin.

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    1.Jaffer FA, Weissleder R.Molecular imaging in the clinical arena.JAMA 2005;293:855-862.

    2.Wang X, Yang L, Chen ZG, Shin DM.Application of nanotechnology in cancer therapy and imaging.CA Cancer J Clin 2008;58:97-110.

    3.Weissleder R.Molecular imaging in cancer.Science 2006;312:1168-1171.

    4.Weissleder R, Pittet MJ.Imaging in the era of molecular oncology.Nature 2008;452:580-589.

    5.Louie A.Multimodality imaging probes: design and challenges.Chem Rev 2010;110:3146-3195.

    6.Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI.Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel.Chem Rev 2008;108:4754-4783.

    7.Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR,Duffy GP, et al.Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation.Adv Mater 2012;24:749-754.

    8.Hui J, Wang X.Luminescent, colloidal, F-substituted,hydroxyapatite nanocrystals.Chemistry 2011;17:6926-6930.

    9.Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX.The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.Biomaterials 2011;32:9031-9039.

    10.Ciobanu CS, Iconaru SL, Massuyeau F, Constantin LV, Costescu A, Predoi D.Synthesis, Structure, and Luminescent Properties of Europium-Doped Hydroxyapatite Nanocrystalline Powders.J Nanomater 2012;2012.Available online: http://www.hindawi.com/journals/jnm/2012/942801/

    11.Graeve OA, Kanakala R, Madadi A, Williams BC, Glass KC.Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions.Biomaterials 2010;31:4259-4267.

    12.Han Y, Wang X, Dai H, Li S.Synthesis and luminescence of Eu3+doped hydroxyapatite nanocrystallines: Effects of calcinations and Eu3+ content.J Lumin 2013;135:281-287.

    13.Hasna K, Kumar SS, Komath M, Varma MR, Jayaraj MK, Kumar KR.Synthesis of chemically pure, luminescent Eu3+ doped HAp nanoparticles: a promising fluorescent probe for in vivo imaging applications.Phys Chem Chem Phys 2013;15:8106-8111.

    14.Liu M, Liu H, Sun S, Li X, Zhou Y, Hou Z, et al.Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging.Langmuir 2014;30:1176-1182.

    15.Pan J, Wan D, Bian Y, Sun H, Zhang C, Jin F, et al.Fluorescent Hydroxyapatite-Loaded Biodegradable Polymer Nanoparticles with Folate Decoration for Targeted Imaging.AICHE J 2013;59:4494-4501.

    16.Hui J, Zhang X, Zhang Z, Wang S, Tao L, Wei Y, et al.Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging.Nanoscale 2012;4:6967-6970.

    17.Pan J, Zhang J, Wang L, Wan D.Synthesis of iron oxide coated fluoridated HAp/Ln3+ (Ln = Eu or Tb) nanocomposites for biological applications.Chem Commun (Camb)2014;50:14010-14012.

    18.Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al.Quantum dots for live cells, in vivo imaging, and diagnostics.Science 2005;307:538-544.

    19.Alivisatos AP, Gu W, Larabell C.Quantum dots as cellular probes.Annu Rev Biomed Eng 2005;7:55-76.

    20.Smith AM, Duan H, Mohs AM, Nie S.Bioconjugated quantum dots for in vivo molecular and cellular imaging.Adv Drug Deliv Rev 2008;60:1226-1240.

    21.Kirchner C, Liedl T, Kudera S, Pellegrino T, Mu?oz Javier A,Gaub HE, et al.Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles.Nano Lett 2005;5:331-338.

    22.Derfus AM, Chan WC, Bhatia SN.Probing the Cytotoxicity of Semiconductor Quantum Dots.Nano Lett 2004;4:11-18.

    23.Celik A, C?meleko?lu U, Yalin S.A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis.Toxicol Ind Health 2005;21:243-248.

    24.Liu Y, Mi Y, Zhao J, Feng SS.Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents.Int J Pharm 2011;421:370-378.

    25.Muthu MS, Kulkarni SA, Raju A, Feng SS.Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots.Biomaterials 2012;33:3494-3501.

    26.Pan J, Feng SS.Targeting and imaging cancer cells by folatedecorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers.Biomaterials 2009;30:1176-1183.

    27.Pan J, Liu Y, Feng SS.Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment.Nanomedicine (Lond) 2010;5:347-360.

    28.Pan J, Mi Y, Wan D, Liu Y, Feng SS, Gong J.PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging.Chem Commun 2011;47:12886.

    29.Pan J, Wang Y, Feng SS.Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging.Biotechnol Bioeng 2008;101:622-633.

    30.Cho K, Wang X, Nie S, Chen ZG, Shin DM.Therapeutic nanoparticles for drug delivery in cancer.Clin Cancer Res 2008;14:1310-1316.

    31.Danhier F, Feron O, Préat V.To exploit the tumor microenvironment:Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J Control Release 2010;148:135-146.

    32.Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC.Mediating tumor targeting efficiency of nanoparticles through design.Nano Lett 2009;9:1909-1915.

    33.Wang M, Thanou M.Targeting nanoparticles to cancer.Pharmacol Res 2010;62:90-99.

    34.Maeda H.Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects.Bioconjug Chem 2010;21:797-802.

    35.Maeda H, Bharate GY, Daruwalla J.Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.Eur J Pharm Biopharm 2009;71:409-419.

    36.Tyo JS, Goldstein DL, Chenault DB, Shaw JA.Review of passive imaging polarimetry for remote sensing applications.Appl Opt 2006;45:5453-5469.

    37.Byrne JD, Betancourt T, Brannon-Peppas L.Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv Drug Deliv Rev 2008;60:1615-1626.

    38.Davis ME, Chen ZG, Shin DM.Nanoparticle therapeutics: an emerging treatment modality for cancer.Nat Rev Drug Discov 2008;7:771-782.

    39.Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, et al.Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy.Biomaterials 2012;33:2215-2222.

    40.Veiseh O, Gunn JW, Zhang M.Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging.Adv Drug Deliv Rev 2010;62:284-304.

    41.Takeda S, Mishima F, Fujimoto S, Izumi Y, Nishijima S.Development of magnetically targeted drug delivery system using superconducting magnet.J Magn Magn Mater 2007;311:367-371.

    42.Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J.Magnetic nanoparticles for drug delivery.Nano Today 2007;2:22-32.

    43.Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD,et al.Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors.Biomaterials 2008;29:487-496.

    44.Liu B, Li C, Ma P, Chen Y, Zhang Y, Hou Z, Huang S, et al.Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery.Nanoscale 2015;7:1839-1848.

    45.Reddy LH, Arias JL, Nicolas J, Couvreur P.Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications.Chem Rev 2012;112:5818-5878.

    46.Liu Q, Zhang J, Xia W, Gu H.Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.Nanoscale 2012;4:3415-3421.

    47.Frey NA, Peng S, Cheng K, Sun S.Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage.Chem Soc Rev 2009;38:2532-2542.

    48.Liang X, Wang X, Zhuang J, Chen Y, Wang D, Li Y.Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals.Adv Funct Mater 2006;16:1805-1813.

    一级毛片电影观看| 侵犯人妻中文字幕一二三四区| 久久久精品区二区三区| 一区二区日韩欧美中文字幕| 亚洲精品粉嫩美女一区| 国产三级黄色录像| 国产一卡二卡三卡精品| 日韩视频在线欧美| 伊人久久大香线蕉亚洲五| 亚洲少妇的诱惑av| 久久精品国产a三级三级三级| 亚洲欧美色中文字幕在线| 一区福利在线观看| 国产精品免费一区二区三区在线 | 国产精品久久久久久精品电影小说| 少妇 在线观看| 国产成人欧美| 国产又爽黄色视频| 亚洲人成77777在线视频| 久久香蕉激情| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| 国产在线视频一区二区| 一边摸一边抽搐一进一小说 | 在线十欧美十亚洲十日本专区| 午夜精品国产一区二区电影| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 99精品在免费线老司机午夜| 国产成人欧美| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 他把我摸到了高潮在线观看 | 蜜桃国产av成人99| 亚洲精品国产精品久久久不卡| 久久精品亚洲av国产电影网| 黄片播放在线免费| 蜜桃国产av成人99| 久久久久精品人妻al黑| 精品国产乱码久久久久久小说| 青青草视频在线视频观看| 国产亚洲av高清不卡| 久久亚洲精品不卡| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品一级二级三级| 亚洲欧美激情在线| 91精品三级在线观看| 国产黄频视频在线观看| 久久青草综合色| 超碰97精品在线观看| 久久毛片免费看一区二区三区| 99国产精品一区二区蜜桃av | 又黄又粗又硬又大视频| 亚洲国产看品久久| 日本a在线网址| 在线av久久热| 欧美日韩av久久| 男女无遮挡免费网站观看| 男女之事视频高清在线观看| 免费av中文字幕在线| 97人妻天天添夜夜摸| avwww免费| 久久99一区二区三区| av又黄又爽大尺度在线免费看| 又黄又粗又硬又大视频| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 国产高清国产精品国产三级| 一区二区三区激情视频| 19禁男女啪啪无遮挡网站| 久久精品亚洲av国产电影网| 啦啦啦视频在线资源免费观看| 成人av一区二区三区在线看| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 成人精品一区二区免费| 午夜精品国产一区二区电影| 女人久久www免费人成看片| 日本一区二区免费在线视频| 亚洲中文日韩欧美视频| 国产精品影院久久| 交换朋友夫妻互换小说| 国产片内射在线| 变态另类成人亚洲欧美熟女 | xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| 夜夜夜夜夜久久久久| 美国免费a级毛片| 精品亚洲成国产av| 电影成人av| 久久ye,这里只有精品| 亚洲中文字幕日韩| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 在线观看舔阴道视频| tube8黄色片| 亚洲av第一区精品v没综合| 午夜激情久久久久久久| 成年版毛片免费区| 欧美激情 高清一区二区三区| 久久午夜亚洲精品久久| 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 亚洲天堂av无毛| 国产1区2区3区精品| 国产深夜福利视频在线观看| 国产成人精品无人区| 免费av中文字幕在线| 中文亚洲av片在线观看爽 | 欧美成狂野欧美在线观看| 午夜免费鲁丝| 亚洲美女黄片视频| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 久久99一区二区三区| av一本久久久久| 亚洲欧美激情在线| 大陆偷拍与自拍| 日韩视频一区二区在线观看| 亚洲国产欧美在线一区| 国产一区二区三区视频了| 欧美激情极品国产一区二区三区| 老司机福利观看| 亚洲欧美精品综合一区二区三区| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 中文字幕高清在线视频| 亚洲五月色婷婷综合| 天堂俺去俺来也www色官网| 91字幕亚洲| av视频免费观看在线观看| 极品教师在线免费播放| 男人操女人黄网站| 免费av中文字幕在线| 欧美 亚洲 国产 日韩一| 在线亚洲精品国产二区图片欧美| 欧美黑人精品巨大| 免费观看av网站的网址| 女警被强在线播放| 91老司机精品| 女同久久另类99精品国产91| 男女无遮挡免费网站观看| 极品教师在线免费播放| 国产极品粉嫩免费观看在线| 久久久久久久久免费视频了| 日韩制服丝袜自拍偷拍| 国产成人精品久久二区二区91| 精品午夜福利视频在线观看一区 | h视频一区二区三区| 久久精品91无色码中文字幕| 99国产精品99久久久久| 一个人免费看片子| videosex国产| 法律面前人人平等表现在哪些方面| 美国免费a级毛片| 亚洲国产成人一精品久久久| 亚洲一码二码三码区别大吗| 中文字幕最新亚洲高清| 亚洲美女黄片视频| 制服诱惑二区| 五月天丁香电影| 亚洲成人国产一区在线观看| 一本色道久久久久久精品综合| 变态另类成人亚洲欧美熟女 | 高清欧美精品videossex| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 欧美人与性动交α欧美软件| 91麻豆精品激情在线观看国产 | 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| tube8黄色片| 视频在线观看一区二区三区| av电影中文网址| 在线永久观看黄色视频| 日韩大片免费观看网站| 12—13女人毛片做爰片一| 国产有黄有色有爽视频| 高潮久久久久久久久久久不卡| 精品亚洲乱码少妇综合久久| 一级,二级,三级黄色视频| 脱女人内裤的视频| 久久狼人影院| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区精品视频观看| 视频区欧美日本亚洲| 大片电影免费在线观看免费| 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站 | 热99re8久久精品国产| www日本在线高清视频| 国产精品免费一区二区三区在线 | 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 亚洲国产欧美网| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 少妇 在线观看| 国产免费现黄频在线看| 最近最新中文字幕大全电影3 | 欧美精品高潮呻吟av久久| 国产成人影院久久av| 国产1区2区3区精品| 亚洲国产看品久久| 性少妇av在线| 亚洲国产欧美日韩在线播放| 最近最新免费中文字幕在线| 国产成+人综合+亚洲专区| 久久av网站| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 亚洲一码二码三码区别大吗| 精品卡一卡二卡四卡免费| 日韩欧美一区二区三区在线观看 | 高清av免费在线| 蜜桃国产av成人99| 老鸭窝网址在线观看| 一区二区三区国产精品乱码| 欧美老熟妇乱子伦牲交| 色综合欧美亚洲国产小说| 亚洲精品国产区一区二| 一级片免费观看大全| 中文字幕高清在线视频| 99re6热这里在线精品视频| 中文字幕色久视频| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 精品国产乱子伦一区二区三区| 国产精品麻豆人妻色哟哟久久| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 免费高清在线观看日韩| 国产精品电影一区二区三区 | 人成视频在线观看免费观看| 久久精品国产综合久久久| 宅男免费午夜| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 在线看a的网站| 成年女人毛片免费观看观看9 | 人人妻人人添人人爽欧美一区卜| 女同久久另类99精品国产91| 日韩 欧美 亚洲 中文字幕| 满18在线观看网站| 亚洲综合色网址| www日本在线高清视频| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o| 中文字幕最新亚洲高清| 一区二区三区激情视频| 在线天堂中文资源库| 国产一区二区在线观看av| 日韩免费高清中文字幕av| 一区二区三区乱码不卡18| 国产精品久久久av美女十八| 一级片免费观看大全| 男女高潮啪啪啪动态图| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av香蕉五月 | 久9热在线精品视频| 美女福利国产在线| tube8黄色片| 日韩视频一区二区在线观看| 日本wwww免费看| 亚洲av片天天在线观看| 丝瓜视频免费看黄片| 啦啦啦 在线观看视频| 性少妇av在线| 国产老妇伦熟女老妇高清| 另类亚洲欧美激情| 香蕉国产在线看| 窝窝影院91人妻| 精品人妻1区二区| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频 | a级片在线免费高清观看视频| 美女主播在线视频| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 久久精品亚洲av国产电影网| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 国内毛片毛片毛片毛片毛片| 大片电影免费在线观看免费| 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 大码成人一级视频| 亚洲欧美激情在线| 国产三级黄色录像| 最新在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 曰老女人黄片| 国产午夜精品久久久久久| 国产麻豆69| 黄色视频在线播放观看不卡| 男女床上黄色一级片免费看| 这个男人来自地球电影免费观看| 日日夜夜操网爽| 在线观看一区二区三区激情| 日韩大码丰满熟妇| 少妇猛男粗大的猛烈进出视频| 国产野战对白在线观看| 久久久久久久久久久久大奶| 黑人欧美特级aaaaaa片| 女人被躁到高潮嗷嗷叫费观| 视频区欧美日本亚洲| 91麻豆av在线| 日本黄色视频三级网站网址 | 中文字幕另类日韩欧美亚洲嫩草| 午夜激情久久久久久久| 午夜两性在线视频| 极品教师在线免费播放| 国产人伦9x9x在线观看| av在线播放免费不卡| 成人国产av品久久久| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 啪啪无遮挡十八禁网站| 精品福利观看| av网站免费在线观看视频| 亚洲成人手机| 日韩视频一区二区在线观看| 99九九在线精品视频| 五月开心婷婷网| 高潮久久久久久久久久久不卡| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 热99久久久久精品小说推荐| 久久久久精品国产欧美久久久| 国产不卡一卡二| 大码成人一级视频| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区 | 国产欧美日韩一区二区精品| 飞空精品影院首页| 免费观看a级毛片全部| 中文亚洲av片在线观看爽 | 国产精品一区二区在线不卡| videos熟女内射| 免费人妻精品一区二区三区视频| 精品少妇久久久久久888优播| 午夜视频精品福利| 狠狠狠狠99中文字幕| av一本久久久久| 飞空精品影院首页| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频 | 国产成人免费观看mmmm| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 欧美国产精品一级二级三级| 中文字幕制服av| 欧美在线一区亚洲| 啦啦啦视频在线资源免费观看| 午夜福利乱码中文字幕| 18禁黄网站禁片午夜丰满| 成年版毛片免费区| 国产一区二区三区综合在线观看| 一本—道久久a久久精品蜜桃钙片| 侵犯人妻中文字幕一二三四区| 国产又色又爽无遮挡免费看| 中文欧美无线码| 黄色成人免费大全| 亚洲人成77777在线视频| 国产aⅴ精品一区二区三区波| 日本五十路高清| 亚洲熟女精品中文字幕| 九色亚洲精品在线播放| 亚洲九九香蕉| 嫁个100分男人电影在线观看| 18禁黄网站禁片午夜丰满| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 制服人妻中文乱码| 国产淫语在线视频| 人妻 亚洲 视频| 中文字幕色久视频| 午夜免费成人在线视频| 99香蕉大伊视频| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女 | 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 国产欧美日韩一区二区三区在线| 51午夜福利影视在线观看| 91老司机精品| 99re在线观看精品视频| 国产极品粉嫩免费观看在线| 欧美成人午夜精品| 免费观看人在逋| av国产精品久久久久影院| 国产真人三级小视频在线观看| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看 | 99国产精品一区二区蜜桃av | 国产成人精品在线电影| 两个人看的免费小视频| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 妹子高潮喷水视频| av网站免费在线观看视频| 国产亚洲精品一区二区www | 国产伦人伦偷精品视频| 99国产精品99久久久久| 十八禁网站网址无遮挡| 色尼玛亚洲综合影院| 国产又爽黄色视频| 亚洲国产av影院在线观看| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 一级a爱视频在线免费观看| 欧美精品人与动牲交sv欧美| 超碰成人久久| 90打野战视频偷拍视频| 我的亚洲天堂| 久久精品熟女亚洲av麻豆精品| 欧美黄色淫秽网站| 久久精品国产a三级三级三级| 香蕉国产在线看| 国产精品亚洲一级av第二区| 亚洲黑人精品在线| 国产有黄有色有爽视频| 51午夜福利影视在线观看| 啦啦啦视频在线资源免费观看| 丝瓜视频免费看黄片| 国产色视频综合| 亚洲欧美一区二区三区久久| 免费少妇av软件| 丝袜人妻中文字幕| 青青草视频在线视频观看| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 国产精品1区2区在线观看. | 亚洲免费av在线视频| 国产精品 欧美亚洲| 亚洲美女黄片视频| av片东京热男人的天堂| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 又紧又爽又黄一区二区| 老鸭窝网址在线观看| 国产精品久久久久久精品电影小说| 99国产精品一区二区蜜桃av | 亚洲第一欧美日韩一区二区三区 | 69av精品久久久久久 | 久久人妻福利社区极品人妻图片| 精品国内亚洲2022精品成人 | av在线播放免费不卡| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 操美女的视频在线观看| 大型黄色视频在线免费观看| 两性夫妻黄色片| 亚洲熟女毛片儿| 又大又爽又粗| 美国免费a级毛片| 女性生殖器流出的白浆| 黄色怎么调成土黄色| 久久天堂一区二区三区四区| av一本久久久久| 热99久久久久精品小说推荐| √禁漫天堂资源中文www| 日韩精品免费视频一区二区三区| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 最新的欧美精品一区二区| 国产极品粉嫩免费观看在线| 国产精品亚洲一级av第二区| 久久人妻福利社区极品人妻图片| 一本综合久久免费| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频 | kizo精华| 亚洲精品国产一区二区精华液| 涩涩av久久男人的天堂| 人人妻人人澡人人看| 欧美日韩亚洲高清精品| 欧美亚洲 丝袜 人妻 在线| 国产高清国产精品国产三级| 99国产精品一区二区三区| 亚洲第一青青草原| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 99精品久久久久人妻精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区中文字幕在线| 国产亚洲精品久久久久5区| 精品国产国语对白av| 美女高潮到喷水免费观看| 一级毛片精品| 日韩三级视频一区二区三区| 精品第一国产精品| 久久精品国产亚洲av香蕉五月 | 高清av免费在线| 欧美在线黄色| av又黄又爽大尺度在线免费看| 亚洲成人免费av在线播放| 女人精品久久久久毛片| 国产亚洲精品第一综合不卡| 成人国产av品久久久| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 人成视频在线观看免费观看| 久久久久网色| av网站免费在线观看视频| 欧美日韩精品网址| 一级片免费观看大全| 黄色视频在线播放观看不卡| 老鸭窝网址在线观看| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 久热爱精品视频在线9| 这个男人来自地球电影免费观看| 国产日韩欧美视频二区| 国产黄频视频在线观看| 国产亚洲一区二区精品| 最黄视频免费看| 日本欧美视频一区| 亚洲情色 制服丝袜| 日韩欧美免费精品| 在线观看www视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕制服av| 热99re8久久精品国产| 飞空精品影院首页| 欧美乱妇无乱码| 变态另类成人亚洲欧美熟女 | 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 国产亚洲av高清不卡| 亚洲九九香蕉| 脱女人内裤的视频| av视频免费观看在线观看| 日本撒尿小便嘘嘘汇集6| 动漫黄色视频在线观看| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| av视频免费观看在线观看| 首页视频小说图片口味搜索| 午夜视频精品福利| 久久精品成人免费网站| 超碰成人久久| 亚洲中文av在线| 最新美女视频免费是黄的| 搡老岳熟女国产| 精品久久久久久电影网| 亚洲精品国产区一区二| 一级,二级,三级黄色视频| 免费在线观看视频国产中文字幕亚洲| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 国产日韩欧美亚洲二区| 老司机午夜福利在线观看视频 | 黄频高清免费视频| 麻豆成人av在线观看| 亚洲伊人久久精品综合| 欧美激情 高清一区二区三区| 无限看片的www在线观看| 久久午夜亚洲精品久久| 精品视频人人做人人爽| 亚洲av片天天在线观看| 大香蕉久久成人网| 欧美在线黄色| 亚洲中文日韩欧美视频| 黄片大片在线免费观看| 在线观看一区二区三区激情| 一级毛片精品| 国产黄色免费在线视频| 免费黄频网站在线观看国产| av国产精品久久久久影院| 日韩人妻精品一区2区三区| 人人妻,人人澡人人爽秒播| 欧美大码av| 久久精品国产亚洲av高清一级| 久久久久久久国产电影| 亚洲欧洲精品一区二区精品久久久| 久久人妻福利社区极品人妻图片| 亚洲国产欧美日韩在线播放| 国产精品 欧美亚洲| 欧美日韩亚洲综合一区二区三区_| 老汉色∧v一级毛片| 午夜激情久久久久久久| 一个人免费在线观看的高清视频| 久久久精品区二区三区| 国产亚洲欧美精品永久| 亚洲av日韩精品久久久久久密| 国产精品亚洲一级av第二区| 精品久久蜜臀av无| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利视频在线观看免费| 人人妻人人添人人爽欧美一区卜| 夜夜爽天天搞| 精品亚洲成国产av| 看免费av毛片| 一边摸一边抽搐一进一小说 | 国产成人精品无人区| 嫩草影视91久久| 久久影院123| 亚洲精品中文字幕一二三四区 | 国产亚洲午夜精品一区二区久久| 亚洲性夜色夜夜综合| 每晚都被弄得嗷嗷叫到高潮| 久久ye,这里只有精品| 亚洲七黄色美女视频|