• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rank regression: an alternative regression approach for data with outliers

    2014-12-08 07:38:34TianCHENWanTANGYingLUXinTU
    上海精神醫(yī)學 2014年5期
    關鍵詞:性健康正態(tài)分布線性

    Tian CHEN, Wan TANG, Ying LU, Xin TU*

    ?Biostatistics in psychiatry (23)?

    Rank regression: an alternative regression approach for data with outliers

    Tian CHEN1, Wan TANG1, Ying LU2, Xin TU1*

    normal distribution, non-normal distribution, linear regression, semi-parametric regression models, rank regression, sexual health

    1. Introduction

    Regression is widely used in mental health research and related services research to model relationships involving health and service utilization outcomes and clinical and socio-demographic factors. Regression models measure changes in the dependent variable in response to changes in a set of independent variables of interest. Linear regression focuses on continuous dependent variables, while other regression models such as logistic and log-linear regression consider noncontinuous dependent variables such as binary and count outcomes. The dependent variable is often called the response, while the independent variables are frequently referred to as the explanatory variables,predictors, or covariates.

    Linear regression is arguably the most popular regression model in practice, because of the ubiquity of continuous outcomes and because it is relatively easy to understand the modeled relationship and interpret the model estimates. Fitting such models is convenient because all major software packages (R,SAS, SPSS and STATA) provide both the model estimates and the diagnostics of the model fit. However, the wide popularity and routine use of the linear regression also creates some problems. Many researchers apply the model without first checking assumptions about the normal distribution of the data underlying the validity of model estimates. The classic normal-based linear regression imposes strong constraints on data, and its estimates are also quite sensitive to departures from assumed mathematical models. Without careful checking of the model assumptions, estimates generated by linear regression models may be difficult to interpret and conclusions drawn from such estimates may be misleading.

    2. Different approaches to deal with non-normal study data in regression analyses

    Classic linear regression assumes a normally distributed response,yi, and models the mean of this response variable as a function of a set of independent variables,xi= (xi1 , xi2 ...., xip)Tas follows∶

    whereβ= (β1, β2, ..., βp)Tis the vector of parameters,nis the sample size,εidenotes the error term,N(μ,σ2)denotes a normal distribution with meanμand varianceσ2, andεi~N(0,σ2) means thatεifollows a normal distribution with mean 0 and varianceσ2. The wellshaped bell curve of the normal distribution is often at odds with the distribution of data arising in real studies,because of its symmetric shape and extremely thin tails(exponential decay). Over the years, various methods have been developed to improve the limitations of the classic linear model. All the different methods can be grouped into 3 major categories.

    One approach is to use mathematical distributions that more closely resemble the data distribution in the study.[1]For example, by positing a t-distribution for the errorεi, the resulting linear model can accommodate data distributions with thicker tails. This is possible because the t-distribution has an additional degree of freedom parameter to control the thickness of the tail.However, like the normal distribution, the t-distribution is also symmetric. To model skewed data distributions,a popular approach is to use the chi-square distribution.Although this parametric alternative broadens the scope of data distributions that can be accommodated, it is still quite limited because mathematical distributions always have more regular shapes than those arising in practice.

    A second popular alternative is to use semiparametric or distribution-free models.[2]Under this approach, no mathematical model is assumed for the data distribution (the non-parametric part) and the relationship betweenyiandxiis represented by the mean ofyiafter adjustment forxi(parametric component). The latter parametric component is implied by the specification of the classic linear regression in (1)and is given by∶

    whereE(yi|xi) denotes mathematical expectation. For those unfamiliar with mathematical expectation, the above expression simply means that the population-level average of the responseyiis a linear function ofxi. This linear relationship is also implicit in the normal-based linear regression in (1). Thus, the semi-parametric linear model in (2) only requires a linear relationship between the response and the set of explanatory variables,thereby offering valid inference for a wide class of data distributions.

    Although significantly improving the utility of linear regression, the semi-parametric model still has limited applications. A major problem is that like the classic model it continues to model the mean of the response.Like the sample mean of a variable, model estimates from this approach can be quite biased when there are extremely large or small values, or outliers, in the response.

    Various approaches have been developed to address this important issue of outliers. A common approach in psychosocial research is to trim outliers using ad-hoc rules. For example, limiting the values of all observations to 3 times the interquartile range when estimating the mean of an outcome (i.e., a ‘trimmed’mean).[3]However, these ad-hoc methods induce artifacts because of their dependence on the specific rules used, and the use of different rules can result in different outcomes.

    Another approach to limiting the influence of outliers is to employ rank tests. The Mann-Whitney-Wilcoxon rank sum test is widely used to compare two groups in such situations. Within the setting of regression analysis, rank regression is a popular approach for dealing with outliers.[4,5]Like the Mann-Whitney-Wilcoxon rank sum test, rank regression does not use the observed responsesyidirectly, but,rather, uses information about the ranking of these observations, thereby yielding estimates that are much less sensitive to outliers.

    3. Simulation studies to compare different approaches

    The data were simulated from a study with one binary variable and one continuous covariate. To show differences across the different methods, we selected a large sample size (n=500) to reduce the effect of sampling variability on model estimates. We performed simulation of data and fitted the different models to the data generated using the R software. All simulations were performed with a Monte Carlo sample size M=1000 and a type I errorα=0.05.

    We simulatedyifrom the following linear model∶

    We then simulated 50 (or 10% of the sample size) values from a uniformU(500, 1000000), ordered them as∶

    and added the valuesu(1)from the uniform to the 50 largest values ofyi, i.e.,

    to form a set of outlying observations, i.e.,

    To assess the robustness of the different methods,we replacedy(451)<y(452)< ...< y(500)in the original sample with the valuesz(451)<z(452)< ...< z(500), and fit the models to the resulting observations∶

    Table 1 shows the estimates ofβ1andβ2, the corresponding standard errors, and type I error rates from fitting the three methods to data simulated from the normal-distributed errorN(0, 1/2) based on 1000 Monte Carlo simulations both with and without included outliers. (The interceptβ0is estimated by the rank regression and so this estimate is missing in the table.) In the table, values in the column titled‘mean’ are the averaged estimates of each parameter over 1000 Monte Caro replications; the ‘asymptotic standard error’ is the model-based standard error; the‘empirical standard error’ is the standard errors of the 1000 estimates of each parameter; and the ‘type I error’is the percent of times the null hypothesis - that the estimated parameter is equal to the true parameter -is rejected. For example, the empirical type I error rates forβ1in the data set without outliers is the percent oftimes of rejecting the nullH0∶β1=1.

    If a model performs well, (a) the averaged value of estimates of each parameter (in the ‘mean’ column)should be close to the true value of the respective parameter; (b) the magnitude of the asymptotic standard error should be close to that of the empirical standard error; and (c) the empirical type I error rate should be close to the nominal value 0.05. As shown in Table 1, in the absence of outliers, all three methods performed well, with the averaged estimates all nearly identical to the true value 1, the asymptotic standard errors all close to their empirical counterparts, and the type I error rate all close to the nominal levelα=0.05.Further, all three methods yielded near identical standard errors, indicating that there is practically no loss of power by using the two robust alternatives instead of the classic linear model for the simulated normal data.

    However, results are very different in the presence of outliers. As shown in the Table 1, both the classic and semi-parametric models yielded extremely large estimates that are un-interpretable, impossibly large standard errors, and type I errors close to 1. In contrast,the rank regression model for bothβ1andβ2generated estimates close to the true value 1, reasonable asymptotic and empirical standard errors that were equal to each other, and type I errors that, though elevated, were close to the nominal 0.05 level.

    Table 2 shows the results of a similar simulation when the data were simulated from t-distributed error, ,instead of from normal-distributed error. In the absence of outliers the mean estimate and type 1 error of the two parameters were acceptable for all three models;however, the empirical standard error was much larger than the asymptotic standard error for the classical and semi-parametric models while these two types of standard error were similar in magnitude in the rank regression model. In the presence of outliers, as was the case in the normal-error simulation, the estimates generated by the classic and semi-parametric models were un-interpretable while those generated by the rank regression model were acceptable. Thus, for data with t-distribution error the rank regression model preforms better than the classic linear and the semiparametric models both in the absence and in the presence of outliers.

    4. A real-life example

    To illustrate the three approaches to dealing with outliers, we use results from a recent randomizedcontrolled study[6]to evaluate the efficacy of a sexual risk-reduction intervention program targeting teenage girls in low-income urban settings who are at elevated risk for HIV, sexually transmitted infections, and unintended pregnancies. The study recruited sexuallyactive urban adolescent girls aged 15 to 19 and randomized them to a sexual risk reduction intervention or to a structurally-equivalent health promotion control group. Assessments and behavioral data were collected at baseline, 3, 6 and 12 months post-baseline.The primary interest of the study was to compare the frequency of unprotected vaginal sex between the two treatment conditions. A difficult problem with the study data was the extremely large values reported by some subjects for their sexual activities. For example, five subjects reported over 100 episodes of unprotected vaginal sex over the past 3 months at the 6 month follow-up. If linear regression is applied directly to this outcome, estimates will be severely biased and become un-interpretable. Alternative models need to be considered when analyzing the data.

    Table 1. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error rates from fitting the classic linear, semi-parametric, and rank regression models to data simulated from normal-distributed errors

    The linear regression for the different methods is specified as follows∶

    whereyiis the number of episodes of unprotected vaginal sex,xi1is the binary indicator for the treatment condition (1 for the intervention and 0 for the control group), andεiis the model error. The model errorεifollows the normal distribution for the classic linear regression, while the distribution is unspecified for the semi-parametric and rank regression methods.

    To highlight the differences in the models we removed zero observations (i.e., individuals who reported no episodes of unprotected sex in the prior three months) and fit all three models (classic linear,semi-parametric, and rank regression) to the remaining data. In addition, we also recomputed the estimates for the classic linear model and the semi-parametric model after trimming the observed responses to decrease the influence of outliers. We trimmed the observed responses of number of episodes of unprotected vaginal sex in the prior three months at 3 times the interquartile range; the 25%, 50% and 75% quartiles were 2, 4, and 10 episodes, respectively, so the interquartile range was 8 (10 - 2) and any observations below -20 (4 - 3*8)or above +28 (4 + 3*8) were considered outliers. There were no observations below -20 so no lower-level trimming was necessary, but all observations above 28 were trimmed to 28.

    Table 3 shows the resulting estimates ofβ1for the treatment condition in the linear model (3) and the corresponding asymptotic standard errors and p-values using the different models. As was the case in the simulation study with outliers, the huge values for the estimates and standard errors using the classic linear and semi-parametric models clearly show that the estimates are profoundly affected by the outliers and,thus, are un-interpretable. In comparison, the classic and semi-parametric methods yielded more reasonable estimates when applied to the trimmed observations.However, results using the trimmed data were still quite different from those generated from the rank regression model; the estimates from the two models that used trimmed data were more than 50% higher than that using the rank regression method and the standard errors were more than double that from the rank regression analysis. Results from the simulation study suggest that rank regression is quite robust against outliers and, unlike models that use trimmed data,are not vulnerable to change when different trimming criteria are employed.

    Table 2. Estimates (mean), asymptotic and empirical standard errors, and empirical type I error rates from fitting the classic linear, semi-parametric, and rank regression models to data simulated from t-distributed errors

    Table 3. Estimates, standard errors, and p-values from fitting the classic linear, semi-parametric,rank regression, classic linear with trimmed outliers, and semi-parametric with trimmed outliers models to the risk-reduction intervention study

    5. Sotfware for alternative linear regression models

    Most major software such as R and SAS has the capability of fitting the semi-parametric linear regression model. In R, there are several packages available for fitting the generalized estimating equations (GEE).Although GEE is an extension of the semi-parametric method for longitudinal data, we may still use these packages for fitting the semi-parametric model to crosssectional data by introducing an ‘ID’ variable that has unique values for each of the observations. For example,if the GEE package is installed, then one may apply the following codes to fit the semi-parametric linear regression model∶

    where y is the outcome and x is the covariate matrix.

    Similarly, SAS also offers ‘Procedures’ for fitting the GEE which can be utilized to provide estimates for semiparametric linear regression models. For example, by adding an ID variable to the SAS data set, we may apply the Procedure GENMOD to fit the semi-parametric model∶

    At the time of writing, SAS does not have the capability to fit the rank regression. For our simulated and real study examples, packages in R were used to fit this robust alternative model. To perform this regression model, first download the R functions from the website∶http∶//www.stat.wmich.edu/mckean/HMC/Rcode/AppendixB/ww.r. Then, we use the following command in R to obtain estimates from fitting the rank regression∶

    where y is the outcome and x is the covariate matrix.

    Note that while SAS is a commercial software package, R is free to download, install, and run. In addition, software for newer statistical methods are generally first available in R. However, unlike SAS, R has no designated technical support so users generally rely on peer-support, web postings, and books for resolving issues concerning applications of specific packages and general data management problems.

    6. Discussion

    Classic linear regression has a number of weaknesses,limiting its applications to real study data. We discussed two robust alternatives, the semi-parametric model and the rank regression model. Although the former yields more valid estimates than the classic linear model, it breaks down when there are extremely large (or small)observations in the response (i.e., the dependent variable). In the presence of such outliers, the rank regression model provides much more robust estimates.Unlike ad-hoc methods such as trimming outliers based on 3 x interquartile range, rank regression generates the same estimates regardless of the actual values of the response as long as the rankings of the observations remain the same. This formal approach not only removes any subjective element in the estimates, but it also makes it easier to compare results of different analyses based on the same study data and to compare results between different studies. Further, the rank regression model is also capable of addressing outliers in the independent variables, although this tutorial only discussed outliers in the response variable.

    Currently, rank regression is only available in some selected software packages such as R - we included sample R codes for fitting this robust regression model in this report to facilitate its use by readers. As this approach becomes more popular, it is likely that other major software giants such as SAS will have similar offerings.

    Unlike the classic and semi-parametric linear regression models, rank regression is only available for fitting cross-sectional data. This is, in part, due to the complexity of computing estimates and asymptotic standard errors. However, as longitudinal studies become the norm rather than the exception in modern clinical research, it will become increasingly important to develop software that can extend this robust model to longitudinal research data and, thus, help investigators more effectively deal with imperfections in real study data.

    Conflict of interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    The preparation of this manuscript was supported in part by DA027521 and GM108337 from the National Institutes of Health.

    1. Kowalski J, Tu XM, Day RS, Mendoza-Blanco JR. On the rate of convergence of the ECME algorithm for multiple regression models with t-distributed errors.Biometrika. 1997; 84∶269-281. doi∶ http∶//dx.doi.org/10.1093/biomet/84.2.269

    2. Tang W, He H,Tu XM.Applied Categorical and Count Data Analysis. Boca Raton, Florida, USA∶ Chapman & Hall/CRC Press. 2012

    3. Schroder EB, Liao DP, Chambless LE, Prineas RJ, Evans GW,Heiss G. Hypertension, blood pressure, and heart rate variability∶ the Atherosclerosis Risk in Communities (ARIC)study.Hypertension.2003; 42(6)∶ 1106-1111. doi∶ http∶//dx.doi.org/10.1161/01.HYP.0000100444.71069.73

    4. Jaeckel LA. Estimating regression coefficients by minimizing the dispersion of the residuals.Ann Math Statist. 1972;43(5)∶ 1449-1458

    5. Jureckova J. Nonparametric estimate of regression coefficients.Ann Math Statist.1971; 42(4)∶ 1328-1338

    6. Morrison-Beedy D, Jones S, Xia Y, Tu XM, Crean H, Carey M. Reducing sexual risk behavior in adolescent girls∶results from a randomized controlled trial.J Adolesc Health.2013; 52∶ 314-321. doi∶ http∶//dx.doi.org/10.1016/j.jadohealth.2012.07.005

    ∶ 2014-10-08; accepted∶ 2014-10-10)

    Ms. Tian Chen is a fifth-year PhD student in the Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester. Her PhD thesis focuses on semiparametric and rank-based statistical models, and variable selection methods for regression models for both cross-sectional and longitudinal data. She has applied these statistical methods in the analysis of mental health and related research.

    等級回歸:離群數(shù)據的另一種回歸方法

    Tian CHEN, Wan TANG, Ying LU, Xin TU

    正態(tài)分布,非正態(tài)分布,線性回歸,半參數(shù)回歸模型,等級回歸,性健康

    Summary:Linear regression models are widely used in mental health and related health services research.However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But semi-parametric models are quite sensitive to outlying observations, so the generated estimates are unreliable when study data includes outliers. In this situation, some researchers trim the extreme values prior to conducting the analysis, but the ad-hoc rules used for data trimming are based on subjective criteria so different methods of adjustment can yield different results. Rank regression provides a more objective approach to dealing with non-normal data that includes outliers. This paper uses simulated and real data to illustrate this useful regression approach for dealing with outliers and compares it to the results generated using classical regression models and semi-parametric regression models.

    [Shanghai Arch Psychiatry. 2014; 26(5)∶ 310-316. doi∶ http∶//dx.doi.org/10.11919/j.issn.1002-0829.214148]

    1Department of Biostatistics and Computational Biology, University of Rochester, NY, USA

    2Department of Biostatistics, Stanford University, Stanford, CA, USA

    *correspondence∶ xin_tu@urmc.rochester.edu

    A full-text Chinese translation of this article will be available at www.shanghaiarchivesofpsychiatry.org on November 25, 2014.

    概述: 線性回歸模型被廣泛應用于精神衛(wèi)生和衛(wèi)生服務相關研究。然而,經典線性回歸分析是假設該數(shù)據為正態(tài)分布的,但是很多研究所獲得的數(shù)據并不符合這種假設。解決該問題的方法之一是采用不要求數(shù)據為正態(tài)分布的半參數(shù)模型。但是,半參數(shù)模型對離散數(shù)據相當敏感,因此在處理包含離散值的數(shù)據時產生的估計值是不可靠的。在這種情況下,一些研究者在刪減這些極端值后再進行分析,但是,刪減數(shù)據的事先法則(ad-hoc rules)是基于主觀標準的,所以不同的調整方法就會產生不同的結果。等級回歸為處理包括離散值的非正態(tài)分布數(shù)據提供了更為客觀的方法。本文采用虛擬和實際數(shù)據來闡述這個非常有用的處理離散值的回歸方法,并與采用經典回歸模型和半參數(shù)回歸模型所得出的結果進行比較。

    本文全文中文版從2014年11月25日起在www.shanghaiarchivesofpsychaitry.org可供免費閱覽下載

    猜你喜歡
    性健康正態(tài)分布線性
    我國高職學生性健康知信行量表的構建及應用
    護理研究(2023年20期)2023-10-27 08:16:26
    漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
    性健康教育,教師怎么做?
    新班主任(2022年4期)2022-04-27 06:20:49
    利用主題活動淺析小班幼兒進行性健康教育的意義和研究策略
    速讀·中旬(2021年12期)2021-10-14 08:05:57
    線性回歸方程的求解與應用
    關注性健康教育 促進兒童青少年健康
    教育家(2018年41期)2018-11-20 11:49:56
    二階線性微分方程的解法
    基于對數(shù)正態(tài)分布的出行時長可靠性計算
    正態(tài)分布及其應用
    正態(tài)分布題型剖析
    国产av不卡久久| 国产一区二区在线观看日韩| 午夜免费观看性视频| 建设人人有责人人尽责人人享有的 | 国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| a级毛色黄片| 在线观看美女被高潮喷水网站| 国产精品av视频在线免费观看| 99视频精品全部免费 在线| 国产成人91sexporn| 波野结衣二区三区在线| 一级爰片在线观看| 日本黄色片子视频| 亚洲精品影视一区二区三区av| 九色成人免费人妻av| 日韩不卡一区二区三区视频在线| 汤姆久久久久久久影院中文字幕| 国产午夜福利久久久久久| 永久网站在线| 天堂中文最新版在线下载 | 成年女人看的毛片在线观看| 国产熟女欧美一区二区| 亚洲成人av在线免费| 人妻制服诱惑在线中文字幕| 国产一区二区三区综合在线观看 | 久久韩国三级中文字幕| 大片电影免费在线观看免费| 欧美亚洲 丝袜 人妻 在线| 午夜福利在线观看免费完整高清在| 亚洲,欧美,日韩| 久热这里只有精品99| 久久久a久久爽久久v久久| 亚洲av成人精品一区久久| 高清在线视频一区二区三区| 亚洲精品日本国产第一区| 欧美日韩视频高清一区二区三区二| 色吧在线观看| 久久99精品国语久久久| 插逼视频在线观看| 中文资源天堂在线| 直男gayav资源| 日韩一区二区三区影片| 亚洲va在线va天堂va国产| 美女xxoo啪啪120秒动态图| 丰满人妻一区二区三区视频av| 日产精品乱码卡一卡2卡三| 国产av码专区亚洲av| 日本熟妇午夜| 国产精品国产av在线观看| 亚洲人成网站高清观看| 中文字幕亚洲精品专区| 亚洲精品第二区| 老司机影院成人| 欧美激情在线99| 日本一二三区视频观看| 国产精品一区www在线观看| 18禁裸乳无遮挡免费网站照片| 嫩草影院新地址| 99九九线精品视频在线观看视频| 精品久久久久久电影网| 只有这里有精品99| 大话2 男鬼变身卡| 夫妻性生交免费视频一级片| 国产伦在线观看视频一区| 精品少妇黑人巨大在线播放| 在线播放无遮挡| 18+在线观看网站| 天堂网av新在线| 真实男女啪啪啪动态图| 99久久人妻综合| 亚洲av不卡在线观看| 韩国高清视频一区二区三区| 毛片一级片免费看久久久久| 午夜亚洲福利在线播放| 日本爱情动作片www.在线观看| 中国国产av一级| 一级毛片久久久久久久久女| 色视频在线一区二区三区| 欧美另类一区| 国产成人91sexporn| 亚洲欧洲国产日韩| 免费av毛片视频| av国产免费在线观看| 亚洲精品,欧美精品| 亚洲激情五月婷婷啪啪| 日日啪夜夜撸| 99精国产麻豆久久婷婷| 国产有黄有色有爽视频| 国产午夜福利久久久久久| 亚洲自拍偷在线| 日韩伦理黄色片| 久久热精品热| 男女啪啪激烈高潮av片| 男女边摸边吃奶| 亚洲精品成人久久久久久| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区免费观看| 亚洲国产精品999| 97超碰精品成人国产| 午夜精品一区二区三区免费看| 久久鲁丝午夜福利片| av在线播放精品| 精品少妇久久久久久888优播| 午夜亚洲福利在线播放| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影| 免费电影在线观看免费观看| 少妇人妻久久综合中文| 中国国产av一级| 一级二级三级毛片免费看| 有码 亚洲区| 久久精品综合一区二区三区| 高清av免费在线| 亚洲精品色激情综合| 精品一区二区免费观看| 草草在线视频免费看| 精华霜和精华液先用哪个| 街头女战士在线观看网站| freevideosex欧美| 深夜a级毛片| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 2021天堂中文幕一二区在线观| 街头女战士在线观看网站| 只有这里有精品99| av国产免费在线观看| av免费在线看不卡| 男女国产视频网站| 久久人人爽av亚洲精品天堂 | 精品人妻视频免费看| 久久久亚洲精品成人影院| 久久99精品国语久久久| 日日啪夜夜撸| av免费观看日本| 亚洲欧洲国产日韩| 国产亚洲最大av| 午夜福利视频1000在线观看| 亚洲精品一区蜜桃| 伦理电影大哥的女人| 国产精品无大码| 大片电影免费在线观看免费| 少妇裸体淫交视频免费看高清| 女人十人毛片免费观看3o分钟| 六月丁香七月| 简卡轻食公司| 国产黄色视频一区二区在线观看| 国产片特级美女逼逼视频| 一本一本综合久久| 熟女人妻精品中文字幕| 亚洲欧美一区二区三区国产| 国产精品99久久99久久久不卡 | av天堂中文字幕网| 夫妻性生交免费视频一级片| 九九在线视频观看精品| 日本免费在线观看一区| 精品国产一区二区三区久久久樱花 | 精品久久国产蜜桃| 日韩强制内射视频| 久久99热这里只频精品6学生| 一本久久精品| 男人狂女人下面高潮的视频| 日本一本二区三区精品| 欧美变态另类bdsm刘玥| 国产黄片美女视频| 中文天堂在线官网| 精品久久久久久久久亚洲| 免费电影在线观看免费观看| av在线天堂中文字幕| 男男h啪啪无遮挡| 亚洲精品日本国产第一区| 免费在线观看成人毛片| 久久精品国产亚洲av天美| 国产高清三级在线| 国产欧美日韩精品一区二区| 欧美+日韩+精品| 欧美最新免费一区二区三区| 亚洲精品自拍成人| 日韩制服骚丝袜av| 2018国产大陆天天弄谢| 91久久精品国产一区二区成人| 水蜜桃什么品种好| 亚洲美女搞黄在线观看| 久久久欧美国产精品| 精品少妇黑人巨大在线播放| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 五月天丁香电影| 久久久久久久大尺度免费视频| 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看 | 免费大片18禁| 国产在视频线精品| 韩国av在线不卡| 国产成人精品一,二区| 99re6热这里在线精品视频| 国产成人精品久久久久久| 国产午夜精品久久久久久一区二区三区| 国内揄拍国产精品人妻在线| 国产成人a∨麻豆精品| 国内精品宾馆在线| 国产精品伦人一区二区| 亚洲天堂国产精品一区在线| 国产精品不卡视频一区二区| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区免费观看| 在线看a的网站| 深夜a级毛片| 亚洲国产欧美在线一区| 免费观看性生交大片5| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕在线视频 | 成人亚洲欧美一区二区av| 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 一级二级三级毛片免费看| 免费观看的影片在线观看| 又爽又黄无遮挡网站| 午夜精品一区二区三区免费看| 久久久久国产网址| 免费高清在线观看视频在线观看| 免费电影在线观看免费观看| 国产精品女同一区二区软件| 国产精品嫩草影院av在线观看| 秋霞伦理黄片| 色综合色国产| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 老女人水多毛片| 国产精品一区二区性色av| 在线观看国产h片| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 在线观看三级黄色| 好男人视频免费观看在线| 熟妇人妻不卡中文字幕| 亚洲国产日韩一区二区| 国产真实伦视频高清在线观看| 日日摸夜夜添夜夜爱| 国产精品一二三区在线看| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 国产免费一级a男人的天堂| 99久久人妻综合| 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 18禁在线播放成人免费| 国产一级毛片在线| 国产毛片a区久久久久| 亚洲激情五月婷婷啪啪| 啦啦啦中文免费视频观看日本| 精品99又大又爽又粗少妇毛片| 全区人妻精品视频| 亚洲欧洲日产国产| 国产精品熟女久久久久浪| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱| 国产女主播在线喷水免费视频网站| 精品久久久久久电影网| 亚洲av一区综合| 国产片特级美女逼逼视频| 真实男女啪啪啪动态图| 五月开心婷婷网| 免费高清在线观看视频在线观看| 综合色av麻豆| 久久精品夜色国产| 亚洲精华国产精华液的使用体验| 日日啪夜夜撸| 一级毛片久久久久久久久女| 2021少妇久久久久久久久久久| 老女人水多毛片| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av| 欧美xxxx黑人xx丫x性爽| 国产精品蜜桃在线观看| 国产精品不卡视频一区二区| 国产女主播在线喷水免费视频网站| 97超视频在线观看视频| 一级毛片我不卡| 成人亚洲精品av一区二区| 日本熟妇午夜| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲色图av天堂| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 免费看av在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 最后的刺客免费高清国语| 男人添女人高潮全过程视频| 男的添女的下面高潮视频| 美女xxoo啪啪120秒动态图| 亚洲精品456在线播放app| 女人久久www免费人成看片| 亚洲伊人久久精品综合| 久久久久九九精品影院| 国产一区有黄有色的免费视频| 国产女主播在线喷水免费视频网站| 亚洲精品乱久久久久久| 亚洲婷婷狠狠爱综合网| 亚洲av不卡在线观看| 欧美人与善性xxx| 亚洲精品日韩在线中文字幕| 亚洲国产欧美人成| 性色avwww在线观看| 亚洲精品国产av蜜桃| 内射极品少妇av片p| 日韩人妻高清精品专区| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 精品久久久久久久末码| 又爽又黄无遮挡网站| 亚洲人成网站在线观看播放| 1000部很黄的大片| 2018国产大陆天天弄谢| 2021少妇久久久久久久久久久| 在线亚洲精品国产二区图片欧美 | 精品久久久久久久人妻蜜臀av| 亚洲第一区二区三区不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 久久久久网色| 97在线人人人人妻| 一个人看的www免费观看视频| 国产精品无大码| 综合色av麻豆| 亚洲欧美一区二区三区国产| 成人美女网站在线观看视频| 色网站视频免费| 国内揄拍国产精品人妻在线| 色视频在线一区二区三区| 啦啦啦中文免费视频观看日本| 热re99久久精品国产66热6| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 国产69精品久久久久777片| 18+在线观看网站| 只有这里有精品99| 我要看日韩黄色一级片| a级毛色黄片| 97超碰精品成人国产| 久久99蜜桃精品久久| 色哟哟·www| 国产人妻一区二区三区在| 久久这里有精品视频免费| 22中文网久久字幕| 九色成人免费人妻av| 一本一本综合久久| 亚洲精品一二三| 亚洲精品日韩av片在线观看| 嫩草影院入口| 免费少妇av软件| 亚洲av中文av极速乱| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线播放精品| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 亚洲av男天堂| 日韩亚洲欧美综合| 中文资源天堂在线| 少妇丰满av| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 成人免费观看视频高清| 又大又黄又爽视频免费| 好男人视频免费观看在线| 亚洲av在线观看美女高潮| 白带黄色成豆腐渣| 成人国产av品久久久| 视频中文字幕在线观看| 内地一区二区视频在线| 人人妻人人爽人人添夜夜欢视频 | 青春草亚洲视频在线观看| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 亚洲真实伦在线观看| av在线播放精品| 女人被狂操c到高潮| 色综合色国产| 九色成人免费人妻av| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 乱系列少妇在线播放| 搞女人的毛片| 国产精品人妻久久久影院| 亚洲精品成人av观看孕妇| 内射极品少妇av片p| 我的女老师完整版在线观看| 少妇熟女欧美另类| 亚洲在久久综合| 久久久成人免费电影| 亚洲欧美清纯卡通| 久久久欧美国产精品| 免费观看a级毛片全部| 亚洲国产精品成人综合色| 国产欧美日韩一区二区三区在线 | .国产精品久久| 久久久国产一区二区| 国产69精品久久久久777片| 女人久久www免费人成看片| 亚州av有码| 简卡轻食公司| 日本熟妇午夜| 亚洲精品乱久久久久久| 免费黄色在线免费观看| 国产毛片a区久久久久| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| 久久久久久国产a免费观看| 亚洲不卡免费看| 日本-黄色视频高清免费观看| 69人妻影院| 在线观看人妻少妇| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 精品酒店卫生间| 啦啦啦在线观看免费高清www| 晚上一个人看的免费电影| 熟女电影av网| 免费观看性生交大片5| 乱码一卡2卡4卡精品| 日韩av不卡免费在线播放| 能在线免费看毛片的网站| 成人欧美大片| 99久久中文字幕三级久久日本| 美女视频免费永久观看网站| 内射极品少妇av片p| 免费不卡的大黄色大毛片视频在线观看| 免费在线观看成人毛片| 91久久精品国产一区二区三区| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看 | 久久久色成人| 99re6热这里在线精品视频| 免费电影在线观看免费观看| 免费黄色在线免费观看| 国产黄片美女视频| 一边亲一边摸免费视频| 欧美日韩亚洲高清精品| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 午夜精品一区二区三区免费看| 街头女战士在线观看网站| 国产成人午夜福利电影在线观看| 天堂中文最新版在线下载 | 2021少妇久久久久久久久久久| 91狼人影院| 亚洲av男天堂| 极品教师在线视频| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 日韩欧美精品免费久久| 色综合色国产| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 国产免费福利视频在线观看| 91久久精品国产一区二区成人| av专区在线播放| 久久精品国产自在天天线| 亚洲成人久久爱视频| h日本视频在线播放| 日韩强制内射视频| 夜夜爽夜夜爽视频| 26uuu在线亚洲综合色| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 久久综合国产亚洲精品| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 亚洲精品成人av观看孕妇| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 午夜视频国产福利| 精品一区二区免费观看| 国产中年淑女户外野战色| 三级男女做爰猛烈吃奶摸视频| av在线天堂中文字幕| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩视频精品一区| 亚洲精品影视一区二区三区av| 超碰97精品在线观看| 国产毛片a区久久久久| 激情五月婷婷亚洲| 在线观看一区二区三区激情| 久久99热这里只有精品18| 亚洲成人一二三区av| 中文字幕av成人在线电影| av卡一久久| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 国产 一区 欧美 日韩| 日本色播在线视频| 精品人妻熟女av久视频| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 亚洲精品国产av蜜桃| 男女啪啪激烈高潮av片| 久久久色成人| 国产老妇女一区| 国产av国产精品国产| 欧美高清成人免费视频www| 久久久久久久午夜电影| 国产成人a区在线观看| 草草在线视频免费看| 国产v大片淫在线免费观看| 欧美日韩视频精品一区| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 国产成人a∨麻豆精品| 91狼人影院| 一级a做视频免费观看| 一级毛片aaaaaa免费看小| 大码成人一级视频| 精品久久久噜噜| 久久久久久久久大av| 99热这里只有精品一区| 免费观看a级毛片全部| 99热6这里只有精品| 天堂中文最新版在线下载 | 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 一级二级三级毛片免费看| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 亚洲精品成人久久久久久| 韩国av在线不卡| 两个人的视频大全免费| 一区二区三区乱码不卡18| 在线精品无人区一区二区三 | 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 男女下面进入的视频免费午夜| 美女高潮的动态| 男人舔奶头视频| 亚洲精品日本国产第一区| 中文天堂在线官网| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 精品久久久精品久久久| 国产熟女欧美一区二区| 好男人视频免费观看在线| 岛国毛片在线播放| 精品少妇久久久久久888优播| 国产精品不卡视频一区二区| 男女边吃奶边做爰视频| 黄色欧美视频在线观看| 国产精品一及| 亚洲精品一区蜜桃| 成人国产麻豆网| 国产v大片淫在线免费观看| 免费看a级黄色片| 午夜激情福利司机影院| 亚洲av欧美aⅴ国产| 毛片女人毛片| 亚洲电影在线观看av| 国产免费一区二区三区四区乱码| 成人免费观看视频高清| 免费观看无遮挡的男女| h日本视频在线播放| 男男h啪啪无遮挡| 久久99精品国语久久久| 国国产精品蜜臀av免费| 日韩电影二区| 国产精品三级大全| 国产日韩欧美在线精品| 亚洲国产欧美在线一区| 国产成人a区在线观看| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 国产精品久久久久久精品电影| 久久精品国产亚洲av天美| 又大又黄又爽视频免费| 高清毛片免费看| 国产精品秋霞免费鲁丝片| 亚洲久久久久久中文字幕| 免费观看a级毛片全部| 女的被弄到高潮叫床怎么办| 亚洲精品成人久久久久久| 欧美极品一区二区三区四区| 精品久久久久久久久亚洲| 精品99又大又爽又粗少妇毛片| 少妇人妻 视频| videos熟女内射| av又黄又爽大尺度在线免费看| 青春草视频在线免费观看| 国产精品三级大全| 黄色欧美视频在线观看| 精品久久久久久久久av| 午夜免费男女啪啪视频观看| 综合色av麻豆| 欧美+日韩+精品| av卡一久久| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 五月天丁香电影| 午夜福利高清视频| 99热全是精品| 亚洲自拍偷在线| 国产v大片淫在线免费观看| 亚洲欧美成人综合另类久久久| 又爽又黄a免费视频|