摘要:介紹了高級(jí)氧化抗生素廢水處理工藝,并綜述了常見類型抗生素(β-內(nèi)酰胺類、磺胺類、大環(huán)內(nèi)酯類、喹諾酮類)的降解機(jī)理。
關(guān)鍵詞:抗生素廢水;高級(jí)氧化工藝;降解機(jī)理
中圖分類號(hào):X703.1文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):16749944(2014)10016504
1引言
抗生素廣泛存在于抗生素生產(chǎn)廢水、醫(yī)院廢水[1~3] 、城市污水處理廠[4, 5]、養(yǎng)殖廢水、地表水[2, 6]、飲用水[2, 3]及土壤[7]中,其殘留水平從ng/L到μg/L,檢出的抗生素包括β-內(nèi)酰胺類、磺胺類、大環(huán)內(nèi)酯類、氟喹諾酮類、四環(huán)素類、林可胺類等??股厣a(chǎn)廢水、醫(yī)院廢水、養(yǎng)殖廢水和生活污水是抗生素的主要環(huán)境污染源。抗生素屬生物難降解物質(zhì)[8, 9],可長(zhǎng)期殘留在環(huán)境中,對(duì)生態(tài)環(huán)境與人居的危害有:①引起微生物耐藥性[10];②影響水生生物生長(zhǎng)和繁殖[11, 12];③影響植物生長(zhǎng)[13, 14];④影響人類健康。我國(guó)是抗生素生產(chǎn)和使用大國(guó),因此,抗生素污染控制技術(shù)研究與應(yīng)用已成為當(dāng)前環(huán)保領(lǐng)域的熱點(diǎn)。
本文系統(tǒng)介紹常用的高級(jí)氧化抗生素處理工藝,并根據(jù)抗生素不同分類,對(duì)近年β-內(nèi)酰胺類、磺胺類、大環(huán)內(nèi)酯類、喹諾酮類抗生素高級(jí)氧化降解機(jī)理的研究進(jìn)展進(jìn)行綜述。
2抗生素高級(jí)氧化處理工藝研究
4結(jié)論
臭氧氧化和各種Fenton氧化工藝對(duì)抗生素去除效果較高,可作為處理抗生素廢水的首選。高級(jí)氧化對(duì)青霉素類降解途徑主要分為內(nèi)酰胺環(huán)開環(huán)和羥基化(苯環(huán)位置)兩種;對(duì)磺胺類經(jīng)降解最終生成SO42-、NO3-、NH4+、CO2及其他難降解中間產(chǎn)物;對(duì)喹諾酮類降解包括羧酸鍵斷裂、與哌嗪基連接乙基斷裂、環(huán)丙基和氟鍵斷裂、哌嗪環(huán)開環(huán)等。
參考文獻(xiàn):
[1] Brown K.D., Kulis J., Thomson B., et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico[J]. Science of The Total Environment, 2006, 366(2-3): 772~783.
[2] Watkinson A.J., Murby E.J., Kolpin D.W., et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water[J]. Science of The Total Environment, 2009, 407(8): 2711~2723.
[3] Chang X., Meyer M.T., Liu X., et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China[J]. Environmental Pollution, 2010, 158(5): 1444~1450.
[4] Gbel A., Thomsen A., Mcardell C.S., et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environmental Science & Technology, 2005, 39(11): 3981~3989.
[5] Gulkowska A., Leung H.W., So M.K., et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1): 395~403.
[6] Golet E.M., Alder A.C., Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland[J]. Environmental Science &Technology, 2002, 36(17): 3645~3651.
[7] Schauss K., Focks A., Heuer H., et al. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems[J]. TrAC Trends in Analytical Chemistry, 2009, 28(5): 612~618.
[8] Al-Ahmad A., Daschner F.,Kümmerer K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria[J]. Archives of Environmental Contamination and Toxicology, 1999, 37(2): 158~163.endprint
[9] Ingerslev F., Halling S. B. Biodegradability properties of sulfonamides in activated sludge[J]. Environmental Toxicology and Chemistry, 2000, 19(10): 2467~2473.
[10] Reinthaler F., Posch J., Feierl G., et al. Antibiotic resistance of E. coli in sewage and sludge[J]. Water Research, 2003, 37(8): 1685~1690.
[11] Baran W., Sochacka J., Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65(8): 1295~1299.
[12] Sanderson H., Brain R.A., Johnson D.J., et al. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones[J]. Toxicology, 2004, 203(1-3): 27~40.
[13] Batchelder A. Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures[J]. Journal of Environ. Quality, 1981, 10: 515~518.
[14] Migliore L., Civitareale C., Brambilla G., et al. Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L) [J]. Agriculture, Ecosystems & Environment, 1997, 65(2): 163~168.
[15] Abellán M.N., Bayarri B., Giménez J., et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2[J]. Applied Catalysis B: Environmental, 2007, 74(3): 233~241.
[16] Addamo M., Augugliaro V., Paola A.D., et al. Removal of drugs in aqueous systems by photoassisted degradation[J]. Journal of applied electrochemistry, 2005, 35(7): 765~774.
[17] Lin A.Y.C., Lin C.F., Chiou J.M., et al. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater[J]. Journal of Hazardous Materials, 2009, 171(1): 452~458.
[18] De Witte B., Dewulf J., Demeestere K., et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water[J]. Journal of Hazardous Materials, 2009, 161(2): 701~708.
[19] Dalmázio I., Almeida M.O., Augusti R., et al. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2007, 18(4): 679~687.
[20] Ay F., Kargi F. Advanced oxidation of amoxicillin by Fenton's reagent treatment[J]. Journal of Hazardous Materials, 2010, 179(1): 622~627.
[21] Rozas O., Contreras D., Mondaca M.A., et al. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions[J]. Journal of Hazardous Materials, 2010, 177(1): 1025~1030.endprint
[22] Fan X., Hao H., Shen X., et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials, 2011, 190(1): 493~500.
[23] Dirany A., Sirés I., Oturan N., et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594~602.
[24] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of hazardous materials, 2009, 170(2): 666~672.
[25] Klauson D., Babkina J.,Stepanova K., et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1): 39~45.
[26] Trovo A.G., Nogueira R.F.P., Aguera A., et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment[J]. Water Research, 2011, 45(3): 1394~1402.
[27] Calza P. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B: Environmental, 2004, 53(1): 63~69.
[28] Trovó A.G.,Nogueira R.F.P.,Agüera A., et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922~3931.
[29] Lange F.,Cornelissen S.,Kubac D., et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17~23.
[30] Tong L.,Eichhorn P.,Perez S., et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340~348.
[31] An T.,Yang H.,Li G., et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B-Environmental, 2010, 94(3-4): 288~294.
[32] Li Y., Niu J.,Wang W. Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892~897.endprint
[22] Fan X., Hao H., Shen X., et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials, 2011, 190(1): 493~500.
[23] Dirany A., Sirés I., Oturan N., et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594~602.
[24] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of hazardous materials, 2009, 170(2): 666~672.
[25] Klauson D., Babkina J.,Stepanova K., et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1): 39~45.
[26] Trovo A.G., Nogueira R.F.P., Aguera A., et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment[J]. Water Research, 2011, 45(3): 1394~1402.
[27] Calza P. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B: Environmental, 2004, 53(1): 63~69.
[28] Trovó A.G.,Nogueira R.F.P.,Agüera A., et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922~3931.
[29] Lange F.,Cornelissen S.,Kubac D., et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17~23.
[30] Tong L.,Eichhorn P.,Perez S., et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340~348.
[31] An T.,Yang H.,Li G., et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B-Environmental, 2010, 94(3-4): 288~294.
[32] Li Y., Niu J.,Wang W. Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892~897.endprint
[22] Fan X., Hao H., Shen X., et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials, 2011, 190(1): 493~500.
[23] Dirany A., Sirés I., Oturan N., et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594~602.
[24] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of hazardous materials, 2009, 170(2): 666~672.
[25] Klauson D., Babkina J.,Stepanova K., et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1): 39~45.
[26] Trovo A.G., Nogueira R.F.P., Aguera A., et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment[J]. Water Research, 2011, 45(3): 1394~1402.
[27] Calza P. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B: Environmental, 2004, 53(1): 63~69.
[28] Trovó A.G.,Nogueira R.F.P.,Agüera A., et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922~3931.
[29] Lange F.,Cornelissen S.,Kubac D., et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17~23.
[30] Tong L.,Eichhorn P.,Perez S., et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340~348.
[31] An T.,Yang H.,Li G., et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B-Environmental, 2010, 94(3-4): 288~294.
[32] Li Y., Niu J.,Wang W. Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892~897.endprint