鄒海明+呂錫武+顧倩
摘要:針對低溫環(huán)境下生物強化除磷工藝的啟動與運行,研究了厭氧/好氧和厭氧/缺氧兩種模式富集馴化好氧聚磷菌和反硝化聚磷菌的效果.研究表明,以城市污水處理廠活性污泥為接種污泥,在8~11 ℃的低溫環(huán)境下能有效完成好氧和反硝化聚磷菌的富集馴化,厭氧/好氧和厭氧/缺氧反應(yīng)器分別在第40 d和第80 d達到穩(wěn)定狀態(tài).厭氧/好氧反應(yīng)器內(nèi)污泥釋磷和吸磷能力強于厭氧/缺氧反應(yīng)器內(nèi)污泥,分別為27.7 mg P/g MLVSS,35.2 mg P/g MLVSS,17.4 mg P/g MLVSS,23.1 mg P/g MLVSS.反硝化聚磷菌可以在好氧條件下以氧為電子受體快速吸收磷,而好氧聚磷菌在缺氧環(huán)境中以硝酸鹽為電子受體立即吸收磷的能力較弱,僅為6.9 mgP/gMLVSS,占好氧吸磷的19.6%.厭氧/好氧和厭氧/缺氧兩個反應(yīng)器富集前后聚磷菌(Accumulibacter)的豐度分別由9.3%(接種污泥)增加到79.3%(好氧聚磷菌)和61.6%(反硝化聚磷菌),同樣表明了在該低溫環(huán)境下兩個生物強化除磷工藝均實現(xiàn)了Accumulibacter的有效富集.
關(guān)鍵詞:生物強化除磷;低溫;好氧聚磷菌;反硝化聚磷菌;熒光原位雜交
中圖分類號:X703.1 文獻標(biāo)識碼:A
氮、磷元素是引起水體富營養(yǎng)化的兩個重要因子,眾多國家對其排放濃度都有著嚴(yán)格限制.我國國家環(huán)境保護部要求城鎮(zhèn)污水處理廠出水排入重點流域及湖泊、水庫等封閉、半封閉水域時,執(zhí)行《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》(GB 18918-2002)的一級A標(biāo)準(zhǔn).隨著氮、磷排放標(biāo)準(zhǔn)的提高,在新建污水處理廠或舊工藝升級改造過程中,高效率低能耗的生物脫氮除磷技術(shù)應(yīng)用尤為重要.
目前,生物強化除磷工藝(enhanced biological phosphorus removal, EBPR)因其效率高、成本低和環(huán)境友好而備受學(xué)者關(guān)注.該工藝中主要的功能微生物是聚磷菌(Accumulibacter),其主要特點是:在厭氧條件下細(xì)胞內(nèi)聚磷水解產(chǎn)生能量(adenosine triphosphate, ATP)和還原型輔酶NADH,用于揮發(fā)性脂肪酸(volatile fatty acid, VFA)的吸收并儲存為聚β羥丁酸(polyβhydroxybutyrate, PHB);然后在好氧條件下以PHB為電子供體,以氧為電子受體進行過量吸磷,從而以剩余污泥排放的形式去除污水中的磷\[1\].隨著學(xué)者對聚磷菌的深入研究\[2-3\],發(fā)現(xiàn)存在著一種聚磷菌可以在缺氧條件下以硝酸鹽為電子受體進行同步反硝化脫氮除磷,稱為反硝化聚磷菌.反硝化聚磷菌相比于好氧聚磷菌可節(jié)省曝氣量30%,減少污泥產(chǎn)生量50%,降低碳源需求量50%,特別適合低C/N比生活污水的處理\[4\].無論是好氧聚磷菌還是反硝化聚磷菌在富集過程中都極易受到具有類似代謝類型但不具備釋磷和吸磷功能的聚糖菌競爭,而pH,DO,碳源和溫度等因素\[5-7\]將影響著聚磷菌和聚糖菌的富集環(huán)境\[8\].在這些影響因素中,溫度是聚磷菌和聚糖菌富集的主要影響因素\[9\].Winkler等人\[10\]研究發(fā)現(xiàn)當(dāng)溫度從20 ℃上升到30 ℃時,磷去除率從79%降至32%;當(dāng)溫度由20 ℃上升到35 ℃時類似的結(jié)果同樣被發(fā)現(xiàn)\[6\];亢涵等人\[11\]在溫度為15 ℃的情況下成功富集到大量的聚磷菌而淘汰了聚糖菌.在已有的溫度研究范圍內(nèi)(15 ℃~ 40 ℃)溫度越低越有利于聚磷菌的生長繁殖,然而關(guān)于低溫下(<15 ℃)富集聚磷菌的文獻尚未見報道.研究低溫環(huán)境下聚磷菌的富集馴化狀況,對EBPR系統(tǒng)應(yīng)用于實踐有著重要的指導(dǎo)意義(尤其是冬季).
為此,本課題在低溫(冬季室溫為8~11 ℃時)情況下開展好氧聚磷菌和反硝化聚磷菌的富集馴化,探究一種可以實現(xiàn)低溫啟動運行EBPR系統(tǒng)的策略;通過進出水工藝參數(shù)化學(xué)分析,考察系統(tǒng)啟動運行狀況;通過不同環(huán)境下的批次試驗,考察聚磷菌吸磷和釋磷特征;利用FISH分子生物學(xué)分析手段,考察反應(yīng)器啟動前后活性污泥中聚磷菌數(shù)量的動態(tài)變化.結(jié)合本試驗化學(xué)分析和微生物分析結(jié)果,以期為低溫環(huán)境下啟動運行EBPR系統(tǒng)提供參考,同時為EBPR技術(shù)應(yīng)用于實踐中提供借鑒.
1材料與方法
1.1反應(yīng)裝置及運行
試驗裝置為有機玻璃材質(zhì)(內(nèi)徑15 cm,總高度33 cm, 有效容積 3.3 L),見圖1.整個裝置通過電子控制器(上海天那電器有限公司)控制進水、出水、攪拌和曝氣,其運行周期為8 h(進水0.5 h,厭氧2 h,缺氧或好氧4 h,沉淀1 h和排水0.5 h).厭氧段控制溶解氧DO (dissolved oxygen)為 0.1 mg/L以下,好氧段控制DO為2.0 mg/L以上,缺氧段控制氧化還原電位ORP(oxidationreduction potential)為-100~-40 mV,溫度為8~11 ℃(室溫),控制pH 7.0±0.5.由于本試驗是在低溫下運行,故采用“高注水比(0.58)、高污泥濃度、先高后低底物負(fù)荷”工況啟動厭氧/好氧(anaerobic/aerobic)和厭氧/缺氧(anaerobic/anoxic)反應(yīng)器(簡稱RAO, RAA),水力停留時間HRT(hydraulic detention time)為13.9 h.在厭氧/缺氧反應(yīng)器運行之前,先通入氮氣(1.5 L/min)5 min排除殘余氧氣.好氧段通入空氣速率為2.0 L/min.整個試驗過程中除進水、出水和沉淀期間外,均采用懸臂式攪拌機攪拌,速率為200 r/min.
1.2試驗材料
試驗所用接種污泥取自江蘇省南京市城東污水處理廠A2O(厭氧/缺氧/好氧,anaerobic/anoxic/aerobic)工藝好氧池,主要參數(shù):混合液懸浮固體濃度MLSS (mixed liquor suspended solids) 為4 200 mg/L,混合液揮發(fā)性懸浮固體濃度MLVSS (mixed liquor volatile suspended solids) 為3 600 mg/L.
試驗用水采用人工配水,其主要成分為,每升(L):CH3COONa, 1.025 g;KH2PO4, 0.176 g;(NH4)2SO4, 0.471 g;CaCl2, 0.021 g;MgSO4·7H2O, 0.180 g.營養(yǎng)液0.60 mL;營養(yǎng)液組成,每升(L):FeCl3· 6H2O ,1.50 g;H3BO3, 0.15 g;CuSO4·5H2O, 0.03 g;KI, 0.18 g;MnCl2·4H2O, 0.12 g;Na2MoO4·2H2O, 0.06 g;ZnSO4·7H2O, 0.12 g;CoCl2·6H2O,0.15g;EDTA,10.00 g,其水質(zhì):化學(xué)需氧量COD(chemical oxygen demand) 800 mg/L,PO43-P 40 mg/L.
1.3試驗設(shè)計
1.3.1富集試驗
厭氧/好氧和厭氧/缺氧兩個反應(yīng)器內(nèi)污泥富集過程分為兩個階段:階段一(0~30 d),為了在低溫環(huán)境下有利于微生物生長采用高底物負(fù)荷進水,進水中COD 800 mg/L, PO43-P 40 mg/L, 缺氧時加NO3-N 50 mg/L,此階段不排泥;階段二(31~80 d),為了適應(yīng)生活污水水質(zhì)和成功富集聚磷菌,此階段降低進水中的底物負(fù)荷和COD/P比\[14\],進水中COD 300 mg/L, PO43-P 20 mg/L, 缺氧時加NO3-N 30 mg/L,每天厭氧/好氧反應(yīng)器排泥330 mL,厭氧/缺氧反應(yīng)器排泥115 mL,使其污泥停留時間(sludge retention time, SRT)分別為10 d和20 d,污泥濃度(mixed liquor suspended solid, MLSS)分別為4 500 mg/L和3 700 mg/L.
1.3.2批次試驗
為了探究好氧聚磷菌以硝酸鹽為電子受體的除磷能力和反硝化聚磷菌以氧為電子受體的除磷能力,在兩個反應(yīng)器運行達到穩(wěn)定狀態(tài)時進行污泥樣品的批次試驗.在好氧段和缺氧段結(jié)束取污泥樣品0.5 L,立即用營養(yǎng)液(不含C,N,P)沖洗2次.處理后的好氧聚磷菌污泥和反硝化聚磷菌污泥樣品平均分為兩部分,加入到批次試驗容器中(有效容積1 L),見圖2.好氧聚磷菌污泥和反硝化聚磷菌污泥分別在厭氧/好氧和厭氧/缺氧兩種模式下進行對比試驗,進水濃度與富集試驗階段二一致.各階段運行時間為:厭氧2 h,缺氧或好氧4 h,每隔15 min采集一次樣品.
1.3.3熒光原位雜交
為了探究厭氧/好氧和厭氧/缺氧兩個反應(yīng)器內(nèi)富集前后聚磷菌動態(tài)變化,此處采用熒光原位雜交(FISH)技術(shù)原位分析接種污泥、好氧聚磷菌污泥和反硝化聚磷菌污泥聚磷菌豐度.取培養(yǎng)馴化前接種污泥、厭氧/好氧和厭氧/缺氧反應(yīng)器穩(wěn)定階段污泥各5 mL進行FISH分析,其操作步驟\[13\]為:樣品前處理、4%的多聚甲醛固定、乙醇梯度脫水、原位雜交、洗脫、DAPI染色和風(fēng)干備觀察.
1.4分析方法
1.4.1化學(xué)分析
PO43-P和NO3-N采用流動分析儀測定(AutoAnalyzer3, SEAL, 英國);COD,MLSS,MLVSS根據(jù)標(biāo)準(zhǔn)方法\[15\]測定;DO采用溶解氧測定儀(YSI DO 200,美國)測定;pH, ORP采用復(fù)合測定儀(YSI pH 100, 美國)測定.
1.4.2微生物分析
試驗使用的16SrRNA寡核苷酸熒光探針\[16\]由上海生物工程公司合成, PAO651(5CCCTCTGCCAAACTCCAG3), PAO462(5CCGTCATCTACWCAGGGTATTAAC3), PAO846(5GTTAGCTACGGCACTAAAAGG3) 以上均由熒光染料Cy3標(biāo)記為紅色.使用時將PAO651,PAO462,PAO846 3種熒光探針按等體積混合配制成PAOmix,濃度為50 ng/μL,用于探測聚磷菌Accumulibacter. 此外,DAPI(4',6二脒基2苯基吲哚)染色用于檢測全細(xì)菌\[17\].
1.4.3數(shù)據(jù)處理
數(shù)據(jù)統(tǒng)計分析和圖形繪制采用origin 8.0軟件;試驗裝置圖繪制采用Visio 2003 軟件;FISH圖片觀察通過熒光顯微鏡(FSX100, Olympus, 日本),具備圖像導(dǎo)航功能且?guī)в蠴lympus FSXBSW軟件;FISH圖片熒光強度分析采用ImagePro Plus軟件\[18\].
2結(jié)果與分析
2.1厭氧/好氧和厭氧/缺氧反應(yīng)器啟動過程
2.1.1出水磷濃度的變化
取自A2O工藝好氧池的接種污泥在低溫情況下(8 ℃~11 ℃)通過厭氧/好氧和厭氧/缺氧兩種模式富集好氧聚磷菌和反硝化聚磷菌,定期監(jiān)測出水中磷(PO43-P)濃度,結(jié)果見圖3.厭氧/好氧反應(yīng)器在40 d時達到穩(wěn)定狀態(tài),其出水PO43-P濃度為0.5 mg/L,而厭氧/缺氧反應(yīng)器則通過80 d的富集馴化過程達到與厭氧/好氧相類似的穩(wěn)定狀態(tài).通過試驗發(fā)現(xiàn):在低溫情況下采用“高注水比、高污泥濃度、先高后低底物負(fù)荷”可以成功地富集到好氧聚磷菌和反硝化聚磷菌,但達到穩(wěn)定階段(即微生物馴化成熟)所需的時間與高溫富集時相比較長\[11, 19\].在污泥培養(yǎng)馴化開始階段,兩個反應(yīng)器內(nèi)均表現(xiàn)出一定的磷去除能力,這是由于接種污泥取自A2O工藝,該工藝中污泥經(jīng)歷厭氧/缺氧/好氧過程可以富集到一定量的聚磷微生物,F(xiàn)ISH分析顯示接種污泥中含有9.3%的Accumulibacter(見2.5節(jié)).
2.1.2MLVSS/MLSS比值的變化
在生物強化除磷系統(tǒng)中,MLSS由MLVSS和灰分組成,MLVSS包括:生物細(xì)胞體、PHB和糖原,灰分則95%以上是聚磷,((KMg)1/3 PO3)n.因此,通常用MLVSS/MLSS比值大小表征聚磷微生物含磷量的多寡\[20\].接種污泥、厭氧/好氧和厭氧/缺氧反應(yīng)器啟動完成后污泥MLSS,MLVSS和MLVSS/MLSS比值見表1.由表1可知,厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥含磷量要明顯高于接種污泥含磷量,其MLVSS/MLSS比值分別為0.70,0.78和0.86,與Lu等人\[21\]在實驗室條件下富集聚磷菌MLVSS/MLSS變化一致(從0.84降至0.71),表明了聚磷菌已在兩個反應(yīng)器內(nèi)成為優(yōu)勢種群.
運行時間/d
2.2厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥厭氧釋
磷特征
對于增強的生物除磷系統(tǒng)EBPR來說,厭氧釋磷越充分,越有利于好氧或缺氧條件下過量吸磷從而有效去除廢水中的磷\[22\].為此,通過批次試驗考察厭氧/好氧和厭氧/缺氧兩個反應(yīng)器啟動完成后污泥厭氧釋磷特征,接種污泥做同樣的試驗作為對照.
2.2.1污泥厭氧釋磷量的變化
在2 h的厭氧過程中好氧聚磷菌污泥、反硝化聚磷菌污泥和接種污泥釋磷量的變化和總釋磷量,見圖4和圖5.
在整個厭氧釋磷過程中,接種污泥在前30 min內(nèi)表現(xiàn)了一定的釋磷能力(7.8 mg P/g MLVSS),表明在A2O工藝中有一定數(shù)量的聚磷菌存在,這為低溫環(huán)境下富集好氧聚磷菌和反硝化聚磷菌提供了幫助.因此,在富集聚磷菌試驗中所用的接種污泥應(yīng)取自含有厭氧/缺氧/好氧過程的工藝(如A2O,氧化溝),若從傳統(tǒng)的僅為去除有機物為目的的工藝中取泥則增加了聚磷菌的富集難度,這一點在Hu等人\[23\]的試驗中得到了證實.好氧聚磷菌單位污泥釋磷量要高于反硝化聚磷菌釋磷量,分別為27.7 mg P/g MLVSS,17.4 mg P/g MLVSS,但通過增加厭氧/缺氧反應(yīng)器內(nèi)污泥濃度可以彌補釋磷總量的差距.此外通過MLVSS/MLSS比值(見表2)在厭氧前后的變化也可以看出兩個反應(yīng)器內(nèi)聚磷菌細(xì)胞內(nèi)聚磷含量逐漸減少,表明好氧聚磷菌和反硝化聚磷菌均發(fā)揮了生物除磷功能.
時間/min
2.2.2污泥厭氧釋磷過程中碳源吸收量的變化
聚磷菌在好氧或缺氧階段完成過量的吸磷工作,其能量主要來源于降解細(xì)胞內(nèi)儲存的PHB,而細(xì)胞內(nèi)PHB的儲存水平與厭氧階段碳源吸收量有著直接關(guān)系\[24\].單位MLVSS污泥吸收碳源量(以COD計)及與釋磷量的關(guān)系見表2和圖6.由表2可知,不同環(huán)境下富集的聚磷菌其單位污泥吸收碳源的能力有明顯差異,好氧聚磷菌比反硝化聚磷菌有更強的吸收碳源能力,相應(yīng)地其釋磷能力也更強.
在EBPR系統(tǒng)中,當(dāng)好氧聚磷菌或反硝化聚磷菌培養(yǎng)馴化完成(即在反應(yīng)器內(nèi)占優(yōu)勢地位)時,厭氧階段碳源吸收量與釋磷量有明顯的正相關(guān)關(guān)系\[25\].由圖6可知,厭氧/好氧和厭氧/缺氧污泥在厭氧階段其碳源消耗量與釋磷量表現(xiàn)了較好的相關(guān)關(guān)系,其決定系數(shù)R2分別為0.9411和0.9712,而接種污泥的這種相關(guān)關(guān)系較差(R2=0.7098)且碳源消耗量、釋磷量低,表明聚磷菌在傳統(tǒng)的脫氮除磷降解有機物系統(tǒng)中數(shù)量較少,不占優(yōu)勢地位.FISH分析(見2.5節(jié))也同樣顯示了在厭氧/好氧和厭氧/缺氧兩個EBPR反應(yīng)器內(nèi)聚磷菌為優(yōu)勢種群.
2.3厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥好氧吸
磷特征
Zeng等人\[26\]在脫氮除磷理論與實踐研究過程中發(fā)現(xiàn),聚磷菌并不是專屬好氧菌,存在一類可以以硝酸鹽為電子受體進行同步反硝化脫氮除磷的聚磷菌,即聚磷菌存在著兩種類型:一種是僅以氧為電子受體;另一種是既可以以氧也可以以硝酸鹽為電子受體,即反硝化聚磷菌.在此,通過批次試驗比較厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥以氧為電子受體好氧吸收磷的能力,結(jié)果見圖5和圖7.
厭氧/好氧反應(yīng)器啟動成功后,好氧聚磷菌表現(xiàn)出良好的好氧吸磷能力,其單位污泥磷量為35.2 mg P/g MLVSS,與厭氧釋磷量(見2.2.1)之比為1.27,也證實了該反應(yīng)器污泥已馴化完成,存在較多數(shù)量的聚磷菌\[19\].與厭氧/好氧反應(yīng)器污泥好氧吸磷能力相比,盡管厭氧/缺氧反應(yīng)器內(nèi)污泥吸磷能力較低 (23.1 mg P/g MLVSS),但是在缺氧環(huán)境下富集的反硝化聚磷菌當(dāng)提供氧為電子受體時,立即表現(xiàn)出較好的好氧吸磷能力,這也表明了確實存在既可以以氧為電子受體也可以以硝酸鹽為電子受體的反硝化聚磷菌這一類型,類似的結(jié)果也被其它研究所證實[27-28].取自A2O工藝的接種污泥同樣也可以去除厭氧出水中的磷(但是吸磷量低,10.9 mg P/g MLVSS),主要是該工藝長期在厭氧/缺氧/好氧條件下運行,污泥存在一定數(shù)量的聚磷菌,具備一定的厭氧釋磷和好氧吸磷能力;此外工藝中其它微生物(C60H87O23N12P)的生長繁殖也需
2.4厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥缺氧吸磷特征
類似于2.3節(jié),此節(jié)同樣通過批次試驗比較了厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)污泥以硝酸鹽為電子受體缺氧吸磷的能力,結(jié)果見圖5和圖8;反硝化除磷是基于同步脫氮除磷理論,因此也考察了硝酸鹽濃度的變化情況,結(jié)果見圖9.
厭氧/缺氧污泥在缺氧條件下吸收磷的能力稍微低于好氧條件下吸收磷的能力,分別為22.9 mg P/g MLVSS和23.1 mg P/g MLVSS,表明在厭氧/缺氧條件下富集的反硝化聚磷菌能較好地以氧或硝酸鹽為電子受體進行吸磷,相應(yīng)地硝酸鹽利用率也較高,與文獻[29,30]中結(jié)果一致.然而厭氧/好氧環(huán)境中富集的好氧聚磷菌,用硝酸鹽代替氧作為電子受體進行同步反硝化脫氮除磷效果較差,好氧聚磷菌并不能立即進行反硝化脫氮除磷,其吸磷能力為6.9 mg P/g MLVSS 遠低于好氧吸磷能力(35.2 mg P/g MLVSS).反硝化聚磷菌可以很容易地利用氧為電子受體進行吸磷,而好氧聚磷菌不易利用硝酸鹽作為電子受體立即吸磷,這主要因為反硝化聚磷菌在好氧條件下較容易合成與缺氧代謝酶相類似的好氧代謝酶,而好氧聚磷菌在缺氧條件下很難迅速合成缺氧代謝酶\[31\].接種污泥盡管缺氧吸磷能力較低(3.9 mg P/g MLVSS),但是硝酸鹽的利用率較高,主要是因為反硝化細(xì)菌利用殘余的碳源和加入的硝酸鹽進行反硝化脫氮,此外也有少量的反硝化聚磷菌同步脫氮除磷作用.
結(jié)合2.3節(jié)和2.4節(jié),厭氧/缺氧反應(yīng)器富集的反硝化聚磷菌在缺氧條件下的吸磷能力(22.9 mg P/g MLVSS)低于厭氧/好氧反應(yīng)器富集的好氧聚磷菌在好氧條件下的吸磷能力(35.2 mg P/g MLVSS),這主要是因為反硝化聚磷菌以硝酸鹽為電子受體產(chǎn)生的能量(ATP)約為好氧聚磷菌以氧為電子受體產(chǎn)生ATP的40%\[32\].在實踐中可以通過提高反硝化聚磷菌污泥濃度來彌補吸磷能力低的差距,因為反硝化聚磷菌呈顆粒狀有著很好的沉降性能,而好氧聚磷菌呈絮狀沉降性能較差\[33\].
2.5厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)聚磷菌原位分析
為了考察厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi)啟動前后聚磷菌(Accumulibacter)的動態(tài)變化,利用熒光原位雜交技術(shù)(FISH)分析了接種污泥、厭氧/好氧反應(yīng)器和厭氧/缺氧反應(yīng)器污泥聚磷菌的豐度,結(jié)果見圖10,粉紅色是由Cy3標(biāo)記的熒光探針PAOmix(紅色)和DPAI染色(藍色)的疊加色,表征污泥中聚磷菌的分布,通過生物圖像分析軟件ImagePro Plus計算熒光強度得到聚磷菌占總細(xì)菌的比例.
通過FISH分析發(fā)現(xiàn),聚磷菌已成功大量富集在厭氧/好氧和厭氧/缺氧反應(yīng)器內(nèi),取自A2O工藝的接種污泥、厭氧/缺氧反應(yīng)器內(nèi)污泥和厭氧/好氧反應(yīng)器內(nèi)污泥Accumulibacter含量分別為9.3%,61.6%和79.3%,多以團聚結(jié)構(gòu)分布在污泥中.本試驗兩個反應(yīng)器內(nèi)富集的聚磷菌占總細(xì)菌的比例要低于Lu等人\[34\]的研究結(jié)果(90%),但高于亢涵\[11\]和Crocetti等人\[35\]的研究結(jié)果(42%左右),這種差別可能由于不同操作條件(pH,DO,碳源種類等)導(dǎo)致聚磷菌富集能力的差異.
3結(jié)論
1)在低溫(8 ℃~11 ℃)情況下采用“高注水比、高污泥濃度、先高后低底物負(fù)荷”策略可以有效地富集到好氧聚磷菌和反硝化聚磷菌,其中厭氧/好氧反應(yīng)器在啟動40 d后達到穩(wěn)定狀態(tài),厭氧/缺氧反應(yīng)器在啟動80 d后達到類似的穩(wěn)定狀態(tài).啟動完成后,兩個反應(yīng)器內(nèi)污泥均表現(xiàn)出較好的釋磷和吸磷能力;且單位污泥濃度好氧聚磷菌的釋磷和吸磷能力均高于反硝化聚磷菌,分別為27.7 mg P/g MLVSS,35.2 mg P/g MLVSS,17.4 mg P/g MLVSS和23.1 mg P/g MLVSS.
2)通過批次試驗發(fā)現(xiàn),反硝化聚磷菌可以在好氧條件下以氧為電子受體快速吸收磷,而好氧聚磷菌在缺氧環(huán)境中以硝酸鹽為電子受體進行同步脫氮除磷的能力較弱,僅為6.9mgP/gMLVSS,占好氧吸磷的19.6%,這將大大促進既經(jīng)濟又環(huán)境友好的反硝化同步脫氮除磷技術(shù)應(yīng)用于實踐中.
3)熒光原位雜交(FISH)分析表明,厭氧/好氧和厭氧/缺氧反應(yīng)器啟動完成后聚磷菌(Accumulibacter)已成為優(yōu)勢種群,分別占細(xì)菌總數(shù)的61.6%和79.3%,明顯高于接種污泥中Accumulibacter的豐度(9.3%).此外,采用含有一定數(shù)量聚磷菌的A2O工藝好氧池污泥作為接種污泥,可以促進EBPR系統(tǒng)中Accumulibacter的有效富集.
參考文獻
[1]ZHANG Hailing, FANG Wei, WANG Yongpeng, et al. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances\[J\]. Environmental Science & Technology, 2013, 47(20): 11482-11489.
\[2\]PENG Zhaoxu, PENG Yongzhen, GUI Lijuan, et al. Competition for single carbon source between denitrification and phosphorus release in sludge under anoxic condition\[J\]. Chinese Journal of Chemical Engineering, 2010, 18(3): 472-477.
\[3\]JIANG X X, YANG J X, MA F,et al. Denitrifying phosphorous removal in anaerobic/anoxic SBR system with different startup operation mode\[J\]. Journal of Harbin Institute of Technology, 2010, 17(6): 824-829.
\[4\]田文德, 李偉光, 張卉, 等. 兩級生物選擇同步除磷脫氮新工藝\[J\]. 中國環(huán)境科學(xué), 2012, 32(2): 221-225.
TIAN Wende, LI Weiguang, ZHANG Hui, et al. Bibioselective simultaneous phosphorus and nitrogen removal (BBSPN) novel process\[J\]. China Environmental Science, 2012, 32(2):221-225. (In Chinese)
\[5\]侯紅勛, 王淑瑩, 閆駿, 等. 不同碳源類型對生物除磷過程釋放磷的影響\[J\]. 化工學(xué)報, 2007, 58(8): 2081-2086.
HOU Hongxun, WANG Shuying, YAN Jun, et al. Effect of different types carbon sources on phosphorus release in enhanced biological phosphorus removal process\[J\]. CIESC Journal, 2007, 58(8): 2081-2086. (In Chinese)
\[6\]PANSWAD T, DOUNGCHAI A, ANOTAI J. Temperature effect on microbial community of enhanced biological phosphorus removal system\[J\]. Water Research, 2003, 37(2): 409-415.
\[7\]CARVALHO G, LEMOS P C, OEHMEN A, et al. Denitrifying phosphorus removal: linking the process performance with the microbial community structure\[J\]. Water Research, 2007, 41(19): 4383-4396.
\[8\]郭春艷, 王淑瑩, 李夕耀, 等. 聚磷菌和聚糖菌的競爭影響因素研究進展\[J\]. 微生物學(xué)通報, 2009, 36(2): 267-275.
GUO Chunyan, WANG Shuying,LI Xiyao, et al. Review on the factors affecting the enrichment culture of PAOs and GAOs\[J\]. Microbiology, 2009, 36(2): 267-275. (In Chinese)
\[9\]REN N, KANG H, WANG X, et al. Shortterm effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system\[J\]. Frontiers of Environmental Science & Engineering in China, 2011, 5(2): 277-282.
\[10\]WINKLER M K H, BASSIN J P, KLEEREBEZEM R, et al. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAOGAO competition at high temperatures\[J\]. Water Research, 2011, 45(11): 3291-3299.
\[11\]亢涵, 李楠, 任南琪. 低溫強化生物除磷反應(yīng)器中微生物的競爭關(guān)系\[J\]. 哈爾濱工業(yè)大學(xué)學(xué)報, 2010, 42(6): 881-885.
KANG Han, LI Nan, REN Nanqi. Competition between phosphateaccumulating organisms and glycogenaccumulating organisms and the phosphate removal efficiency in EBPR reactor at low temperature\[J\]. Journal of Harbin Institute of Technology, 2010, 42(6): 881-885. (In Chinese)
\[12\]HE S, GU A Z, MCMAHON K D. Finescale differences between Accumulibacterlike bacteria in enhanced biological phosphorus removal activated sludge\[J\]. Water Science Technology, 2006, 54(1): 111-118.
\[13\]ZOU Haiming, LU Xiwu, SHI Jing. Investigation of denitrifying phosphorus removal organisms in a twosludge denitrifying phosphorus removal process\[J\]. Asian Journal of Chemistry, 2013, 25(12): 6826-6830.
\[14\]GUERRERO J, TAYA C, GUISASOLA A, et al. Glycerol as a sole carbon source for enhanced biological phosphorus removal\[J\]. Water Research, 2012, 46: 2983-2991.
\[15\]國家環(huán)??偩? 水和廢水監(jiān)測\[M\]. 北京:中國環(huán)境科學(xué)出版社,2002.
Ministry of Environmental Protection of China. Monitoring analysis method of water and wastewater\[M\]. Beijing: China Environmental Science Press, 2002. (In Chinese)
\[16\]SILVA A F, CARVALHO G, OEHMEN A, et al. Microbial population analysis of nutrient removalrelated organisms in membrane bioreactors\[J\]. Applied Microbiology and Biotechnology, 2012, 93(5): 2171-2180.
\[17\]RUIZARBAJOSA P, DE REGT M, BONTEN M, et al. Highdensity fecal enterococcus faecium colonization in hospitalized patients is associated with the presence of the polyclonal subcluster CC17\[J\]. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31(4): 519-522.
\[18\]高景峰, 陳冉妮, 蘇凱, 等. 同步脫氮除磷好氧顆粒污泥形成與反應(yīng)機制的研究\[J\]. 環(huán)境科學(xué), 2010, 31(4): 1021-1029.
GAO Jinfeng, CHEN Ranni,SU Kai, et al. Formation and reaction mechanism of simultaneous nitrogen and phosphorus removal by aerobic granular sludge\[J\]. Environmental science, 2010, 31(4): 11021-1029. (In Chinese)
\[19\]盧文健, 楊殿海, 郭云, 等. 聚磷菌的快速富集及其除磷特性研究\[J\]. 環(huán)境污染與防治, 2012, 34(6): 31-36.
LU Wenjian, YANG Dianhai, GUO Yun, et al. Rapid enrichment of polyphosphate accumulating organisms and its characteristics of phosphorus removal\[J\]. Environmental Pollution and Control, 2012, 34(6): 31-36. (In Chinese)
\[20\]ACEVEDO B, OEHMEN A, CARVALHO G, et al. Metabolic shift of polyphosphateaccumulating organisms with different levels of polyphosphate storage\[J\]. Water Research, 2012, 46:1889-1900.
\[21\]GUERRERO J, TAYA C, GUISASOLA A, et al. Glycerol as a sole carbon source for enhanced biological phosphorus removal\[J\]. Water Research, 2012, 46:2983-2991.
\[22\]BUCCI V, MAJED N, HELLWEGER F L, et al. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)observation and modeling\[J\]. Environmental Science & Technology, 2012, 46(6): 3244-3252.
\[23\]HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors\[J\]. Water Research, 2003, 37(14): 3463-3471.
\[24\]ZHANG L, MA J, LIU Y, et al. Improvement of biological total phosphorus release and uptake by low electrical current application in labscale bioelectrochemical reactors\[J\]. Bioelectrochemistry, 2012, 88:92-96.
\[25\]KUBA T, MUMLEITNER E, VAN L M, et al. A metabolic model for biological phosphorus removal by denitrifying organisms\[J\]. Biotechnology Bioengineering, 2000, 52(6): 685-695.
\[26\]ZENG R J, SAUNDERS A M, YUAN Z, et al. Identification and comparison of aerobic and denitrifying polyphosphate‐accumulating organisms\[J\]. Biotechnology Bioengineering, 2003, 83(2): 140-148.
\[27\]亢涵, 王秀蘅, 李楠, 等. 生物除磷系統(tǒng)啟動期聚磷菌的FISH原位分析與聚磷特性\[J\]. 環(huán)境科學(xué), 2009, 30(1): 80-84.
KANG Han, WANG Xiuheng, LI Nan, et al. Characterization of phosphateaccumulating organisms in startingup EBPR by FISH analysis\[J\]. Environmental Science, 2009, 30(1): 80-84. (In Chinese)
\[28\]PODEDWOMA J, ZUBROWSKASUDOL M. Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase\[J\]. Environmental Technology, 2012, 33(2): 237-245.
\[29\]ZENG T, WANG D, LI X, et al. Comparison between acetate and propionate as carbon sources for phosphorus removal in the aerobic/extendedidle regime\[J\]. Biochemical Engineering Journal, 2013, 70: 151-157.
\[30\]李勇智, 王淑瀅, 吳凡松, 等. 強化生物除磷體系中反硝化聚磷菌的選擇與富集\[J\]. 環(huán)境科學(xué)學(xué)報, 2004, 24(1): 45-49.
LI Yongzhi, WANG Shuying, WU Fansong, et al. Selection and enrichment of denitrifying phosphate accumulating bacteria in biologically enhanced phosphate removal process\[J\]. Acta Scienctiae Circumstantiae, 2004, 24(1): 45-49. (In Chinese)
\[31\]MARTIN H G, IVANOVA N, KUNIN V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities\[J\]. Nature Biotechnology, 2006, 24(10): 1263-1269.
\[32\]MONCLUS H, SIPMA J, FERRERO G, et al. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal\[J\]. Bioresource Technology, 2010, 101(11): 3984-3991.
\[33\]WINKLER M K H, KLEEREBEZEM R, DE BRUIN L M M, et al. Microbial diversity differences within aerobic granular sludge and activated sludge flocs\[J\]. Applied Microbiology and Biotechnology, 2012: 1-12.
\[34\]LU H B, OEHMEN A, VIRDIS B, et al. Obtaining highly enriched cultures of candidatus Accumulibacter phosphates through alternating carbon sources\[J\]. Water Research, 2006, 40(20): 3838-3848.
\[35\]CROCETTI G R, HUGENHOLTZ P, BOND P L, et al. Identification of polyphosphateaccumulating organisms and design of 16S rRNAdirected probes for their detection and quantitation\[J\]. Applied and Environmental Microbiology, 2000, 66(3): 1175-1182.
\[29\]ZENG T, WANG D, LI X, et al. Comparison between acetate and propionate as carbon sources for phosphorus removal in the aerobic/extendedidle regime\[J\]. Biochemical Engineering Journal, 2013, 70: 151-157.
\[30\]李勇智, 王淑瀅, 吳凡松, 等. 強化生物除磷體系中反硝化聚磷菌的選擇與富集\[J\]. 環(huán)境科學(xué)學(xué)報, 2004, 24(1): 45-49.
LI Yongzhi, WANG Shuying, WU Fansong, et al. Selection and enrichment of denitrifying phosphate accumulating bacteria in biologically enhanced phosphate removal process\[J\]. Acta Scienctiae Circumstantiae, 2004, 24(1): 45-49. (In Chinese)
\[31\]MARTIN H G, IVANOVA N, KUNIN V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities\[J\]. Nature Biotechnology, 2006, 24(10): 1263-1269.
\[32\]MONCLUS H, SIPMA J, FERRERO G, et al. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal\[J\]. Bioresource Technology, 2010, 101(11): 3984-3991.
\[33\]WINKLER M K H, KLEEREBEZEM R, DE BRUIN L M M, et al. Microbial diversity differences within aerobic granular sludge and activated sludge flocs\[J\]. Applied Microbiology and Biotechnology, 2012: 1-12.
\[34\]LU H B, OEHMEN A, VIRDIS B, et al. Obtaining highly enriched cultures of candidatus Accumulibacter phosphates through alternating carbon sources\[J\]. Water Research, 2006, 40(20): 3838-3848.
\[35\]CROCETTI G R, HUGENHOLTZ P, BOND P L, et al. Identification of polyphosphateaccumulating organisms and design of 16S rRNAdirected probes for their detection and quantitation\[J\]. Applied and Environmental Microbiology, 2000, 66(3): 1175-1182.
\[29\]ZENG T, WANG D, LI X, et al. Comparison between acetate and propionate as carbon sources for phosphorus removal in the aerobic/extendedidle regime\[J\]. Biochemical Engineering Journal, 2013, 70: 151-157.
\[30\]李勇智, 王淑瀅, 吳凡松, 等. 強化生物除磷體系中反硝化聚磷菌的選擇與富集\[J\]. 環(huán)境科學(xué)學(xué)報, 2004, 24(1): 45-49.
LI Yongzhi, WANG Shuying, WU Fansong, et al. Selection and enrichment of denitrifying phosphate accumulating bacteria in biologically enhanced phosphate removal process\[J\]. Acta Scienctiae Circumstantiae, 2004, 24(1): 45-49. (In Chinese)
\[31\]MARTIN H G, IVANOVA N, KUNIN V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities\[J\]. Nature Biotechnology, 2006, 24(10): 1263-1269.
\[32\]MONCLUS H, SIPMA J, FERRERO G, et al. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal\[J\]. Bioresource Technology, 2010, 101(11): 3984-3991.
\[33\]WINKLER M K H, KLEEREBEZEM R, DE BRUIN L M M, et al. Microbial diversity differences within aerobic granular sludge and activated sludge flocs\[J\]. Applied Microbiology and Biotechnology, 2012: 1-12.
\[34\]LU H B, OEHMEN A, VIRDIS B, et al. Obtaining highly enriched cultures of candidatus Accumulibacter phosphates through alternating carbon sources\[J\]. Water Research, 2006, 40(20): 3838-3848.
\[35\]CROCETTI G R, HUGENHOLTZ P, BOND P L, et al. Identification of polyphosphateaccumulating organisms and design of 16S rRNAdirected probes for their detection and quantitation\[J\]. Applied and Environmental Microbiology, 2000, 66(3): 1175-1182.