• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      微生物燃料電池的研究進(jìn)展

      2014-11-20 11:29:49林喬王黎張捷王捷周蕓胡寧
      湖北農(nóng)業(yè)科學(xué) 2014年18期

      林喬+王黎+張捷+王捷+周蕓+胡寧

      摘要:微生物燃料電池(MFC)作為一種新型生物發(fā)電技術(shù),目前已得到研究者們的廣泛關(guān)注。通過文獻(xiàn)的數(shù)據(jù)挖掘,對(duì)不同微生物燃料電池運(yùn)行的機(jī)理、產(chǎn)電微生物、底物、電極材料、質(zhì)子交換膜、反應(yīng)器設(shè)計(jì)等方面進(jìn)行分析,綜述了MFC最新研究進(jìn)展,并對(duì)其發(fā)展前景進(jìn)行了展望。

      關(guān)鍵詞:微生物燃料電池(MFC);產(chǎn)電機(jī)理;產(chǎn)電微生物

      中圖分類號(hào):X703 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)18-4257-07

      微生物燃料電池(MFC)是一種新型能源回收技術(shù)。MFC的作用機(jī)制是利用微生物氧化還原有機(jī)物,將氧化還原反應(yīng)中產(chǎn)生的電子通過電子鏈傳遞到燃料電池的電極上,從而產(chǎn)生電流,是一個(gè)將生物化學(xué)能轉(zhuǎn)化為電能的過程。能源問題和環(huán)境問題是當(dāng)今社會(huì)關(guān)注的兩大焦點(diǎn),利用微生物燃料電池可以在處理污染物的同時(shí)產(chǎn)生電能,而且在轉(zhuǎn)化的過程中,MFC具有能量轉(zhuǎn)化率高、燃料多樣化、操作條件溫和、安全無污染等優(yōu)點(diǎn),所以這項(xiàng)技術(shù)受到研究者的廣泛關(guān)注。

      MFC在實(shí)際中的應(yīng)用多種多樣,例如工業(yè)中降解啤酒廢水[1-3]、甘蔗廢水產(chǎn)電[4],在生活中降解生活污水[5-9]、垃圾滲濾液產(chǎn)電[10,11]等。近些年來,隨著MFC技術(shù)的發(fā)展,可以利用底棲微生物燃料電池的電化學(xué)活性來確定細(xì)菌的親緣關(guān)系[12],用陰極酶催化微生物燃料電池的生物電流來加強(qiáng)染料脫色[13],并用超聲處理的微生物燃料電池來改變污泥中有機(jī)質(zhì)的降解特性等。MFC新技術(shù)的不斷突破,為中國經(jīng)濟(jì)、社會(huì)、環(huán)境的發(fā)展帶來巨大的推動(dòng)力,為資源再生利用和實(shí)現(xiàn)可持續(xù)發(fā)展做出了貢獻(xiàn)。

      1 主要MFC運(yùn)行原理比較

      根據(jù)產(chǎn)電原理的不同,MFC大致可分為3種類型:①產(chǎn)氫MFC,在電極上涂抹化學(xué)催化劑,利用微生物分解有機(jī)物產(chǎn)氫,將制氫與發(fā)電結(jié)合在一起;②光能自養(yǎng)MFC,利用感光微生物的光合作用,直接將光能轉(zhuǎn)化為電能;③化能異養(yǎng)MFC,利用厭氧或兼性微生物,在厭氧的條件下利用有機(jī)物燃燒提取電子,通過電子轉(zhuǎn)移產(chǎn)生電流。這種也是最常用的MFC反應(yīng)器。

      MFC反應(yīng)器由陰陽電極、質(zhì)子交換膜和反應(yīng)室三部分組成。在厭氧條件下,陽極反應(yīng)室中植入微生物和有機(jī)底物,其中有機(jī)底物被微生物分解產(chǎn)生電子、氫離子。電子經(jīng)外電路傳遞到陰極,在反應(yīng)器內(nèi)部氫離子通過質(zhì)子交換膜或直接由陽極區(qū)傳遞至陰極區(qū)。電子通過電子傳遞鏈產(chǎn)生電流,微生物通過獲得電子傳遞中產(chǎn)生的能量而維持生長。

      以葡萄糖為例,微生物燃料電池中的反應(yīng)式如下。

      陽極:C6H12O6+6H2O→6CO2+24e-+24H+

      陰極:6O2+24e-+24H+→12H2O

      MFC運(yùn)行效果的主要參數(shù)有電極電勢(shì)、內(nèi)阻、功率、功率密度、庫倫效率、能量效率、污染物去除率、污染物負(fù)荷率等。而影響MFC性能的主要因素有微生物、底物、電極、反應(yīng)裝置設(shè)計(jì)、質(zhì)子交換膜等,本文將從微生物燃料電池的以上幾個(gè)方面做出總結(jié)和闡述。

      2 產(chǎn)電微生物及研究進(jìn)展

      產(chǎn)電微生物是MFC中重要的影響因素,它不僅決定著底物的降解速率、電子的釋放速率,甚至?xí)绊戨姵氐膬?nèi)阻[14]。研究者們發(fā)現(xiàn)不管是純菌還是混合菌都可作為MFC的接種物。其中純菌在輸出電壓、功率密度和輸出效率上優(yōu)于混合菌,但是混合菌的輸出穩(wěn)定電壓時(shí)間長。于是人們?cè)谘芯课⑸锏漠a(chǎn)電特性的時(shí)候通常采用單一菌種。目前被廣為研究的是變形菌門(Proteobacteria)和厚壁菌門(Firmicutes)這兩種細(xì)菌。

      2.1 變形菌門(Proteobacteria)

      變形菌門是一種利用鞭毛運(yùn)動(dòng)的異養(yǎng)型細(xì)菌,其大多為厭氧或者兼性細(xì)菌,也是目前研究中發(fā)現(xiàn)的產(chǎn)電微生物最多的一門。變形菌門里包括α-變形菌、β-變形菌、γ-變形菌和δ-變形菌。其中α-變形菌中最先被發(fā)現(xiàn)的是紅假單胞菌[15](圖1),它是一種紫色光合非硫產(chǎn)電菌,具有高效的產(chǎn)電能力,并且代謝途徑多樣、底物來源廣泛。β-變形菌中的代表是鐵還原紅螺菌(Rhodoferax ferrireducens),它是一種氧化鐵還原微生物,可以直接氧化有機(jī)物生成CO2,不需催化劑就可將電子轉(zhuǎn)移到電極上。利用這種細(xì)菌的MFC產(chǎn)電迅速而穩(wěn)定。γ-變形菌的代表是腐敗希瓦氏菌(Shewanella sp.)[16],它是一種兼性厭氧的鐵還原菌,主要有Hewanella putrefactions IR-1[17]、 Shewanella oneidensis MR-l、Shewanella oneidensis DSPIO、Shewanella decolo-rationis S12和Shewanella iaponiea等。γ-變形菌中運(yùn)用較多的還有大腸桿菌(Escherichia coli)[18,19]、銅綠假單胞菌(Pseudomonas aeruginosa)[20]。δ-變形菌中主要有Geobacter sulfurredueens[21]、Desuffobulbus propionlcus、 Geobaeter metalliredueens、 Geopsye-hrobaeter eleetrodiphilus等,它們利用表面交錯(cuò)的導(dǎo)電菌毛參與電子傳遞。

      2.2 厚壁菌門(Firmicutes)

      厚壁菌門大多為細(xì)胞壁較厚的革蘭氏陽性菌[22]。典型的包括丁酸梭菌(Clostridium butyrieum EG3)、鏈球菌(Streptococcus)[23]和肺炎雙球菌(Diplococcus pneumoniae),見圖2。它的細(xì)胞壁多數(shù)比較厚,因此電子傳遞的速度和發(fā)酵的過程都比較慢,進(jìn)而產(chǎn)電能力也相對(duì)較弱。

      3 底物

      底物是能量轉(zhuǎn)化的來源,其類型和利用效率決定著微生物的生長速度和結(jié)構(gòu)類型,因此它是MFC產(chǎn)電能力的重要因素。目前的研究結(jié)果表明,能運(yùn)用到MFC中的有機(jī)物種類很多,常見的有乙酸鹽[24,25]、葡萄糖[26-29]、乙醇[30]和纖維素[31,32]等。

      乙酸鹽的產(chǎn)電性能很高,其啟動(dòng)快,周期穩(wěn)定,也是厭氧環(huán)境中含量最為豐富的脂肪酸。產(chǎn)甲烷細(xì)菌(Methanogens)、硫化細(xì)菌(Thiobacillus)以及地桿菌屬(Geobacter)都可以以乙酸鹽作為底物。葡萄糖也是很常用的一種底物,能夠利用葡萄糖的微生物種類很多,其產(chǎn)生的代謝副產(chǎn)物也非常豐富。厚壁菌門(Firmicutes)和γ-變形菌綱(Gammaproteobacteria)中的大部分微生物都在葡萄糖的氧化中起著重要的作用。乙醇具有毒性低、來源廣、持續(xù)性好等優(yōu)點(diǎn),是新型能源,需要更進(jìn)一步的研究。脫硫桿菌(Desul-fobacterium autotrophicum)、蛋白質(zhì)菌Core-l(Proteobacterium)以及不動(dòng)桿菌(Acinetobac-ter)等都可以降解乙醇。纖維素是線性葡聚糖鏈,現(xiàn)如今對(duì)其研究還不深入,將解纖維梭菌(Clostridium cellulolyticum)與產(chǎn)電菌硫還原地桿菌(Geobacter sulfurreducens)共同培養(yǎng)可以有效地分解纖維素。各種微生物分解底物產(chǎn)電能力的比較見表1。

      隨著MFC的研究深入,將污水和產(chǎn)電結(jié)合是必然趨勢(shì)。生活污水、制糖廠污水、啤酒廢水以及制藥廢水中都含有豐富的有機(jī)物,利用這些廢水作為底物是非常好的可持續(xù)節(jié)能方法。

      4 MFC中的電極材料

      在MFC中,電極作為MFC反應(yīng)器的重要組成部分,其陽極是產(chǎn)電微生物附著而傳遞電子的重要場(chǎng)所,也是影響MFC產(chǎn)電能力的重要因素,所以具有吸附性好、穩(wěn)定性好、導(dǎo)電性好特點(diǎn)的材料應(yīng)作為陽極材料的首選。增大陽極的表面積能夠增加微生物的附著量,從而直接影響MFC的性能,Lorenzo等[33]研究發(fā)現(xiàn)使用有填充層的不規(guī)則石墨顆粒能夠增大陽極的表面積,使得庫侖率從30%增至80%,完善了MFC的產(chǎn)電性能。陰極進(jìn)行的是還原反應(yīng),需要比較高的活化能,可以通過使用催化劑來降級(jí)反應(yīng)所需要的活化能,既能減少電壓損失,也能加快反應(yīng)速率。

      4.1 陽極材料

      目前普遍采用的基本陽極材料有石墨、碳紙、碳布、碳?xì)?、活性炭等。另外,已研制出一些?dǎo)電聚合物復(fù)合材料應(yīng)用于MFC中作為陽極材料以增大發(fā)電效率,還有一些陽極通過非金屬物質(zhì)的處理,顯著提高了電極表面的產(chǎn)電性能。

      4.1.1 導(dǎo)電聚合物復(fù)合材料 已有研究者研制出以多孔殼聚糖為支架,摻碳納米管的陽極(CHIT-CNT)[34],這種電極的殼聚糖通過脫乙酰作用高壓滅菌等處理后,使用不同的交聯(lián)劑與碳納米管鑲嵌而得到陽極。這種電極表面的多空結(jié)構(gòu)有助于維持微生物的繁殖與在MFC中操作的順利進(jìn)行。在非攪拌續(xù)批模式下,外電路電池電壓為600 mV時(shí),這種電極得到的電流密度為16 A/m3,最大功率密度能達(dá)到4.75 W/m3,而使用碳?xì)蛛姌O只能在電流密度為7 A/m3時(shí),得到3.5 W/m3的最大功率密度,這表明CHIT-CNT電極產(chǎn)電性能要優(yōu)于一般的碳?xì)蛛姌O,CHIT-CNT還能夠和多種支架材料相結(jié)合來形成混合電極材料,進(jìn)一步優(yōu)化電極性能,具有很大的應(yīng)用前景。

      4.1.2 非金屬處理的陽極 在某些情況下,對(duì)陽極進(jìn)行一些非金屬物質(zhì)的處理,能夠提高其極傳遞電子的能力,增強(qiáng)產(chǎn)電效率。把鎳和β碳化鉬進(jìn)行復(fù)合處理,來作為陽極催化劑,發(fā)現(xiàn)在有肺炎桿菌的情況下,Ni/β-Mo2C能夠促進(jìn)甲酸鹽、乳酸鹽、乙醇和2,6-二叔丁基苯醌等肺炎桿菌主要代謝產(chǎn)物的氧化,且表現(xiàn)出很高的催化活性,發(fā)現(xiàn)在以Ni/β-Mo2C作為陽極催化劑的情況下,其功率密度比以β-Mo2C為催化劑的功率密度更高[35]。用硝酸和乙二胺分別處理過的碳纖維來作為陽極與未經(jīng)處理的陽極進(jìn)行比較,發(fā)現(xiàn)用硝酸處理過陽極的MFC的啟動(dòng)時(shí)間減少了45%,其功率密度增加了58%;而經(jīng)過乙二胺處理過陽極的MFC的啟動(dòng)時(shí)間減少了51%,功率密度增加了25%,這表明經(jīng)過這兩種物質(zhì)處理過的陽極都能夠增強(qiáng)MFC的產(chǎn)電性能,提高產(chǎn)電量且縮短啟動(dòng)時(shí)間,這是因?yàn)樾揎椷^的陽極有助于產(chǎn)電細(xì)菌附著在電極上更好的生長[23]。有些電極經(jīng)過胺的處理,能夠增強(qiáng)電極表面的電荷量,加快了微生物附著于電極表面的速度,從而提高了產(chǎn)電量,縮短了系統(tǒng)的啟動(dòng)時(shí)間[36]。另外還有些陽極通過重氮化合物的修飾,能夠在對(duì)微生物的生物活性不產(chǎn)生影響的情況下,提高微生物在電極表面的附著量,從而可提高產(chǎn)電率[53,54]。

      4.2 陰極材料

      陰極是影響MFC產(chǎn)電效率的重要原因之一,因?yàn)殛帢O一般把氧氣作為電子受體,氧的還原速度的快慢會(huì)直接影響產(chǎn)電性能。陰極通常在碳紙、碳布、石墨等基本材料上涂上催化劑,以提高反應(yīng)速率,降低陰極反應(yīng)的活化能。

      4.2.1 陰極催化劑 目前的大多數(shù)MFC都采用Pt作為催化劑,因其與氧氣較容易結(jié)合,可以催化電極反應(yīng),同時(shí)還可以防止氧氣向陽極的擴(kuò)散。Yang等[27]使用涂有Pt的竹炭作為陰極,發(fā)現(xiàn)MFC的輸出功率比沒有Pt催化劑的MFC要高,這是因?yàn)樵陉帢O附近形成了生物膜,能夠阻止氧氣向陽極擴(kuò)散,從而增大了速出功率和庫侖率。但由于Pt的價(jià)格昂貴,不適合大規(guī)模應(yīng)用。Wang等[37]采用裂解鐵乙二胺四乙酸作為陰極催化劑,這種催化劑是在有氬氣的情況下,使混合有鐵螯合的乙二胺四乙酸的碳熱解得到的,用這種催化劑替換Pt,發(fā)現(xiàn)其最大功率能達(dá)到1 122 mW/m2,與Pt/C陰極得到的最大功率(1 166 mW/m2)相近,說明這種催化劑也具有很好的催化活性,基本能達(dá)到Pt催化劑的效果,且價(jià)格比鉑催化劑要低得多,具有很強(qiáng)的實(shí)際操作性。Luo等[38]的研究發(fā)現(xiàn)采用漆酶電極的MFC的催化性也與Pt電極相近,具有可替代性。

      4.2.2 復(fù)合型陰極 有些陰極材料采用的是一些價(jià)格較為低廉的原材料,進(jìn)行復(fù)合重組,形成新型的復(fù)合材料,同樣能夠提高M(jìn)FC的產(chǎn)電性能。Zhang等[39]考察了用石墨纖維刷和石墨顆粒合成的生物陰極,并將其與只含有石墨纖維和只含有石墨顆粒作為陰極的MFC相比較,發(fā)現(xiàn)啟動(dòng)時(shí)間減少了一半多,庫侖率增加了(21.0±2.7)%,最大功率密度增加了(38.2±12.6)%,這種復(fù)合型電極能夠增大電極的表面積,使能起到催化作用的微生物在表面健康生長,增加催化性能,且價(jià)格經(jīng)濟(jì)低廉。

      4.2.3 活性炭纖維氈陰極 一般認(rèn)為在有催化劑作用下MFC的產(chǎn)電量會(huì)更高,但在升流式MFC中,活性炭纖維氈陰極在沒有金屬催化劑的條件下,產(chǎn)電功率比有Pt催化劑的碳紙陰極還要高。試驗(yàn)證明,活性炭纖維氈電極能達(dá)到的最大功率為315 mW/m2,比碳紙(67 mW/m2),碳?xì)郑?7 mW/m2)或是涂有Pt的碳紙(124 mW/m2,0.2 mg/Ptcm2)陰極得到的最大功率都要高。而當(dāng)這種活性碳纖維氈電極加上Pt催化劑后,能夠得到更大的輸出功率。如增加陰極的表面積且把這種材料做成管狀結(jié)構(gòu),能夠更進(jìn)一步增加其功率密度(784 W/m3),當(dāng)做成顆粒狀時(shí),不同的粒徑得到的功率密度也不同(粒徑為0.5 cm時(shí),最大功率密度為481 W/m3; 粒徑為1.0 cm 時(shí),最大功率密度為667 W/m3)。這說明,同種材料的電極做成不同的形狀,也會(huì)影響產(chǎn)電效率[55]。各種電極材料總結(jié)如表2。

      5 質(zhì)子交換膜材料

      質(zhì)子交換膜(PEM)在MFC研究初期屬于必不可少的組成部分,其對(duì)MFC的輸出功率具有很強(qiáng)的影響,所以能直接影響MFC的產(chǎn)電性能。MFC中的質(zhì)子傳導(dǎo)材料應(yīng)當(dāng)能夠抑制底物和電子受體等物質(zhì)的轉(zhuǎn)移,Nafion憑借其對(duì)質(zhì)子具有很好的選擇透過性,因此在MFC中的PEM很多都是采用的Nafion,但是由于Nafion的價(jià)格較高,增加了MFC的成本,還可能使氧滲透,因此在使用上有一定的局限性[40-42]?,F(xiàn)已研究出用一些新型的材料如鹽橋[43,44]、Ultrex[45]、瓷等來替代Nafion,但效果還是差于Nafion。Behera等[46]采用沒有PEM的砂鍋MFC與有PEM的MFC進(jìn)行試驗(yàn)比較,發(fā)現(xiàn)砂鍋?zhàn)陨砟軌蜃鳛橘|(zhì)子交換的媒介,且砂鍋MFC的COD去除率比有PEM的MFC的COD去除率高。在外電路電阻為100Ω時(shí),砂鍋MFC和有PEM的MFC能達(dá)到的最大功率密度分別為2.30 W/m3和0.53 W/m3,表明砂鍋MFC具有很好的產(chǎn)電性能,且在處理污水方面,效果也很好,是一種有效可行的替代方式。Jana等[47]研究出用陶柱來作為MFC的陽極室,且不使用PEM,與有PEM的一般MFC進(jìn)行對(duì)比,發(fā)現(xiàn)前者的內(nèi)阻小于后者,且前者得到的最大功率大于后者,具有很好的產(chǎn)電效果,且COD的去除率能夠達(dá)到90%以上,在污水處理方面也有很好的表現(xiàn),對(duì)于質(zhì)子轉(zhuǎn)移方面,比PEM能達(dá)到更好的效果,價(jià)格低廉,是替代Nafion作為轉(zhuǎn)移質(zhì)子的高效材料之一。另外有些研究發(fā)現(xiàn),AEM(Anion exchange membrane)能夠通過使用磷酸鹽或是碳酸鹽作為質(zhì)子載體和pH緩沖區(qū)來促進(jìn)質(zhì)子轉(zhuǎn)移[44]。

      6 MFC反應(yīng)器的結(jié)構(gòu)

      目前MFC的基本結(jié)構(gòu)可分為雙室和單室兩種。其中雙室MFC主要是由2個(gè)分隔的反應(yīng)室構(gòu)成,即陰極室和陽極室,內(nèi)部一般通過質(zhì)子交換材料相連通,外部連接導(dǎo)線形成循環(huán)電路?,F(xiàn)提出了一種連續(xù)流態(tài)的空氣陰極MFC[43],這種雙室MFC通過媒介能夠優(yōu)化電力的生產(chǎn)率,因其動(dòng)力常量都已被精確的確定出,為研究其動(dòng)力學(xué)提供了有力的依據(jù),且此方法能重復(fù)進(jìn)行,可得到單位體積的高生產(chǎn)率,還能節(jié)省勞動(dòng)力(圖3)。Picot等[48]采用了“H” 型MFC,這種MFC制作比較簡(jiǎn)便,但是其必須用溶解態(tài)的氧氣作為氧化劑,造成了需求量大、溶解度小的問題,單室MFC能夠利用氣態(tài)氧來完善“H”型MFC的不足。單室MFC由于陽極和陰極的距離近,可加快傳質(zhì)速率,又因其不用曝氣,可節(jié)省運(yùn)行費(fèi)用。Lorenzo等[49]把單室MFC作為生物傳感器,發(fā)現(xiàn)在外電路50Ω時(shí),單室MFC的測(cè)量范圍比雙室MFC大得多,測(cè)量值的重復(fù)性高,證明反應(yīng)器穩(wěn)定性較高。Zhu等[50]采用無膜降流式單室MFC來產(chǎn)電,發(fā)現(xiàn)溶解氧的濃度對(duì)產(chǎn)能的影響很小,且構(gòu)型配置簡(jiǎn)單,操作便利,能獲得較高的功率密度,容易進(jìn)行放大應(yīng)用,如圖4所示。此外升流式單室MFC因其使用的是生物陰極,具有以下優(yōu)勢(shì):由于在陰極上的微生物自身具有催化作用,能夠代替金屬催化劑,從而節(jié)省了因金屬催化劑產(chǎn)生的費(fèi)用;生物陰極能夠進(jìn)行反硝化作用,在陰極的藻類能夠通過光合作用產(chǎn)生氧氣,節(jié)省了供氧費(fèi)用,微生物還能夠被利用來合成有用的化合物,去除不需要的化合物(圖5)[47]。但不論是雙室MFC還是單室MFC,都會(huì)因陽極的極化電阻而限制系統(tǒng)的性能,已有科學(xué)家發(fā)現(xiàn)生物膜的生長能夠顯著減小陽極的極化電阻,促進(jìn)電化學(xué)反應(yīng)的進(jìn)行,從而使這個(gè)問題得到改善[51]。另外,還有些微型MFC的研究已受到人們的關(guān)注,Wang等[52]對(duì)mL級(jí)和μL級(jí)的MFC進(jìn)行了比較,現(xiàn)有的mL級(jí)MFC比μL級(jí)MFC的產(chǎn)電量高得多,這是因?yàn)棣蘈級(jí)MFC的電阻較大,但是μL級(jí)MFC能夠迅速篩選電化學(xué)微生物,辨別電極性能,使其也具有很大的發(fā)展前景,微型MFC的可應(yīng)用性為其在未來發(fā)展中提供了條件。

      7 展望

      微生物燃料電池因其操作簡(jiǎn)便、清潔高效等特點(diǎn)已受到廣泛的關(guān)注。近年來對(duì)微生物燃料電池的研究取得了很大的進(jìn)展,研究者們發(fā)現(xiàn)MFC不僅可以進(jìn)行污水處理,還能產(chǎn)生電能,同時(shí)還可作為生物傳感器[55]以及其他應(yīng)用。但目前設(shè)計(jì)出的MFC的輸出功率離實(shí)際應(yīng)用要求還有一定的距離,可以通過篩選高效的產(chǎn)電微生物,優(yōu)化電極材料,設(shè)計(jì)出更合理的反應(yīng)器來提高輸出功率。隨著研究的不斷深入,微生物燃料電池作為一種清潔能源,必然會(huì)成為未來能源技術(shù)的核心力量。

      參考文獻(xiàn):

      [1]LARROSA-GUERRERO A,SCOTT K,HEAD I M,et al. Effect of temperature on the performance of microbial fuel cells[J]. Fuel,2010,89(12):3985-3994.

      [2] WEN Q,WU Y,ZHAO L,et al. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell[J]. Fuel,2010,89(2):1381-1385.

      [3] WEN Q,WU Y,CAO D,et al. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater[J]. Bioresource Technology,2009,100(18):4171-4175.

      [4] KIM R J,PREMIER C G,HAWKES R F,et al.Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate[J]. Bioresource Technology,2010,101(4):1190-1198.

      [5] BOROLE P A,HAMILTONB Y C,VISHNIVETSKAYA T,et al. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems[J].Biochemical Engineering Journal,2009,48(1):71-80.

      [6] HE G,GU Y,HE S,et al. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells[J]. Bioresource Technology,2011,102(22):10763-10766.

      [7] ALDROVANDI A,MARSILI E,STANTE L,et al.Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell[J]. Bioresource Technology,2009, 100(13):3253-3260.

      [8] CUSICK D R,KIELY D P,LOGAN E B. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters[J] .International Journal of Hydrogen Energy,2010,35(17):8855-8861.

      [9] CHAE J K,CHOI J M,KIM Y K,et al. Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells[J]. Bioresourece Technology,2010,101(14):5350-5357.

      [10] GREENMANA J,G?魣LVEZB A,GIUSTI L,et al.Electricity from landfill leachate using microbial fuel cells:Comparison with a biological aerated filter[J]. Enzyme and Microbial Technology,2009,44(2):112-119.

      [11] G?魣LVEZ A,GREENMAN J,IEROPOULOS I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality[J]. Bioresourece Technology,2009,100(21):5085-5091.

      [12] MARTINS G,PEIXOTO L,RIBEIRO C D,et al. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): Phylogenetic affiliation and electrochemical activity of sediment bacteria[J]. Bioelectrochemistry,2010,78(1):67-71.

      [13] BAKHSHIAN S,KARIMINIA H,ROSHANDEL R. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization[J]. Bioresource Technology,2011,102(2):6761-6765.

      [14] LYON Y D,BURET F,VOGEL M T,et al. Is resistance futile Changing external resistance does not improve microbial fuel cell performance[J]. Bioelectrochemistry,2010,78(1):2-7.

      [15] KIM M S,LEE Y J. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel-cell[J]. International Journal of Hydrogen Energy,2010,35(23):13028-13034.

      [16] OH S T,KIM J R,PREMIER G C,et al. Sustainable wastewater treatment: How might microbial fuel cells contribute[J]. Biotechnology Advances,2010,28(6):871-881.

      [17] MARTINS G,PEIXOTO L,RIBEIRO D C,et al. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores):Phylogenetic affiliation and electrochemical activity of sediment bacteria[J]. Bioelectrochemistry,2010,78(1):67-71.

      [18] SAMROT A,SENTHILKUMAR P,PAVANKUMAR K,et al. Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell[J]. International Journal of Hydrogen Energy,2010,35(15):7723-7729.

      [19] WANG C T,CHEN W J,HUANG R Y. Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli[J]. International Journal of Hydrogen Energy,2010,25(13):7217-7223.

      [20] DANIEL D K, MANKIDY B D, AMBARISH K,et al. Construction and operation of a microbial fuel cell for electricity generation from wastewater[J]. International Journal of Hydrogen Energy,2009,34(17):7555-7560.

      [21] NIMJE R V,CHEN C Y,CHEN C C,et al. Glycerol degradation in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(3):2629-2634.

      [22] LIU M,YUAN Y,ZHANG L X,et al. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells[J]. Bioresource Technology,2010,101(6):1807-1811.

      [23] ZHU N,CHEN X,ZHANG T,et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J]. Bioresource Technology,2011,102(1):422-426.

      [24] THYGESEN A,POULSEN F W,MIN B,et al. The effect of different substrates and humic acid on power generation in microbial fuel cell operation[J]. Bioresource Technology,2009, 100(3):1186-1191.

      [25] ZHANG Y,MIN B,HUANG L,et al. Electricity generation and microbial community response to substrate changes in microbial fuel cell[J]. Bioresource Technology,2011,102(2):1166-1173.

      [26] PANT D,BOGAERT V G,DIELS L,et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology,2010,101(6):1533-1543.

      [27] YANG S Q,JIA B,LIU H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell[J]. Bioresource Technology,2009,100(3):1197-1202.

      [28] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.

      [29] FISCHER F,BASTIAN C,HAPPE M,et al. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite[J]. Bioresource Technology,2011,102(10):5824-5830.

      [30] KIELY D P,RADER G,REGAN M J,et al. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J]. Bioresource Technology,2011,102(1):361-366.

      [31] WANG A J,SUN D,CAO G L,et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell[J]. Bioresource Technology,2011,102(5):4137-4143.

      [32] IEROPOULOS I,WINFIELD J,GREENMAN J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells[J]. Bioresource Technology,2010,101(10):3520-3525.

      [33] LORENZO D M,SCOTTB K,CURTIS P T,et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2010,156(1):40-48.

      [34] HIGGINS S R,F(xiàn)OERSTER D,CHEUNG A,et al. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation[J]. Enzyme and Microbial Technology,2011,48(6-7):458-465.

      [35] ZENG L Z,ZHAO S F,WANG Y Q,et al. Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae[J]. International Journal of Hydrogen Energy,2011, 37(5):4590-4596.

      [36] DU F Z,XIE B Z,DONG W B,et al. Continuous flowing membraneless microbial fuel cells with separated electrode chambers[J]. Bioresource Technology,2011,102(19):8914-8920.

      [37] WANG L,PENG L,ZHANG J,et al. Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells[J]. Bioresource Technology,2011,102(8):5093-5097.

      [38] LUO H P,JIN S,F(xiàn)ALLGREN H P,et al. A novel laccase-catalyzed cathode for microbial fuel cells[J]. Chemical Engineering Journal,2010,165(2):524-528.

      [39] ZHANG G D,ZHAO Q L,JIAO Y,et al. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules[J]. Journal of Power Sources,2011,196(15):6036-6041.

      [40] CHOI M J,CHAE K J,AJAYI F F,et al. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J]. Bioresource Technology,2011,102(1):298-303.

      [41] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.

      [42] HUANG Y L,HE Z,MANSFELD F. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry,2010,79(2):261-264.

      [43] RAHIMNEJAD M,GHOREYSHI A A,NAJAFPOUR G,et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations[J]. Applied Energy,2011,88(11):3999-4004.

      [44] LI W W,SHENG G P,LIU X W,et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology,2011,102(1):244-252.

      [45] CERCADO-QUEZADA B,DELIA M,BERGEL A. Testing various food-industry wastes for electricity production in microbial fuel cell[J]. Bioresource Technology,2010,101(8):2748-2754.

      [46] BEHERA M, JANA S P, MORE T T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH[J]. Bioelectrochemistry,2010,79(2):228-233.

      [47] JANA P S,BEHERA M,GHANGREKAR M M. Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder[J]. International Journal of Hydrogen Energy,2010,35(11):5681-5686.

      [48] PICOT M,LAPINSONNI?REA L,ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011,28(1):181-188.

      [49] LORENZO M D,CURTIS T P,HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J].Water Research,2009,43(13):3145-3154.

      [50] ZHU F,WANG W C,ZHANG X Y,et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode[J]. Bioresource Technology,2011,102(15):7324-7328.

      [51] REN Z Y,RAMASAMY R P,CLOUD-OWEN S R,et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(1):416-421.

      [52] WANG H Y,BERNARDA A,HUANG C Y,et al. Micro-sized microbial fuel cell: A mini-review[J]. Bioresource Technology,2011,102(1):235-243.

      [53] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.

      [54] PICOTA M, LAPINSONNI?REA L, ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011, 28(1):181-188.

      [55] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.

      [40] CHOI M J,CHAE K J,AJAYI F F,et al. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J]. Bioresource Technology,2011,102(1):298-303.

      [41] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.

      [42] HUANG Y L,HE Z,MANSFELD F. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry,2010,79(2):261-264.

      [43] RAHIMNEJAD M,GHOREYSHI A A,NAJAFPOUR G,et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations[J]. Applied Energy,2011,88(11):3999-4004.

      [44] LI W W,SHENG G P,LIU X W,et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology,2011,102(1):244-252.

      [45] CERCADO-QUEZADA B,DELIA M,BERGEL A. Testing various food-industry wastes for electricity production in microbial fuel cell[J]. Bioresource Technology,2010,101(8):2748-2754.

      [46] BEHERA M, JANA S P, MORE T T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH[J]. Bioelectrochemistry,2010,79(2):228-233.

      [47] JANA P S,BEHERA M,GHANGREKAR M M. Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder[J]. International Journal of Hydrogen Energy,2010,35(11):5681-5686.

      [48] PICOT M,LAPINSONNI?REA L,ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011,28(1):181-188.

      [49] LORENZO M D,CURTIS T P,HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J].Water Research,2009,43(13):3145-3154.

      [50] ZHU F,WANG W C,ZHANG X Y,et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode[J]. Bioresource Technology,2011,102(15):7324-7328.

      [51] REN Z Y,RAMASAMY R P,CLOUD-OWEN S R,et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(1):416-421.

      [52] WANG H Y,BERNARDA A,HUANG C Y,et al. Micro-sized microbial fuel cell: A mini-review[J]. Bioresource Technology,2011,102(1):235-243.

      [53] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.

      [54] PICOTA M, LAPINSONNI?REA L, ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011, 28(1):181-188.

      [55] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.

      [40] CHOI M J,CHAE K J,AJAYI F F,et al. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J]. Bioresource Technology,2011,102(1):298-303.

      [41] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.

      [42] HUANG Y L,HE Z,MANSFELD F. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent[J]. Bioelectrochemistry,2010,79(2):261-264.

      [43] RAHIMNEJAD M,GHOREYSHI A A,NAJAFPOUR G,et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations[J]. Applied Energy,2011,88(11):3999-4004.

      [44] LI W W,SHENG G P,LIU X W,et al. Recent advances in the separators for microbial fuel cells[J]. Bioresource Technology,2011,102(1):244-252.

      [45] CERCADO-QUEZADA B,DELIA M,BERGEL A. Testing various food-industry wastes for electricity production in microbial fuel cell[J]. Bioresource Technology,2010,101(8):2748-2754.

      [46] BEHERA M, JANA S P, MORE T T, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH[J]. Bioelectrochemistry,2010,79(2):228-233.

      [47] JANA P S,BEHERA M,GHANGREKAR M M. Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder[J]. International Journal of Hydrogen Energy,2010,35(11):5681-5686.

      [48] PICOT M,LAPINSONNI?REA L,ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011,28(1):181-188.

      [49] LORENZO M D,CURTIS T P,HEAD I M,et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J].Water Research,2009,43(13):3145-3154.

      [50] ZHU F,WANG W C,ZHANG X Y,et al. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode[J]. Bioresource Technology,2011,102(15):7324-7328.

      [51] REN Z Y,RAMASAMY R P,CLOUD-OWEN S R,et al. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells[J]. Bioresource Technology,2011,102(1):416-421.

      [52] WANG H Y,BERNARDA A,HUANG C Y,et al. Micro-sized microbial fuel cell: A mini-review[J]. Bioresource Technology,2011,102(1):235-243.

      [53] SAITO T,MEHANNA M,WANG X,et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology,2011,102(1):395-398.

      [54] PICOTA M, LAPINSONNI?REA L, ROTHBALLER M,et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J]. Biosensors and Bioelectronics,2011, 28(1):181-188.

      [55] DENG Q,LI X Y,ZUO J,et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195(4):1130-1135.

      承德市| 镇原县| 额济纳旗| 无极县| 浑源县| 康乐县| 介休市| 汉沽区| 布尔津县| 教育| 北票市| 达尔| 福海县| 汉阴县| 太保市| 乐清市| 阿克| 萨迦县| 云安县| 台州市| 太保市| 新源县| 朝阳县| 夏津县| 收藏| 潼关县| 青浦区| 博白县| 文山县| 徐汇区| 安阳县| 北海市| 阳朔县| 长春市| 深水埗区| 双流县| 德兴市| 西和县| 衢州市| 麻城市| 乡城县|