• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Denoising of EEG Signals by Combining Wavelet Packet Transform with FastICA Algorithm

    2014-11-16 12:56:08陳宏銘,王遠大,程玉華
    生物醫(yī)學工程學進展 2014年3期
    關(guān)鍵詞:清華大學出版社醫(yī)學工程波包

    0 INTRODUCTION

    Electroencephalograms(EEG)signals embracing a large amount of physical and pathological information play an important role in clinical medicine study and disease diagnosis[1]. There are interferences that might vitiate the EEG signal such as influences related to cerebral activity that should be eliminated from the logging before various analyses[2].The strength of EEG voltage signals in a healthy person is between 20 MV and 50 MV,which is too weak and is easily affected by all kinds of noise[3].Therefore,it's most likely that there are lots of noise in EEG signals.It brings risks to doctors'diagnosis process and analysis.

    The main types of noise in EEG signals are white noise with Gaussian distribution,Electroculograms(EOG),noise from vascular beating,power- line interference,etc.These noises are almost as large as the EEG signal and get a very low SNR performance.As is known to all,the frequency of white Gaussian noise is much higher than that of EEG signal[4].The white Gaussian noise can be decomposed by taking advantage of the character of wavelet transform-multi- resolution[5],and then set the highest frequency coefficients to zero.In this way,most of the white Gaussian noise can be removed,but a portion of the relevant EEG signal are removed at the same time.The result is not what we expected.

    In this paper,WPT has been applied to keep the original EEG signals as much as possible,instead of wavelet transform to remove the white Gaussian noise[6].WPT was first introduced by Coifman et al.[7]for offering a rich set of decomposition structures.It is a recapitulation of the dyadic wavelet transform(DWT)and related to a best selection algorithm.As to other non-random noise including EOG,vascular beating,power - line interference,their frequencies almost keep constant,wavelet transform can be used to remove the noise,too.Owing to the EEG signals consisting of high-frequency and low-frequency components,partial EEG data will be inevitably lost when using wavelet transform to remove non-random noise.

    What's worse,the frequency range of the noise has to be recognized by using wavelet transform.The wavelet transform cannot be applied to remove external noises effectively.While the EEG signals can be collected by wearing a headset with sensors,some other unnoticed noise may be added.Compared with the wavelet transform,ICA is more suitable to remove non-random noise.The fundamental paper on the ICA was proposed by Comon[8].Many ICA algorithms have been developed by researchers from different groups.TheFastICA algorithm wasproposed by scholars from Finnish, see[9]. It is a linear ICA algorithm with fast convergence and good accuracy[10].

    In this paper,F(xiàn)astICA algorithm has been used to remove all types of non-random noise.Just as its name suggests,high-speed operation with lesscomplexity has been achieved,which has an advantage for dealing with mass data.At the same time,its accuracy is no worse than that of other forms of ICA.By using this approach,different non-random noise can be assigned to individual channels.We don't need to know the frequency ranges of any type of noise,and when some unnoticed noise are added,the system can work as well without any modification.Nevertheless,the drawback of ICA is that it cannot tell which channel is the noisy-channel,and which one is the channel of EEG.To overcome this,a method of Quasi Expected Value(QEV)is proposed.The EEG signal from all FastICA outputs can be selected simply and effectively by QEV method.

    1 METHODOLOGIES

    The flow chart of sampling and processing EEG signals is shown in Fig.1 .First of all,EEG signals are collected from different area of the brain.To simplify the analysis eight is chosen as the channel number,and N,the sampling points in each channel.Thus,we can construct a matrix S(8,N)with 8 denoting the number of rows and N,the number of columns.Then,WPT algorithm is used to remove the random noise before ICA is applied,because the less the random noise is,the better the ICA algorithm will work.Next,F(xiàn)astICA algorithm is used to process all eight channels of WPT outputs.The outputs of FastICA are immune from random noise.They are generated from different independent sources.One of them is the original EEG signal and the others are different types of noise.The final step is to find out the original EEG signal from the channels by using QEV method.

    Fig.1 Flow chart of sampling and processing from EEG signals圖1 腦電信號的采樣和處理流程圖

    1.1 WPT in Removing Random Noise

    The Mallat fast decomposition algorithm is used to analyze EEG signal.EEG signal can be assigned into arbitrary frequency band by wavelet packet.All timE-frequency ingredients of EEG signal can be mapping into orthogonal spaces which assign different frequency band[11].In wavelet transform,the signal(EEG)is decomposed into two parts:high-frequency(detail)and low-frequency components.The low-frequency component is decomposed into high-frequency and low- frequency componentsagain.The procedure is repeated again and again.We can easily see that the wavelet transform is good for processing low-frequency component rather than high-frequency component.

    A multi-scales analysis method for non-stationary signal processing is based on wavelet packet transform.Frequency band is assigned to multi - levels.Coefficients of high-frequency component(detail)and low-frequency component(approximate)are decomposed successively at each level to create a full binary tree.It enhances the time-frequency resolution of signal processing and makes EEG signal analysis more reliable.Because partial EEG signal includes the personal important health information.The detail of EEG signals need to be kept as much as possible[5].

    To preserve the detail,WPT algorithm is adopted to remove random noise in this paper.A wavelet packet decomposition tree of WPT algorithm[12]is shown in Fig.2 .Suppose EEG signal is in scalE-space S,the sketch map is decomposed into three scale-spaces.In this figure,"A"and"D"stand for low-frequency and high-frequency component of the signal,respectively.The DDD3 is set to zero to remove the random noise. Through experiments, the DB4 wavelets are chosen and the decomposing level is three.The EEG signal is decomposed into detail and approximation bands after Mallat decomposition and the information is of integrity.

    Fig.2 Decomposition tree of wavelet packet圖2 小波包樹分解

    1.2 FastICA algorithm in Removing Non -random Noise

    Typically,the problem that ICA algorithm concerned can be described as below:suppose that S=[S1;S2;…;SN]is the original unknown multivariate signal matrix,X=[X1;X2;… Xn]is the observed signal matrix,and is transformed through the unknown linear mixing matrix A such that X=A*S.If we find a matrix B and get ? via the equation ? =B*X,in which ? is the optimal value of S[13].It means that we succeed in dividing the signals generated by different sources into different channels.

    The basic requirements of ICA are listed below:

    1)The targeted signalmustbe totally or approximately independent to all the noises in the observed signal.In other words,the cross- correlation coefficients should be near to zero;

    2)All the signals and noise including the targeted signals must be Non-Gaussian in nature;

    3)The number of channels must be more than that of targeted signals and noise types.

    The main types of noise in EEG signal are white Gaussian noise,EOG,noise from vascular beating and power- line interference.After the application of WPT,white Gaussian noise is removed.All kinds of the remaining noise are Non-Gaussian,which meets thecondition.Because the remaining noise and targeted signals come from different sources,they are independent to each other,which meet the condition.After removing the white Gaussian noise,other four types of noise remain.If the channel number is greater than or equal to four,condition 3)will be met.

    The mixing and de-mixing processes are shown in Fig.3 ,in which the de-mixing stage is ICA algorithm.Two steps are always adopted in the demixing algorithm:

    Step 1.Whitening:A method which can make the variance of all the components zi(t)equal to one.

    Step 2.Orthogonal transformations:A method which makes all components of y(t)independent to each other,meanwhile keeps the variance of y(t)unchanged.

    Fig.3 The processes of mixing and de-mixing圖3 混合和去混的過程

    The FastICA algorithm(also known as fixedpoint algorithm)is a high-speed algorithm to determine the optimal value[14].Two major optimal criterionsare maximum likelihood and maximum negentropy.In this paper,the maximum negentropy criterion is adopted.Fixed-point iteration is adopted in FastICA algorithm for the purpose of fast convergence.

    Negentropy criterion is defined as below[15]:

    ygis the Gaussian random variable having the same covariance matrix as y.The lower the absolute value of negentropy is,the more obvious the Gaussian character of y reveals.Only when y is a Gaussian variable,the negentropy value is equal to zero.According to(2),the probability density distribution is needed in calculating H(y).However,it's generally rather difficult to find the probability density distribution.So equation (2) is replaceed approximately by[15]:

    From(3),E is the operational symbol of the expected value,and f is a non-linear function.There are several forms of function f.In this paper,the adopted form of f in equation(4)[15]is a very common non-linear function.

    Thus the main task is to optimize the matrix W,so as to make Nf(WTX)minimum.

    The iteration process can be simplified to the following steps[15]:

    The iteration process won't stop until reaches its convergence condition in(7),which is determined by the required precision.And the convergence condition in this paper is ‖WN‖≤10-4.

    1.3 QEV method in Choosing EEG Channel among All Channels

    Among all channels'FastICA output signal Z(i,:),one is the targeted signal and the others are different types of noise generated by different sources.For all channels'WPT output signal X(i,:),the targeted signal exists in all channels,but each type of noise substantially presents in the channel nearby the noise source.The channels which are far from the noise source contain this noise hardly.So the original EEG signal has relatively higher degree of correlation with all channels X(i,:),and the degrees of the correlation between each noise channeland all channels X(i,:)are all much lower except for that between the noise channel and the channel near the noise source.So the expected value of correlation coefficients between original EEG signal and X(i,;)is higher than that between noise channel and X(i,:).By choosing the highest expected value,the EEG channel can be located among the FastICA output channels.It's a method of expected value(EV).

    Through the experiments,the difference between the highest and the second expected value is not big enough and it's more likely to cause the poor results.In this paper,a method of quasi expected value(QEV)is proposed.A judgment can be reached after analysis,the correlation coefficients between the noise channel and all the channels of X(i,:)are all low value except for that between the noise channel and the channel near its source.The expected correlation coefficients excluding the maximum value will be much lower.On the other hands,if the minimum correlation coefficients between the original EEG and X(i,:)is removed,the expected value of the targeted signal will be higher.In QEV stage,the expected correlation coefficients between each FastICA output channel and X(i,:)can be calculated excluding the maximum and minimum values.

    1.4 Criteria of Independent Signals

    Cross-correlation coefficient is a measure of similarity between two signals in data processing.The larger the cross-correlation coefficient is,the higher the degree of similarity will be.Generally speaking,two signals from different sources are assumed statisticalindependent.Itmeans the degree of similarity is very small,if the cross - correlation coefficients between any two of the FastICA output channels are low in a certain range.Each signal of the FastICA output channels is from different sources.Therefore,cross-correlation coefficients are generally the criteria of signal independent.The formula for cross- correlation coefficients is shown in formula(8)[15],

    where N is the sequence length and m=0,1,...,N -1.

    The cross-correlation coefficient is a ratio of differences,in which positive or negative sign represent the direction of the cross- correlation coefficient.The absolute value represents the degree of similarity.The perspectives on the correlation coefficient(in absolute value)are different in statistics,but commonly the degree of similarity is divided into four parts shown in Table 1.

    Tab.1 Different Ways to Define The Degree Of Similarity表1 相關(guān)程度劃分

    2 EXPERIMENTAL RESULTS AND DISCUSSION

    Thisexperimentaldatabase,collected atthe Children's Hospital Boston(CHB - MIT),consists of totally 23 sets of EEG signals over 9 minutes long.The sampling frequency of the data is 256 Hz.The file format is edf which cannot be read by MATLAB tool.The method list below is used to convert the file format.

    · Convert eeg.edf into eeg.txt by using software called EDFbrowser.The file format of text is ASCII.

    · Analyze the contents of eeg.txt,i.e.this file consists of one group of timing information and 23 groups of EEG information.

    · Write a program to read the eeg.txt into a vector(x,y1,y2,...,y23)with the MATLAB function called textread().

    Six thousand sampling points are selected from a large data to construct the vector(y1,y2,y3,y4,y5,y6,y7,y8).A four- dimensional data set X[y1,y2,y3,y4,y5,y6,y7,y8]is constituted to reduce computation time.The waveforms of the data set are shown in Fig.4 .The cross-correlation coefficients between any two of the observed signals are shown in Table2.The range of micro,real and significant correlation coefficients are from 0.02 to 0.69,which means the observed signals contain the noises generated from various noise sources.Two observed signals with high cross -correlation coefficient contain little or the same noise.However,two observed signals with a low crosscorrelation coefficient inevitably contain two noises from different noise sources.

    The WPT output signal waveforms become clean and smooth as shown in Fig.5 .(Compared to Fig.4 ).It means that the white Gaussian noise has been restrained to some degrees.At the same time,there is plenty of high-frequency component in waveforms.It means the useful signal details has been retained.The cross-correlation coefficients between any two of the WPT output signals are shown in Table 3.The Micro,real and significant correlation coefficients can range from 0.02 to 0.68.It's obvious that the degree of similarity to WPT output signals decreases a little by comparing Table 3 to Table 2.It means the WPT can remove the noises,but the performance is not good enough.

    The waveforms of FastICA output signals are shown in Fig.6 .It is more difficult to observe the difference between Fig. 4 and Fig. 6, but the statistical data are helpful to analyze.The cross -correlation coefficients between any two of FastICA output signals are shown in Table 4.The order of magnitude in Table 4 is 10-15or 10-16,which can be regarded as approximately zero.It means that FastICA output signals are independent. Therefore, the approach we adopt in this paper performs extremely well in removing the noise in EEG signal.

    At last,the QEV method is adopted to find out the original EEG signal among the FastICA output signals.The waveform of QEV output signal is shown in Fig.7 .The process is shown in detailed as below:

    ·Work out all the cross-correlation coefficients between each FastICA output signal Z(i:)and each WPT output signal X(i,:),of which the absolute values are shown in Table 5.

    ·Work out the quasi expected value of each column of Table 5,which is shown in Table 6.

    By comparing the performance of EV and QEV methods with the expected values of each column of Table 5,the results are shown in Table 7.According to Table 6 and Table 7,both of the largest numbers are Z(8,:),which means that the original EEG signal channel(the 8thchannel)have been obtained through QEV and EV methods successfully.In Table 7,the first and second highest numbers are 0.483 and 0.334,respectively.The difference between them is 0.149.While the first and second highest values are 0.455 and 0.346 in Table 7.The difference between themis 0.109.By comparing with EV method,the tolerance ability of QEV method is improved by 36.7%.The QEV method we proposed in this paper performs much better than the EV method.

    Fig.4 The observed signals圖4 所觀察到的信號

    Fig.5 The output signals of WPT algorithm圖5 WPT算法的輸出信號

    Fig.6 The output signals of FastICA algorithm圖6 FastICA算法的輸出信號

    Fig.7 The output signal of QEV method圖7 QEV方法的輸出信號

    Tab.3 Correlation coefficients between any two WPT output signal channels表3 任何兩個WPT的輸出信號通道之間的相關(guān)系數(shù)

    Tab.4 Correlation coefficients between any two FastICA output signal channels表4 任何兩個FastICA的輸出信號通道之間的相關(guān)系數(shù)

    Tab.5 Correlation coefficients between observed signals and FastICA output signals表5 觀測信號和FastICA的輸出信號之間的相關(guān)系數(shù)

    Tab.6 Quasi expected values of fastICA output signals表6 FastICA輸出信號的準預期值

    Tab.7 Expected values of fastICA output signals表7 FastICA輸出信號的期望值

    3 CONCLUSION

    In this paper,the method of combining WPT with FastICA algorithm is proposed to remove all types of noise from EEG signals.Through the experiments from the data acquired in CHB -MIT,the order of magnitude to cross-correlation coefficients for all the output signals is 10-15or 10-16.The result shows that the method can remove almost all of the noise.The wavelet packet analysis is employed to decompose the EEG signal into layers.In order to find out the original EEG signal from FastICA outputs,we propose the QEV method.By comparing with the QV method, the tolerance of QEV method is improved by 36.7% .It's really a simple and practical method for denoising of EEG Signal.

    4 ACKNOWLEDGEMENTS

    This research was supported by the 863 National High Technology Research and Development Program of China(2013AA011202)and the National 02 Key Special Program(2009ZX02305-005),the 863 National High Technology Research and Development Program of China(2013AA014102)and the National No. 2 Special Key Project Program (No.2012ZX02503005).

    REFERENCE

    [1]Zunairah Haji Murat,Mohd Nasir Taib,Sahrim Lias,et al.Establishing the fundamental of brainwave balancing index(BBI)usingEEG[C]. The 2ndInt. Conf. on Computional Intelligence,Communication Systemsand Networks(CICSyN2010),Liverpool,United Kingdom,2010.

    [2]Melia,Umberto,F(xiàn)rancesc Claria,Montserrat Vallverdu,et al.Removal of peak and spike noise in EEG signals based on the analytic signal magnitude[C].Annual International Conference of the IEEE Engineering in Medicine and Biology Society.San Diego,CA,Aug.2012.

    [3]J.Yoo,L.Yan,D.El- Damak,et al.An 8 - channel scalable EEG acquisition SoC with fully integrated patient-specific seizure classification and recording processor[C].IEEE Int.Solid - State Circuits Conf.(ISSCC)Dig.Tech.Papers.San Francisco,CA,F(xiàn)eb.2012.

    [4]M.Mollazadeh,K.Murari,G.Cauwenberghs,et al.Micropower CMOS-integrated low-noise amplification,filtering,and digitization of multimodal neuropotentials[J].IEEE Trans Biomed Circuits Syst,2009,3(1):1 -10.

    [5]羅志增,李亞飛,孟明,等.一種基于二代小波變換與盲信號分離的腦電信號處理方法[J].航天醫(yī)學與醫(yī)學工程,2010,23(2):137-140.

    [6]Dahshan EI,Sayed EI.Genetic algorithm and wavelet hybrid scheme for ECG signal denoising[J].Telecommunication Systems,2010,46(3):209 -215.

    [7]Coifman R,Meyer Y,Quake S,et al.Signal processing and compression with wave packets[M].Numerical AlgorithmsResearchGroup, New Haven, CT:Yale University,1990.

    [8]Comon P. Independent component analysis, a new concept?[J].Signal Process,1994,36(3):287 -314.

    [9]Hyv?rinen A,Karhunen J,Oja E.Independent Component Analysis[M].Wiley,New York,2001.

    [10]Charayaphan C,Sattar F.Design of low - cost FPGA hardware for real-time ICA-based blind source separation algorithm[J].EURASIP JApplSignal Process,2005,18:3076 -3086.

    [11]Yan S,Zhao H,Liu C,et al.Brain-computer interface design based on wavelet packet transform and SVM[C].International Conference on Systemsand Informatics(ICSAI2012),Shanghai,China ,May 2012.

    [12]Kharate GK,Patil VH.Color image compression based on wavelet packet best tree[J].Int J Comput Sci Issues,2010,7(3):31-35.

    [13]Shen H,Kleinsteuber M,H¨uper K.Local convergence analysis of FastICA and related algorithms[C].IEEE Trans Neural Networks,2008,19(6):1022 -1032.

    [14]Ye J,Huang T.New fast- ICA algorithms for blind source separation without prewhitening[J].Communicat Comput Informat Sci,2011,225(2):579 -585.

    [15]楊福生,洪波.獨立分量分析的原理與應用[M].北京:清華大學出版社,2006.

    猜你喜歡
    清華大學出版社醫(yī)學工程波包
    清華大學出版社期刊中心
    基于小波包Tsallis熵和RVM的模擬電路故障診斷
    Desperate Love towards the Dark Lady in Shakespeare’s Sonnets
    世界家苑(2018年4期)2018-05-21 08:56:20
    僑胞任洪亮率團斬獲全球醫(yī)學工程創(chuàng)新大賽金獎等
    華人時刊(2017年21期)2018-01-31 02:24:16
    《秘書工作手記》
    決策(2017年5期)2017-06-21 16:58:25
    基于小波包變換的電力系統(tǒng)諧波分析
    小波包理論與圖像小波包分解
    Translation and Dissemination of Critique of the Gotha Program in China in the Early Times〔* 〕
    學術(shù)界(2015年8期)2015-02-25 08:39:32
    我院醫(yī)學工程科的現(xiàn)狀及發(fā)展對策的探討
    基于小波包的全信息解調(diào)方法及其應用
    国内少妇人妻偷人精品xxx网站| 亚洲无线观看免费| 卡戴珊不雅视频在线播放| 最近最新中文字幕免费大全7| 91狼人影院| 国产淫语在线视频| 久热这里只有精品99| 亚洲精品一区蜜桃| 天堂俺去俺来也www色官网| 免费观看的影片在线观看| 亚洲av一区综合| 男女边吃奶边做爰视频| 精华霜和精华液先用哪个| 边亲边吃奶的免费视频| 网址你懂的国产日韩在线| 免费看不卡的av| 夜夜爽夜夜爽视频| 国产69精品久久久久777片| 亚洲国产色片| 丰满少妇做爰视频| 亚洲,一卡二卡三卡| 大片电影免费在线观看免费| 97人妻精品一区二区三区麻豆| 日本免费在线观看一区| .国产精品久久| 亚洲国产日韩一区二区| 亚洲,欧美,日韩| 国产欧美日韩精品一区二区| 国产色婷婷99| 伊人久久国产一区二区| 免费黄网站久久成人精品| 青春草国产在线视频| 香蕉精品网在线| 在线免费观看不下载黄p国产| 各种免费的搞黄视频| 大话2 男鬼变身卡| 中文字幕av成人在线电影| 国产免费福利视频在线观看| 91午夜精品亚洲一区二区三区| 国产熟女欧美一区二区| 国产成人精品福利久久| 久久精品久久精品一区二区三区| 亚洲自偷自拍三级| 99久久精品热视频| 五月伊人婷婷丁香| 亚洲av欧美aⅴ国产| 在线天堂最新版资源| 国产成人一区二区在线| 久久久a久久爽久久v久久| 香蕉精品网在线| 又爽又黄无遮挡网站| 99热全是精品| 国产淫片久久久久久久久| 一级片'在线观看视频| 精品熟女少妇av免费看| 久久久久国产网址| 波多野结衣巨乳人妻| 天堂网av新在线| 亚洲久久久久久中文字幕| 国产精品久久久久久久久免| 免费在线观看成人毛片| 亚洲精品第二区| 欧美xxxx性猛交bbbb| 天天躁日日操中文字幕| 青青草视频在线视频观看| 久久精品综合一区二区三区| 国产国拍精品亚洲av在线观看| 久久人人爽人人爽人人片va| 十八禁网站网址无遮挡 | 国产高潮美女av| 欧美xxⅹ黑人| 看十八女毛片水多多多| 成人高潮视频无遮挡免费网站| 99久久九九国产精品国产免费| videos熟女内射| 成人二区视频| 成人亚洲精品av一区二区| 中文乱码字字幕精品一区二区三区| 美女高潮的动态| 成人美女网站在线观看视频| 午夜免费男女啪啪视频观看| 免费看光身美女| 国产成人精品福利久久| 亚洲精品日韩在线中文字幕| 欧美日韩视频精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 校园人妻丝袜中文字幕| 最后的刺客免费高清国语| 99久久精品国产国产毛片| 最近的中文字幕免费完整| 亚洲不卡免费看| 国产色婷婷99| 欧美高清成人免费视频www| 成人免费观看视频高清| 午夜福利高清视频| 久久国产乱子免费精品| 亚洲欧美日韩无卡精品| 最近最新中文字幕免费大全7| 噜噜噜噜噜久久久久久91| 男人和女人高潮做爰伦理| 免费看av在线观看网站| 亚洲天堂国产精品一区在线| 高清在线视频一区二区三区| 在线播放无遮挡| 三级男女做爰猛烈吃奶摸视频| 欧美亚洲 丝袜 人妻 在线| 国产成人91sexporn| 嫩草影院新地址| 大香蕉97超碰在线| 三级国产精品片| 国产亚洲av片在线观看秒播厂| 色5月婷婷丁香| 欧美激情久久久久久爽电影| 亚洲欧美精品自产自拍| 只有这里有精品99| 99热网站在线观看| 国产精品女同一区二区软件| 97热精品久久久久久| 国产片特级美女逼逼视频| 免费黄色在线免费观看| 一级黄片播放器| 久久精品国产亚洲av天美| 亚洲国产精品999| 插逼视频在线观看| 日日啪夜夜撸| 亚洲国产欧美在线一区| 中国国产av一级| 国产 精品1| 97精品久久久久久久久久精品| 久久精品国产a三级三级三级| 免费看不卡的av| 最近中文字幕高清免费大全6| 日本wwww免费看| 久久久成人免费电影| 在线观看国产h片| 男男h啪啪无遮挡| 亚洲国产色片| 极品教师在线视频| 午夜免费男女啪啪视频观看| 一级毛片黄色毛片免费观看视频| 亚洲av成人精品一二三区| 欧美国产精品一级二级三级 | 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 国产一区亚洲一区在线观看| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 成人高潮视频无遮挡免费网站| 网址你懂的国产日韩在线| 国产精品偷伦视频观看了| 国产精品女同一区二区软件| 久久午夜福利片| 男插女下体视频免费在线播放| 国产91av在线免费观看| 麻豆精品久久久久久蜜桃| 亚洲国产精品国产精品| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 偷拍熟女少妇极品色| 免费看av在线观看网站| 国产精品99久久久久久久久| 亚洲精品视频女| 大片电影免费在线观看免费| 国产精品熟女久久久久浪| 国产欧美日韩一区二区三区在线 | 国产午夜福利久久久久久| 最近最新中文字幕免费大全7| 婷婷色综合www| 精品99又大又爽又粗少妇毛片| 白带黄色成豆腐渣| 亚洲av国产av综合av卡| 成人特级av手机在线观看| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 麻豆久久精品国产亚洲av| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 久久久久久久大尺度免费视频| 国产成人一区二区在线| 一个人看的www免费观看视频| 亚洲精华国产精华液的使用体验| 欧美精品人与动牲交sv欧美| 色吧在线观看| 在现免费观看毛片| 最近最新中文字幕大全电影3| 三级经典国产精品| 97人妻精品一区二区三区麻豆| 久久97久久精品| 特大巨黑吊av在线直播| 欧美人与善性xxx| 中文欧美无线码| 亚洲av免费在线观看| 最近中文字幕高清免费大全6| 黄色视频在线播放观看不卡| 麻豆精品久久久久久蜜桃| 欧美 日韩 精品 国产| 97在线人人人人妻| 国产精品人妻久久久久久| 你懂的网址亚洲精品在线观看| 男人舔奶头视频| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区成人| 国产人妻一区二区三区在| 国产大屁股一区二区在线视频| 色5月婷婷丁香| 国产真实伦视频高清在线观看| 国产成人免费观看mmmm| 青青草视频在线视频观看| 成人无遮挡网站| 久久99热6这里只有精品| 97在线人人人人妻| 欧美激情国产日韩精品一区| 伦理电影大哥的女人| 男人舔奶头视频| 欧美少妇被猛烈插入视频| 色婷婷久久久亚洲欧美| 在线观看一区二区三区激情| 大陆偷拍与自拍| 少妇丰满av| av免费在线看不卡| 国产男女内射视频| 乱系列少妇在线播放| 蜜桃久久精品国产亚洲av| 免费大片黄手机在线观看| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 又爽又黄无遮挡网站| 国产一区二区三区综合在线观看 | 51国产日韩欧美| 国产精品麻豆人妻色哟哟久久| 国产永久视频网站| 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 中文字幕av成人在线电影| 激情 狠狠 欧美| 国产午夜精品久久久久久一区二区三区| 亚洲自偷自拍三级| 大香蕉97超碰在线| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 免费大片18禁| 特大巨黑吊av在线直播| 久久鲁丝午夜福利片| 亚洲av.av天堂| 国产亚洲av嫩草精品影院| 女人被狂操c到高潮| 看免费成人av毛片| 欧美日韩视频精品一区| 国产高清有码在线观看视频| 中文字幕制服av| 亚洲色图av天堂| 免费电影在线观看免费观看| 毛片女人毛片| 人妻系列 视频| 尾随美女入室| 26uuu在线亚洲综合色| 丰满少妇做爰视频| 亚洲精品国产av蜜桃| av福利片在线观看| 五月玫瑰六月丁香| 国产片特级美女逼逼视频| 欧美变态另类bdsm刘玥| 大话2 男鬼变身卡| 国产精品一及| 国产男女内射视频| 亚洲欧美中文字幕日韩二区| 中文在线观看免费www的网站| 亚洲精品一二三| 久久精品久久久久久噜噜老黄| 嫩草影院入口| 99热这里只有是精品50| 国产黄色免费在线视频| 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站 | 中文字幕亚洲精品专区| 九九在线视频观看精品| 亚洲国产欧美人成| 建设人人有责人人尽责人人享有的 | 亚洲av欧美aⅴ国产| 69人妻影院| 直男gayav资源| 精品国产露脸久久av麻豆| 又粗又硬又长又爽又黄的视频| 成年人午夜在线观看视频| 久久这里有精品视频免费| 国产乱人视频| av国产精品久久久久影院| 成年av动漫网址| av天堂中文字幕网| 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 久久久久国产网址| 日日撸夜夜添| 亚洲精品国产av成人精品| 狠狠精品人妻久久久久久综合| 国产精品久久久久久久电影| 久久99热6这里只有精品| 免费看不卡的av| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 中文在线观看免费www的网站| 在线观看av片永久免费下载| a级毛片免费高清观看在线播放| 亚洲成人一二三区av| 网址你懂的国产日韩在线| 女人十人毛片免费观看3o分钟| 中文字幕亚洲精品专区| 在线天堂最新版资源| 国产亚洲最大av| a级毛色黄片| 日本熟妇午夜| 亚洲美女视频黄频| 美女cb高潮喷水在线观看| videos熟女内射| 国产永久视频网站| 日韩强制内射视频| 色视频www国产| 伊人久久精品亚洲午夜| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱| 在线天堂最新版资源| 夫妻午夜视频| 国产精品99久久99久久久不卡 | 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 身体一侧抽搐| 国产亚洲最大av| av黄色大香蕉| 国产精品偷伦视频观看了| 六月丁香七月| 午夜免费观看性视频| 日产精品乱码卡一卡2卡三| 国产成人免费无遮挡视频| 久久精品国产a三级三级三级| 午夜福利高清视频| 亚洲国产精品国产精品| 欧美三级亚洲精品| 在线观看国产h片| 欧美极品一区二区三区四区| 国产成人精品久久久久久| 综合色丁香网| 国产高清三级在线| 在线a可以看的网站| 久久久久久伊人网av| 成年免费大片在线观看| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 高清毛片免费看| freevideosex欧美| 国产在视频线精品| 日韩成人伦理影院| 少妇人妻久久综合中文| 欧美xxxx性猛交bbbb| 精品国产一区二区三区久久久樱花 | 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 亚洲精品国产成人久久av| 九九爱精品视频在线观看| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 国产在线男女| 亚洲国产av新网站| 国产乱来视频区| 亚洲欧美日韩东京热| 日韩三级伦理在线观看| 免费看日本二区| 肉色欧美久久久久久久蜜桃 | 欧美人与善性xxx| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 在线a可以看的网站| 亚洲av一区综合| 99热这里只有是精品50| 日本与韩国留学比较| 欧美激情在线99| 秋霞伦理黄片| 日韩伦理黄色片| 99热6这里只有精品| 成人亚洲欧美一区二区av| 国产高清国产精品国产三级 | 国产免费又黄又爽又色| 街头女战士在线观看网站| 国产免费视频播放在线视频| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 精品久久久精品久久久| 97超碰精品成人国产| 精品久久久久久电影网| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 国产精品女同一区二区软件| 最近最新中文字幕大全电影3| 亚洲自拍偷在线| 国内精品宾馆在线| 五月开心婷婷网| 国产视频首页在线观看| 国产乱人偷精品视频| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 免费大片黄手机在线观看| 激情五月婷婷亚洲| 老女人水多毛片| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| 99精国产麻豆久久婷婷| 我要看日韩黄色一级片| 韩国av在线不卡| 男的添女的下面高潮视频| 国产免费一区二区三区四区乱码| 成人亚洲欧美一区二区av| 久久人人爽av亚洲精品天堂 | 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 国产69精品久久久久777片| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 国产成人免费观看mmmm| 国产精品蜜桃在线观看| 我的老师免费观看完整版| 亚洲国产精品成人综合色| 久久精品熟女亚洲av麻豆精品| 亚洲av成人精品一二三区| 麻豆精品久久久久久蜜桃| av在线蜜桃| 欧美zozozo另类| 日韩在线高清观看一区二区三区| 亚洲精品色激情综合| 老女人水多毛片| 亚洲欧美成人综合另类久久久| 成人免费观看视频高清| 亚洲国产欧美人成| 在线观看一区二区三区激情| 亚洲怡红院男人天堂| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久久久按摩| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久| 毛片一级片免费看久久久久| 99re6热这里在线精品视频| 大片电影免费在线观看免费| 99久久人妻综合| 亚洲天堂av无毛| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 七月丁香在线播放| 国产v大片淫在线免费观看| 日韩av在线免费看完整版不卡| 99久国产av精品国产电影| 久久久久久久久久人人人人人人| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 少妇人妻久久综合中文| 少妇裸体淫交视频免费看高清| 亚洲精品一区蜜桃| 国产乱来视频区| 熟女电影av网| 国产精品久久久久久av不卡| 麻豆成人av视频| 亚洲精品国产色婷婷电影| 亚洲av中文字字幕乱码综合| 国产成年人精品一区二区| 免费黄频网站在线观看国产| 国产午夜精品久久久久久一区二区三区| 亚洲人与动物交配视频| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 九九在线视频观看精品| 美女内射精品一级片tv| 国产白丝娇喘喷水9色精品| 欧美日韩视频高清一区二区三区二| 尾随美女入室| 我要看日韩黄色一级片| 亚洲欧美成人精品一区二区| 久久久国产一区二区| 在线观看一区二区三区激情| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 亚洲精品成人久久久久久| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 欧美3d第一页| 国产精品偷伦视频观看了| 久久久久性生活片| 午夜福利高清视频| 久久久久精品性色| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 国产有黄有色有爽视频| 亚洲精品国产av成人精品| 在线天堂最新版资源| 一区二区三区乱码不卡18| 欧美区成人在线视频| 97热精品久久久久久| av天堂中文字幕网| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 亚洲国产av新网站| 亚洲不卡免费看| 精品一区二区免费观看| av黄色大香蕉| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 免费观看a级毛片全部| 男人狂女人下面高潮的视频| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 中文字幕制服av| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 美女视频免费永久观看网站| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 亚洲天堂av无毛| 国产精品久久久久久久久免| eeuss影院久久| 丝瓜视频免费看黄片| 欧美bdsm另类| 国产爽快片一区二区三区| 国产精品秋霞免费鲁丝片| 日日啪夜夜爽| 免费不卡的大黄色大毛片视频在线观看| 中文字幕亚洲精品专区| 亚洲欧美成人综合另类久久久| av线在线观看网站| 成人国产av品久久久| 日韩伦理黄色片| 99久久人妻综合| 最近最新中文字幕免费大全7| 亚洲在线观看片| 色哟哟·www| 久久亚洲国产成人精品v| 超碰av人人做人人爽久久| 日韩,欧美,国产一区二区三区| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 简卡轻食公司| 亚洲激情五月婷婷啪啪| a级毛色黄片| 国产真实伦视频高清在线观看| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| av在线老鸭窝| 精品久久国产蜜桃| 18+在线观看网站| 亚洲av一区综合| 黄色一级大片看看| 国模一区二区三区四区视频| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 青春草国产在线视频| 只有这里有精品99| 99久久人妻综合| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 国产精品一区二区在线观看99| 最近手机中文字幕大全| 91久久精品电影网| 国产精品一二三区在线看| av免费观看日本| 亚洲天堂国产精品一区在线| 啦啦啦在线观看免费高清www| 欧美潮喷喷水| 视频中文字幕在线观看| 99视频精品全部免费 在线| 国产精品99久久99久久久不卡 | 97人妻精品一区二区三区麻豆| 久久久久久久久久久丰满| 丰满人妻一区二区三区视频av| 80岁老熟妇乱子伦牲交| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 在线看a的网站| 国产精品一区www在线观看| 午夜日本视频在线| 国产欧美日韩一区二区三区在线 | 欧美另类一区| 免费av观看视频| av在线播放精品| 大陆偷拍与自拍| 日本欧美国产在线视频| freevideosex欧美| 国产91av在线免费观看| 亚洲精品色激情综合| 国产精品人妻久久久久久| 女人十人毛片免费观看3o分钟| 日韩成人伦理影院| 精品久久国产蜜桃| 国产一区二区三区综合在线观看 | 日本爱情动作片www.在线观看| av福利片在线观看| 丝袜脚勾引网站| 美女主播在线视频| 亚洲av成人精品一区久久| 久久综合国产亚洲精品| 欧美日韩综合久久久久久| 亚洲欧美日韩另类电影网站 |