張國龍+鄭琛瑤
摘 要: 為了使開關(guān)電源具有體積小、智能化等特點,提出采用DSP數(shù)字處理技術(shù)和模糊PID控制相結(jié)合,設(shè)計完成了具有響應(yīng)快、效率高的智能開關(guān)電源。通過與外圍EMI濾波電路、光電隔離、保護(hù)電路等配合,解決了開關(guān)電源對電網(wǎng)的污染,保護(hù)開關(guān)電源因溫度等不確定因素對開關(guān)電源造成的損壞。本開關(guān)電源控制算法先進(jìn),設(shè)計合理,具有較強(qiáng)的工程應(yīng)用參考價值。
關(guān)鍵字: 開關(guān)電源; 模糊PID控制; DSP; 電源控制算法
中圖分類號: TN79?34 文獻(xiàn)標(biāo)識碼: A 文章編號: 1004?373X(2014)21?0149?03
Design and control algorithm of switching power supply with DSP digital control
ZHANG Guo?long, ZHENG Chen?yao
(Detachment 93, Unit 91388 of PLA, Zhanjiang 524022, China)
Abstract: A technology of DSP digital processing combined with fuzzy PID control is proposed in this paper, and ?an intelligent switching power with fast response and high efficiency was designed to make the switching power supply be small, intelligent, etc. Through the cooperation of the external EMI filtering circuit, optical isolation and protection circuit, the power grid pollution caused by switching power supply was solved, this switching power supply which may be damaged by temperature and other uncertain factors was protected. This control algorithm of switching power supply is advanced, its design is reasonable and it has strong reference value for engineering application.
Keywords: switching power supply; fuzzy PID control; DSP; power supply control algorithm
近年來,隨著電力電子技術(shù)高速發(fā)展,開關(guān)電源得到廣泛應(yīng)用,普通模擬開關(guān)電源逐漸顯示出其不足之處:采用模擬器件會導(dǎo)致元器件比較多,分散性大,穩(wěn)定性差;設(shè)計缺乏靈活性,不便于修改,調(diào)試不方便,控制不靈活,無法實現(xiàn)復(fù)雜的控制算法。為設(shè)計出更精確、響應(yīng)速度更快、效率更高、體積更小的開關(guān)電源,開關(guān)電源設(shè)計人員采用數(shù)字化電路與開關(guān)電源相結(jié)合來設(shè)計數(shù)字化開關(guān)電源。以DSP系統(tǒng)為基礎(chǔ)的開關(guān)電源電路簡單,結(jié)構(gòu)緊湊,性能卓越,功能齊全。DSP系統(tǒng)具有較高的計算與控制能力,利用DSP進(jìn)行A/D轉(zhuǎn)換后進(jìn)行運算,可以有效抑制或消除各個功能模塊間相互干擾,提高開關(guān)電源輸出電壓的穩(wěn)定性和精度。本文將重點分析和討論利用DSP系統(tǒng)設(shè)計開關(guān)電源的實現(xiàn)方法和控制算法。
1 基于DSP控制的實現(xiàn)方法
DSP系統(tǒng)已廣泛應(yīng)用于開關(guān)電源控制電路,是開關(guān)電源的控制核心電路,可以有效利用DSP系統(tǒng)的高速性、可編程性、可靠性等特點,結(jié)合相應(yīng)算法實現(xiàn)特定功能,可為開關(guān)電源輸出質(zhì)量好、頻率和幅值可以任意改變的控制信號。圖1為采用DSP系統(tǒng)的控制電路開關(guān)變頻電源基本控制硬件框圖。
圖1 開關(guān)變頻電源基本控制硬件框圖
開關(guān)電源采用高頻SPWM技術(shù)和普通電壓逆變電路,DSP系統(tǒng)與IGBT功率模塊構(gòu)成全數(shù)字控制電路。輸出的電壓和電感電流經(jīng)過網(wǎng)絡(luò)轉(zhuǎn)換成DSP所需要的電平,連接至DSP的A/D單元進(jìn)行模數(shù)變換;控制輸入單元輸入需要的電壓值及頻率值,從而得到逆變電路的基準(zhǔn)電壓。
DSP系統(tǒng)經(jīng)過特點算法進(jìn)行相關(guān)計算后會產(chǎn)生一定死區(qū)的控制信號。由于輸出的數(shù)字PWM控制信號不足以驅(qū)動IGBT開關(guān)管,需要經(jīng)過驅(qū)動電路對開關(guān)管進(jìn)行驅(qū)動。DSP芯片具有較高的采樣速度和運算速度,可以快速地進(jìn)行各種復(fù)雜的運算對電源進(jìn)行控制,可以實現(xiàn)較高的動態(tài)性能和穩(wěn)壓精度。為了有效保護(hù)開關(guān)電源器件,防止出現(xiàn)過壓、欠壓、過載等情況,系統(tǒng)專門設(shè)計了保護(hù)電路,一旦出現(xiàn)故障,DSP控制系統(tǒng)封鎖PWM脈沖控制信號,切斷開關(guān)電源電壓輸出。
2 開關(guān)電源基本控制算法
2.1 PID控制
開關(guān)電源的數(shù)字化控制需要進(jìn)行一定的控制算法來產(chǎn)生控制信號,實現(xiàn)控制規(guī)律。數(shù)字開關(guān)電源控制最初是借鑒模擬控制原理,通過數(shù)字化實現(xiàn)模擬控制信號。PID算法在數(shù)字控制中應(yīng)用比較廣泛,它具有原理簡單、易于實現(xiàn)、適用面廣、控制參數(shù)相互獨立、參數(shù)的選定比較簡單等優(yōu)點。
PID控制是應(yīng)用最廣泛的控制規(guī)律。圖2為常規(guī)PID控制原理圖,系統(tǒng)由PID控制器與被控對象組成。PID控制器是一種線性控制器,它根據(jù)給定值[r(t)]與實際輸出值[y(t)]構(gòu)成的控制偏差[e(t)]來計算:
[e(t)=r(t)-y(t)] (1)
將偏差的比例[P、]積分[I]和微分[D]通過線性組合構(gòu)成控制量,對被控對象進(jìn)行控制。其控制規(guī)律為:
[u(t)=KPe(t)+1TI0te(t)+TDde(t)dt] (2)
或?qū)懗蓚鬟f函數(shù)的形式:
[G(s)=U(s)E(s)=KP1+1TIS+TDS] (3)
式中:[Kp]為比例系數(shù);[TI]為積分時間常數(shù);[TD]為微分時間常數(shù)。
圖2 PID控制框圖
數(shù)字PID控制是一種采樣控制,它只能根據(jù)采用時刻的偏差值計算控制量。因此,連續(xù)域PID控制算法不能直接使用,需要采用離散化方法。數(shù)字PID控制算法又分為位置式PID控制算法和增量式PID控制算法,還有一些微分先行法和帶死區(qū)的PID控制算法等。
2.2 模糊PID控制算法
目前,開關(guān)電源的各種應(yīng)用場合對電源的動態(tài)性能提出了越來越高的要求,其中電壓超調(diào)與恢復(fù)時間是重要指標(biāo)。負(fù)載的變化或者輸入電壓的變化引起輸出電壓變化,而輸出電壓值取決于濾波器和控制策略。由于開關(guān)變換器為一個時變、非線性系統(tǒng),無法建立精確的數(shù)字模型。而模糊PID控制算法的優(yōu)點在于不需要建立準(zhǔn)確的變換器數(shù)字模型,非常適合DC?DC變換器的強(qiáng)非線性。自適應(yīng)的模糊控制可以保證控制系統(tǒng)的信號穩(wěn)定性。
模糊控制器是以誤差量化因子[e]和誤差變化率量化因子[ec]作為輸入,利用模糊控制規(guī)律自整定找出PID控制器三參數(shù)[KP,][KI,][KD]與和之間的模糊關(guān)系。模糊PID控制原理框圖如圖3所示。
圖3 模糊控制原理框圖
取[e]和[ec]為輸入語言變量,每個語言變量取“大、中、小”三個詞匯來描述輸入輸出變量的狀態(tài)。模糊推理的模糊規(guī)則一般形式為:
If [e=Ai]and [ec=Bj]then[Δu=Ci]
其中[Ai,][Bj,][Ci]為其理論上的語言值。
上述規(guī)則可以用一個模糊關(guān)系矩陣來描述:
[R=i,jAi×Bj×Ci]
根據(jù)各模糊子集的隸屬度幅值表和各參數(shù)模糊控制規(guī)則,應(yīng)用模糊合成推理設(shè)計PID參數(shù)的模糊矩陣得到[KP,][KI,][KD]參數(shù)調(diào)整算式如下:
[KP=K′P+ei,ecj×KuP]
[KI=K′I+ei,ecj×KuI] (4)
[KD=K′D+ei,ecj×KuD]
式中:[KP,][KI,][KD]是PID控制參數(shù),[{e,ec}]是誤差[e]和誤差變化率[ec]對應(yīng)控制表中的值,它需要查控制表得到。[KuP,][KuI,][KuD]作為修正系統(tǒng),在控制過程中,控制系統(tǒng)通過對模糊邏輯規(guī)則的結(jié)果處理、查表和運算,完成PID參數(shù)的在線自校正。
3 系統(tǒng)硬件及關(guān)鍵點設(shè)計
3.1 硬件主體
本文設(shè)計的開關(guān)電源主要是將開關(guān)電源優(yōu)良特性和DSP系統(tǒng)精細(xì)化控制相結(jié)合。開關(guān)電源采用反激式拓?fù)浣Y(jié)構(gòu),包括EMI濾波電路、整流/直流平波電路、控制器、信號采樣、PWM驅(qū)動、鍵盤及顯示部件組成,力求使開關(guān)電源具有高效低耗、便攜化、負(fù)載輸出穩(wěn)定、電路保護(hù)可靠、電網(wǎng)寬電壓輸入、電網(wǎng)污染小等特點。圖4為硬件系統(tǒng)主體設(shè)計示意圖。
圖4 系統(tǒng)主體設(shè)計示意圖
3.2 輸出電壓檢測隔離設(shè)計
開關(guān)電源輸出電壓檢測過程中對控制電路的隔離保護(hù)是非常必要的,這樣不僅可以實現(xiàn)控制電路的安全工作,而且避免了將輸出電路的噪聲引入控制電路中。電壓檢測電路與控制電路隔離保護(hù)采用光耦合器進(jìn)行隔離,它由發(fā)光二極管LED、輸出光電二極管PD組成。光耦合器在開關(guān)電源的主振回路與輸出采樣之間進(jìn)行電氣隔離,并為電源穩(wěn)壓控制電路提供信號通路。
3.3 EMI濾波器設(shè)計
開關(guān)電源在正常工作時會產(chǎn)生傳導(dǎo)噪聲和輻射噪聲,毫無疑問噪聲主要產(chǎn)生于電源開關(guān)過程。開關(guān)過程中包含了最大的功率以及最大的電壓變化率dV/dt,同時也包括了最高頻率成分。噪聲的存在將污染電力線路,影響周圍精密電子儀器的運行,比如設(shè)計濾波器。EMI濾波器是一種由電感、電容組成的低通濾波器,它允許直流或者工頻信號通過,對頻率較高的其他信號有較大的衰減作用。圖5為EMI濾波模型,濾波器的基本結(jié)構(gòu)就是一個分離的二階LC濾波器,其取值原則就是在最小的體積下可以獲得期望的抑制效果。在濾波器模型中還有一個額外的高頻LC濾波器;高頻濾波器當(dāng)寄生參數(shù)使得前面的LC濾波器性能變差時,用來抑制這些高頻噪聲。
圖5 EMI濾波器模型
3.4 高溫保護(hù)電路
開關(guān)電源在設(shè)計中由于轉(zhuǎn)換效率不同,將部分能量以熱量輻射。溫度升高將影響系統(tǒng)正常工作甚至產(chǎn)生人身危險,為了保證系統(tǒng)安全,開關(guān)電源工作時溫度需要實時監(jiān)控。圖6為溫度采集電路部分電路圖。當(dāng)系統(tǒng)檢測到溫度過高時,控制模塊立即關(guān)斷開關(guān)電源輸出,待系統(tǒng)溫度達(dá)到工作溫度范圍后開始繼續(xù)工作。
圖6 溫度采集電路
4 開關(guān)電源性能分析
本文采用反激式開關(guān)電源和模糊PID控制算法進(jìn)行仿真。反激式開關(guān)電源的等效模型傳遞函數(shù)為:
[U(S)d(s)=K1s+K2B1s2+B2s+B3] (5)
式中:[K1,][K2,][B1,][B2,][B3]為系統(tǒng)比例系數(shù),由開關(guān)電源電器元件參數(shù)決定。
模糊PID控制器由系統(tǒng)誤差[e]和誤差變化率[ec]為輸入,通過不同時刻的[e]和[ec]值,利用模糊控制規(guī)則在線對PID控制器參數(shù)[KP,][KI,][KD]參數(shù)進(jìn)行修改。模糊PID控制系統(tǒng)組成如圖7,圖8所示,階躍響應(yīng)曲線如圖9所示。
圖7 模糊控制PID控制系統(tǒng)組成
圖8 誤差[e]和誤差變化率[ec]的隸屬函數(shù)
本設(shè)計開關(guān)電源把DSP完美融入到開關(guān)電源設(shè)計中,充分利用了DSP系統(tǒng)快速運算能力,采用模糊控制算法使開關(guān)電源控制智能化,電源快速達(dá)到穩(wěn)定輸出,提高了抗負(fù)載擾動能力。
圖9 系統(tǒng)階躍響應(yīng)
5 結(jié) 論
本系統(tǒng)將DSP作為開關(guān)電源控制單元,應(yīng)用模糊PID控制算法,使開關(guān)電源和DSP系統(tǒng)完美配合工作。利用了DSP快速處理能力特點產(chǎn)生開關(guān)電源PWM控制信號,對開關(guān)電源輸出進(jìn)行精確控制,提高了開關(guān)電源輸出精度和轉(zhuǎn)換效率,使開關(guān)電源控制實現(xiàn)智能化;能夠按照負(fù)載情況進(jìn)行實時修正,使電源達(dá)到快速穩(wěn)定輸出;同時利用DSP資源設(shè)計完成開關(guān)電源顯控單元及保護(hù)模塊,提高了開關(guān)電源操作性和安全性。
參考文獻(xiàn)
[1] LENK R.實用開關(guān)電源設(shè)計[M].北京:人民郵電出版社,2006.
[2] 張占松,蔡宣三.開關(guān)電源的原理與設(shè)計[M].北京:電子工業(yè)出版社,1998.
[3] 趙同賀,劉軍.開關(guān)電源設(shè)計技術(shù)與應(yīng)用實例[M].北京:人民郵電出版社,2007.
[4] 許邦建,唐濤.DSP處理器算法概論[M].北京:國防工業(yè)出版社,2012.
[5] 郭創(chuàng),張宗麟.DC?DC電源變換器的拓?fù)漕愋蚚J].電源技術(shù)應(yīng)用,2006(10):23?26.
[6] 孟淵,王衛(wèi)國.新型開關(guān)電源控制方法研究[J].現(xiàn)代電子技術(shù),2014,37(6):143?146.
圖6 溫度采集電路
4 開關(guān)電源性能分析
本文采用反激式開關(guān)電源和模糊PID控制算法進(jìn)行仿真。反激式開關(guān)電源的等效模型傳遞函數(shù)為:
[U(S)d(s)=K1s+K2B1s2+B2s+B3] (5)
式中:[K1,][K2,][B1,][B2,][B3]為系統(tǒng)比例系數(shù),由開關(guān)電源電器元件參數(shù)決定。
模糊PID控制器由系統(tǒng)誤差[e]和誤差變化率[ec]為輸入,通過不同時刻的[e]和[ec]值,利用模糊控制規(guī)則在線對PID控制器參數(shù)[KP,][KI,][KD]參數(shù)進(jìn)行修改。模糊PID控制系統(tǒng)組成如圖7,圖8所示,階躍響應(yīng)曲線如圖9所示。
圖7 模糊控制PID控制系統(tǒng)組成
圖8 誤差[e]和誤差變化率[ec]的隸屬函數(shù)
本設(shè)計開關(guān)電源把DSP完美融入到開關(guān)電源設(shè)計中,充分利用了DSP系統(tǒng)快速運算能力,采用模糊控制算法使開關(guān)電源控制智能化,電源快速達(dá)到穩(wěn)定輸出,提高了抗負(fù)載擾動能力。
圖9 系統(tǒng)階躍響應(yīng)
5 結(jié) 論
本系統(tǒng)將DSP作為開關(guān)電源控制單元,應(yīng)用模糊PID控制算法,使開關(guān)電源和DSP系統(tǒng)完美配合工作。利用了DSP快速處理能力特點產(chǎn)生開關(guān)電源PWM控制信號,對開關(guān)電源輸出進(jìn)行精確控制,提高了開關(guān)電源輸出精度和轉(zhuǎn)換效率,使開關(guān)電源控制實現(xiàn)智能化;能夠按照負(fù)載情況進(jìn)行實時修正,使電源達(dá)到快速穩(wěn)定輸出;同時利用DSP資源設(shè)計完成開關(guān)電源顯控單元及保護(hù)模塊,提高了開關(guān)電源操作性和安全性。
參考文獻(xiàn)
[1] LENK R.實用開關(guān)電源設(shè)計[M].北京:人民郵電出版社,2006.
[2] 張占松,蔡宣三.開關(guān)電源的原理與設(shè)計[M].北京:電子工業(yè)出版社,1998.
[3] 趙同賀,劉軍.開關(guān)電源設(shè)計技術(shù)與應(yīng)用實例[M].北京:人民郵電出版社,2007.
[4] 許邦建,唐濤.DSP處理器算法概論[M].北京:國防工業(yè)出版社,2012.
[5] 郭創(chuàng),張宗麟.DC?DC電源變換器的拓?fù)漕愋蚚J].電源技術(shù)應(yīng)用,2006(10):23?26.
[6] 孟淵,王衛(wèi)國.新型開關(guān)電源控制方法研究[J].現(xiàn)代電子技術(shù),2014,37(6):143?146.
圖6 溫度采集電路
4 開關(guān)電源性能分析
本文采用反激式開關(guān)電源和模糊PID控制算法進(jìn)行仿真。反激式開關(guān)電源的等效模型傳遞函數(shù)為:
[U(S)d(s)=K1s+K2B1s2+B2s+B3] (5)
式中:[K1,][K2,][B1,][B2,][B3]為系統(tǒng)比例系數(shù),由開關(guān)電源電器元件參數(shù)決定。
模糊PID控制器由系統(tǒng)誤差[e]和誤差變化率[ec]為輸入,通過不同時刻的[e]和[ec]值,利用模糊控制規(guī)則在線對PID控制器參數(shù)[KP,][KI,][KD]參數(shù)進(jìn)行修改。模糊PID控制系統(tǒng)組成如圖7,圖8所示,階躍響應(yīng)曲線如圖9所示。
圖7 模糊控制PID控制系統(tǒng)組成
圖8 誤差[e]和誤差變化率[ec]的隸屬函數(shù)
本設(shè)計開關(guān)電源把DSP完美融入到開關(guān)電源設(shè)計中,充分利用了DSP系統(tǒng)快速運算能力,采用模糊控制算法使開關(guān)電源控制智能化,電源快速達(dá)到穩(wěn)定輸出,提高了抗負(fù)載擾動能力。
圖9 系統(tǒng)階躍響應(yīng)
5 結(jié) 論
本系統(tǒng)將DSP作為開關(guān)電源控制單元,應(yīng)用模糊PID控制算法,使開關(guān)電源和DSP系統(tǒng)完美配合工作。利用了DSP快速處理能力特點產(chǎn)生開關(guān)電源PWM控制信號,對開關(guān)電源輸出進(jìn)行精確控制,提高了開關(guān)電源輸出精度和轉(zhuǎn)換效率,使開關(guān)電源控制實現(xiàn)智能化;能夠按照負(fù)載情況進(jìn)行實時修正,使電源達(dá)到快速穩(wěn)定輸出;同時利用DSP資源設(shè)計完成開關(guān)電源顯控單元及保護(hù)模塊,提高了開關(guān)電源操作性和安全性。
參考文獻(xiàn)
[1] LENK R.實用開關(guān)電源設(shè)計[M].北京:人民郵電出版社,2006.
[2] 張占松,蔡宣三.開關(guān)電源的原理與設(shè)計[M].北京:電子工業(yè)出版社,1998.
[3] 趙同賀,劉軍.開關(guān)電源設(shè)計技術(shù)與應(yīng)用實例[M].北京:人民郵電出版社,2007.
[4] 許邦建,唐濤.DSP處理器算法概論[M].北京:國防工業(yè)出版社,2012.
[5] 郭創(chuàng),張宗麟.DC?DC電源變換器的拓?fù)漕愋蚚J].電源技術(shù)應(yīng)用,2006(10):23?26.
[6] 孟淵,王衛(wèi)國.新型開關(guān)電源控制方法研究[J].現(xiàn)代電子技術(shù),2014,37(6):143?146.