• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shear velocity criterion for incipient motion of sediment

    2014-11-02 13:35:08FranciscoSIMES
    Water Science and Engineering 2014年2期

    Francisco J. M. SIM?ES*

    U.S. Geological Survey, Geomorphology and Sediment Transport Laboratory, Golden, CO 80403, USA

    1 Introduction

    The concept of excess shear stress has played a major role in the prediction of sediment transport rates. It is also used in problems involving channel erosion and stable channel design.Underlying this concept is the phenomenon of incipient motion, i.e., the transition from a stationary state to a state of initial (incipient)motion of the sediment particles in response to an increase in the hydrodynamic forces acting on a bed of loose sediment. This hard-to-define critical threshold condition has been approached using diverse physical parameters, such as the shear velocity (U*)and depth-mean velocity (U), but none has proven as popular as the traditional Shields (1936)curve based on the threshold shear stress.

    Shields (1936)expressed the critical shear stress for the initiation of motion as a relation between the nondimensional shear stress θ (also called the Shields parameter or the Shields entrainment function)and the grain Reynolds number based on the shear velocity, R*,defined as

    where s is the specific gravity of the sediment, and s=ρsρ. The use of d*eliminates the simultaneous use of U*in the abscissa and the ordinate of the Shields diagram, reducing data scatter and eliminating the need for an iterative process to find θcfor a particular set of hydraulic and sediment conditions.

    Substantially more data has been collected subsequent to Shields’ work, significantly expanding the range of experimental conditions. One of the issues that became significant with the arrival of these new experimental sets was the scatter of the data. This scatter is apparent in Fig. 1, where the empirical threshold curves of Paphitis (2001)are plotted against measurement data. Some authors, such as Zanke (2003)and Vollmer and Kleinhans (2007), attempted to explain and predict the disperse nature of the data. However, their analyses are complex and depend on variables that are unknown in most practical applications. Others suggest the use of different dependent variables that are better able to collapse the data into narrower bands, and consequently, are more amenable to conversion to analytic expressions.

    Fig. 1 Shields diagram for incipient motion of Paphitis (2001)and its comparison with measurements

    Liu (1958)proposed the use of the movability number of the sediment particle, defined as Λ= U*w , where w is the settling velocity of the individual sediment particle, as an alternative to the Shields parameter, and developed a Λc-R*relation, where Λcis the movability number

    2 Previous analyses

    While searching for a criterion for the initiation of ripple formation, Liu (1957, 1958)proposed the movability number Λ of the sediment particle. The relation between Λ and θ can be easily shown for spherical particles. For spherical grains,

    where Cdis the drag coefficient. With Eq. (3), we can obtain

    According to the definition of θ, the relation between Λ and θ can be obtained:

    This implies that if θchas a universal curve as a function of R*(or d*), Λ must be Λcfor incipient motion conditions. Furthermore, the fact that Λ is proportional to the square root of θ naturally results in a reduction of data scatter around the curve for Λc.

    The movability number has been shown to be an effective alternative to the Shields parameter. Liu (1958)was the first to recast the original Shields diagram into a Λc- R*curve that resulted in narrower bands of data scatter. Collins and Rigler (1982)argued that any method for estimating the threshold of motion should incorporate information about the particle shape and specific gravity, and recommended the particle’s settling velocity as a means to accomplish that. Komar and Clemens (1986)showed that the computation of w for sediment grains is at least as accurate as the determination of the threshold of motion, which relies on a somewhat subjective measurement, and developed a mechanical model of grain pivoting relating the threshold of motion to Λ. They also proposed Λc- R*and Λc- Ξ curves,but a limited amount of data were used, therefore limiting the range of application of their results.

    Paphitis (2001)analyzed different types of empirical threshold curves and showed that the use of Λ offers a clear advantage over the use of the Shields parameter and the critical shear velocity. Using the most extensive dataset, he derived a new relation for Λcas a function of the grain Reynolds number:

    Using this type of threshold curve, motion is determined to take place when the hydraulic and sediment conditions are such that Λ> Λc; otherwise, there is no sediment motion. Eq. (6), which is Eq. (20)of Paphitis (2001), is valid in the range of 0.1 <R*<105, and it is shown in Fig. 2 along with experimental data. Fig. 2(b)shows an improved collapse of the measurements along the analytic curve when compared to the θ-based curve of Fig. 1(b)(the same experimental dataset is used in Figs. 1 and 2). There is, however, still a significant deviation between the experimental data and Eq. (6), especially in the lower range of R*. This may be attributed to the more limited range of data used by Paphitis (2001)in the derivation of Eq. (6),which was limited to the range of R*>0.1. Another limitation of Eq. (6)resides in the use of R*as the independent variable, whereby U*is present in both Λ and R*.

    Fig. 2 Threshold for incipient motion of Paphitis (2001)and its comparison with measurements

    Beheshti and Ataie-Ashtiani (2008), who also found Λ to be a more suitable parameter for determining the threshold of motion, tried to eliminate the latter limitation by deriving the following Λc- d*curve:

    This equation, which is valid in the approximate range of 0.4 < d*< 1000, is shown in Fig. 3.As can be seen from Fig. 3, agreement between measurements and predictions is fair, but this equation shows the wrong behavior for large values of d*(d*>500)and overpredicts Λcin the lower range of d*.

    Fig. 3 Threshold for incipient motion of Beheshti and Ataie-Ashtiani (2008)and comparison with measurements

    3 Derivation of new incipient motion equation

    The work presented herein is based on experimental data collected independently by many researchers. There are important considerations concerning the definition of the sediment threshold that result in subjectivity and consequential uncertainty associated with such data. It is beyond the scope of the present work to dwell on these issues and the reader is referred to section 6 of Paphitis (2001)for more detailed comments.

    In this study, 517 sets of data obtained from many different sources and distinct physical settings were used. The origin of the data and their main characteristics are presented in Table 1, which includes the data used in the original work of Shields (1936)and plotted in Figs. 1 through 3. Not all the data presented in the original sources were used: the sets that did not contain enough information for an accurate calculation of the particle’s settling velocity were discarded. Nonetheless, the sediments associated with the data sets in Table 1, made of natural and artificial grains, offer a variety in shape and density and a sufficient number for statistical significance. Bed configurations also varied from grains of almost a uniform size to mixtures with relatively large sorting coefficients. Most data were collected in controlled laboratory settings, but some were collected in the field. The criterion used for the definition of incipient motion was also varied: visual inspection (a few or all particles moving),extrapolation methods, and stochastic approaches. The reader is referred to the original publications for further details.

    Settling velocities were calculated using the procedure given by Dietrich (1982). This method requires knowledge of water temperature, the sediment particles’ shape (the Corey shape factor and Powers’ roundness factor P), and their nominal diameter dN(the diameter of a sphere with the same volume as the particle). The shape parameters had to be estimated (e.g.,P = 6 for spheres and well rounded particles, P = 3.5 for natural sediments, and P = 2 for crushed sediments), and data without enough information for an adequate estimate were discarded. Similarly, when sediment mixtures were used, some authors provided information about the nominal diameter of the mixture, and others did not. In the latter case, a nominal diameter dN=d500.9 was used (d50is the sieve size through which 50% of the sediment passes). Note, however, that d50was always used for calculating d*.

    Table 1 Sources of data used in this study

    The data in Table 1 were randomly divided into two approximately equal groups in the following manner: the data sets were sorted by their sizes and numbered accordingly (the data set of Collins and Riegler (1982)was assigned number 1, the data set of Pilotti and Menduni(2001)was assigned number 2, etc.), and the data sets with odd numbering were assigned to group 1, while the data sets with even numbering were assigned to group 2. Group 1 is used in this section and group 2 is set aside for validating the new derivation, which is done in the next section.

    A nonlinear least-squares procedure was used to accomplish the fit of a curve to the data.The final expression found is

    Fig. 4 Derived threshold for incipient motion Eq. (8)and its comparison with measurements

    4 Validation of proposed equation

    The results shown in Fig. 4 present the goodness-of-fit of the derived curve to the data.However, Eq. (8)represents an empirical fit, and its validity is limited to the specific hydraulic conditions and particle characteristics associated with the data sets used for its derivation.Therefore, this analytic formula must be treated with caution. To determine its predictive ability, it must be validated using data sets that are independent from those used for its derivation. Here, data group 2 is used for that purpose.

    Table 2 Statistical goodness-of-fit parameters for different curves

    Fig. 5 Validation of Eq. (8)using independent data

    It is apparent that the proposed equation provides a statistically significant improvement over the equation of Beheshti and Ataie-Ashtiani (2008), as demonstrated by the respective values of the mean discrepancy ratio and the mean normalized error in Table 2. Additionally,the value of the standard deviation also reflects a larger amount of data scatter present in Beheshti and Ataie-Ashtiani’s (2008)equation. This scatter is also easily discovered by comparing the plots in Fig. 3 with those in Fig. 5.

    5 Conclusions

    In spite of significant data scatter, empirical threshold-of-motion curves based on the Shields parameter are commonly used in sediment transport theories. Several researchers addressed the issue by replacement of the Shields parameter θ with the movability number Λ.The use of Λ over θ offers several advantages: it incorporates particle shape information and specific density via the use of the settling velocity w; Λ is proportional to θ1/2, therefore reducing data scatter; and Λ is related to turbulence (i.e., to upward and downward turbulent fluctuations), therefore naturally incorporating its effects in the initiation of the motion of sediment particles.

    It is necessary to compute the settling velocity for some of the irregularly shaped sediment particles used in this study. The computation of w was done using Dietrich’s (1982)method due to its flexibility in incorporating particle shape and roundness. There are other simpler methods of calculating the sediment particle settling velocity. However, they have smaller ranges of applicability.

    This investigation corroborated the view that using Λ does improve the collapse of measured data into a line that is very well defined in a Λc- d*diagram. An empirical expression, Eq. (8), was derived by data fitting. Statistical parameters show a high degree of agreement between the analytic expression and experimental data. We therefore established that this new equation can be used effectively for the computation of the threshold of incipient sediment motion, providing a simple and practical calculation procedure that is more accurate than those based on the traditional Shields parameter.

    Ashworth, P. J., Ferguson, R. I., Ashmore, P. E., Paola, C., Powell, D. M., and Prestegaard, K. L. 1992.Measurements in a braided river chute and lobe, 2: Sorting of bed load during entrainment, transport, and deposition. Water Resoures Research, 28(7), 1887-1896. [doi:10.1029/92WR00702]

    Bathurst, J. C., Graf, W. H. and Cao, H. H. 1987. Bed load discharge equations for steep mountain rivers.Thorne, C. R., et al. eds., Sediment Transport in Gravelbed Rivers, 453-491. New York: John Wiley & Sons.

    Beheshti, A. A., and Ataie-Ashtiani, B. 2008. Analysis of threshold and incipient conditions for sediment movement. Coastal Engineering, 55(5), 423-430. [doi:10.1016/j.coastaleng.2008.01.003]

    Carling, P. A. 1983. Threshold of coarse sediment transport in broad and narrow natural streams. Earth Surface Processes and Landforms, 8(1), 1-18. [doi:10.1002/esp.3290080102]

    Casey, H. J. 1935a. About Bedload Movement. Ph. D. Dissertation. Berlin: Technischen Hochschule.(In German)

    Casey, H. J. 1935b. About Bedload Movement. Berlin: Communications of the Prussian Laboratory of Hydraulics and shipbuilding. (In German)

    Collins, M. B., and Rigler, J. K. 1982. The use of settling velocity in defining the initiation of motion of heavy mineral grains, under unidirectional flow. Sedimentology, 29(3), 419-426.

    Dey, S., and Debnath, K. 2000. Influence of streamwise bed slope on sediment threshold under stream flow.Journal of Irrigation and Drainage Engngineering, 126(4), 255-263. [doi:10.1061/(ASCE)0733-9437(2000)126:4(255)]

    Dey, S., and Raju, U. V. 2002. Incipient motion of gravel and coal beds. Sadhana-Academy Proceedings in Engineering Sciences, 27(5), 559-568.

    Dietrich, W. E. 1982. Settling velocity of natural particles. Water Resources Research, 18(6), 1615-1626.[doi:10.1029/WR018i006p01615]

    Everts, C. H. 1973. Particle overpassing on flat granular boundaries. Journal of the Waterways, Harbors and Coastal Engineering Division, 99(4), 425-438.

    Ferguson, R. I., Prestegaard, K. L., and Ashworth, P. J. 1989. Influence of sand on hydraulics and gravel transport in a braided gravel bed river. Water Resources Research, 25(4), 635-643. [doi:10.1029/WR025i004p00635]

    Ferguson, R. I. 1994. Critical discharge for entrainment of poorly sorted gravel. Earth Surface Processes and Landforms, 19(2), 179-186. [doi:10.1002/esp.3290190208]

    Gilbert, G. K. 1914. The Transportation of Debris by Running Water. Washington: U.S. Government Printing Office.

    Grass, A. J. 1970. Initial instability of fine bed sand. Journal of the Hydraulics Division, 96(3), 619-632.

    Hammond, F., Heathershaw, A., and Langhorne, D. 1984. A comparison between Shields’ threshold criterion and the movement of loosely packed gravel in a tidal channel. Sedimentology, 31(1), 51-62.

    Komar, P. D., and Clemens, K. E. 1986. The relationship between a grain’s settling velocity and threshold of motion under unidirectional currents. Journal of Sedimentary Research, 56(2), 258-266.

    Komar, P. D., and Carling, P. A. 1991. Grain sorting in gravel-bed streams and the choice of particle sizes for flow-competence evaluations. Sedimentology, 38(3), 489-502.

    Kramer, H. 1932. Modellgeschiebe und schleppkraft. Ph. D. Dissertation. Dresden: Technischen Hochschule.(In German)

    Kramer, H. 1935. Sand mixtures and sand movement in fluvial models. Transactions of the American Society of Civil Engineers, 100(1), 798-878.

    Liu, T. Y. 1935. Transportation of the Bottom Load in an Open Channel. M. S. Dissertation. Iowa: University of Iowa.

    Liu, H. K. 1957. Mechanics of sediment ripple formation. Journal of the Hydraulics Division, 83(2), 1-23.

    Liu, H. K. 1958. Closure: Mechanics of sediment ripple formation. Journal of the Hydraulics Division, 84(5),5-31.

    Luque, R. F., and van Beek, R. 1976. Erosion and transport of bed-load sediment. Journal of Hydraulic Research, 14(2), 127-143.

    Mantz, P. A. 1975. Low Transport Stages by Water Streams of Fine, Cohesionless Granular and Flaky Sediments. Ph. D. Dissertation. London: University of London.

    Meyer-Peter, E., and Müller, R. 1948. Formulas for bed-load transport. Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research, 39-64. Delft: IAHR.

    Milhous, R. T. 1973. Sediment Transport in a Gravel-bottomed Stream. Ph. D. Dissertation. Corvallis: Oregon State University.

    Misri, R. L., Garde, R. J., and Ranga Raju, K.G. 1984. Bed load transport of coarse nonuniform sediment.Journal of Hydraulic Engineering, 110(3), 312-328.

    Mizuyama, T. 1977. Bedload Transport in Steep Channels. Ph. D. Dissertation. Kyoto: Kyoto University.

    Neill, C. R. 1967. Mean-velocity criterion for scour of coarse uniform bedmaterial. Proceedings of the 12th Congress of the International Association of Hydraulics Research, vol. 3, 46-54. Delft: IAHR.

    Paphitis, D. 2001. Sediment movement under unidirectional flows: an assessment of empirical threshold curves. Coastal Engineering, 43(3-4), 227-245. [doi:10.1016/S0378-3839(01)00015-1]

    Petit, F. 1994. Dimensionless critical shear stress evaluation from flume experiments using different gravel beds. Earth Surface Processes and Landforms, 19(6), 565-576. [doi:10.1002/esp.3290190608]

    Pilotti, M., and Menduni, G. 2001. Beginning of sediment transport of incoherent grains in shallow shear flows. Journal of Hydraulic Research, 39(2), 115-124.

    Powell, D. M., and Ashworth, P. J. 1995. Spatial pattern of flow competence and bed load transport in a divided gravel bed river. Water Resources Research, 31(3), 741-752. [doi:10.1029/94WR02273]

    Rao, A. R., and Sitaram, N. 1999. Stability and mobility of sand-bed channels affected by seepage. Journal of Irrigation and Drainage Engineering, 125(16), 370-379. [doi:10.1061/(ASCE)0733-9437(1999)125:6(370)]

    Shields, A. 1936. Application of Similarity Principles and Turbulence Research to Bedload Movement. Berlin:Wasserbau Schiffbau. (English translation by Ott, W. P., and van Uchelen, J. C., Hydraulics Laboratory,California Institute of Technology)

    Talapatra, S. C., and Ghosh, S. N. 1983. Incipient motion criteria for flow over a mobile bed sill. Proceedings of the 2nd International Symposium on River Sedimentation, 459-471. Nanjing: Water Resources and Electric Power Press.

    U.S. Waterways Experiment Station (USWES). 1935. Study of River Bed Material and Their Movement: With Special Reference to the Lower Mississippi River. Vicksburg: U.S. Waterways Experiment Station.

    Vollmer, S., and Kleinhans, M. G. 2007. Predicting incipient motion, including the effect of turbulent pressure fluctuations in the bed. Water Resources Research, 43(5), W05410. [doi:10.1029/2006WR004919]

    Ward, B. D. 1968. Surface Shear at Incipient Motion of Uniform Sands. Ph. D. Dissertation. Tucson:University of Arizona.

    Wathen, S. J., Ferguson, R. I., Hoey, T. B., and Werritty, H. A. 1995. Unequal mobility of gravel and sand in weakly bimodal river sediments. Water Resources Research, 31(8), 2087-2096. [doi:10.1029/95WR01229]

    White, S. J. 1970. Plane bed thresholds of fine grained sediments. Nature, 228, 152-153. [doi:10.1038/228152a0]

    Wilcock, P. R. 1987. Bed-load Transport of Mixed-size Sediment. Ph. D. Dissertation. Cambridge:Massachusetts Institute of Technology.

    Yalin, M. S. 1972. Mechanics of Sediment Transport. New York: Pergamon Press.

    Yalin, M. S., and Karahan, E. 1979. Inception of sediment transport. Journal of the Hydraulics Division,105(11), 1433-1443.

    Yalin, M. S., and da Silva, A. M. F. 2001. Fluvial Processes. Delft: International Association of Hydraulic Research.

    Zanke, U. C. E. 2003. On the influence of turbulence on the initiation of motion. International Journal of Sediment Research, 18(1), 17-31.

    亚洲中文字幕一区二区三区有码在线看 | 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看| 满18在线观看网站| 啦啦啦 在线观看视频| 中文字幕高清在线视频| 免费观看人在逋| 国产黄片美女视频| 亚洲国产日韩欧美精品在线观看 | 国产又色又爽无遮挡免费看| 日日摸夜夜添夜夜添小说| 很黄的视频免费| 一二三四在线观看免费中文在| 真人一进一出gif抽搐免费| 久久久久久久久久黄片| 嫩草影视91久久| 淫秽高清视频在线观看| 免费在线观看影片大全网站| 热re99久久国产66热| 亚洲精品国产一区二区精华液| 午夜久久久在线观看| 日韩欧美国产在线观看| 午夜免费鲁丝| 人人澡人人妻人| 免费一级毛片在线播放高清视频| 久久久久久久久中文| 国产免费男女视频| 久久国产精品影院| 少妇粗大呻吟视频| 天天躁夜夜躁狠狠躁躁| 日本成人三级电影网站| 香蕉av资源在线| 国产成人精品久久二区二区91| av片东京热男人的天堂| 久久精品亚洲精品国产色婷小说| 精品久久久久久,| or卡值多少钱| 欧美丝袜亚洲另类 | 麻豆国产av国片精品| 国产高清videossex| 亚洲一区中文字幕在线| 日韩精品免费视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 亚洲午夜精品一区,二区,三区| 色在线成人网| 91成年电影在线观看| 欧美日韩一级在线毛片| 看片在线看免费视频| 国产一级毛片七仙女欲春2 | 久久青草综合色| 日本黄色视频三级网站网址| 国产蜜桃级精品一区二区三区| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 一区二区三区国产精品乱码| 日本五十路高清| videosex国产| 国产视频内射| 91九色精品人成在线观看| 91字幕亚洲| 亚洲熟妇熟女久久| 亚洲成a人片在线一区二区| 国产激情欧美一区二区| 午夜久久久久精精品| 亚洲第一青青草原| 免费电影在线观看免费观看| 他把我摸到了高潮在线观看| 欧美在线黄色| 男女午夜视频在线观看| 一级a爱片免费观看的视频| 日韩欧美国产一区二区入口| av中文乱码字幕在线| 国产在线观看jvid| 国产一区在线观看成人免费| 1024手机看黄色片| 免费人成视频x8x8入口观看| 国产精品美女特级片免费视频播放器 | 老司机深夜福利视频在线观看| 久久午夜综合久久蜜桃| 男女视频在线观看网站免费 | 国产亚洲欧美98| 国产区一区二久久| 午夜福利视频1000在线观看| 日韩高清综合在线| 好男人在线观看高清免费视频 | 97碰自拍视频| 欧美精品亚洲一区二区| 午夜免费激情av| 后天国语完整版免费观看| 久久久国产精品麻豆| 嫩草影院精品99| 国产高清有码在线观看视频 | 欧美大码av| 欧美另类亚洲清纯唯美| 99热这里只有精品一区 | 色哟哟哟哟哟哟| 超碰成人久久| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 欧美不卡视频在线免费观看 | 老司机深夜福利视频在线观看| 亚洲午夜理论影院| 亚洲最大成人中文| 女性被躁到高潮视频| 亚洲精品一卡2卡三卡4卡5卡| 又黄又粗又硬又大视频| 无限看片的www在线观看| 日日摸夜夜添夜夜添小说| 好看av亚洲va欧美ⅴa在| 精品欧美一区二区三区在线| 精品国产乱子伦一区二区三区| 国产人伦9x9x在线观看| 国产激情欧美一区二区| 国产av一区在线观看免费| 久久 成人 亚洲| 欧美一级a爱片免费观看看 | 久久久久国产精品人妻aⅴ院| 校园春色视频在线观看| www.精华液| 欧美一级毛片孕妇| 欧美黄色淫秽网站| 在线观看免费日韩欧美大片| 老司机午夜福利在线观看视频| 国产精品野战在线观看| 怎么达到女性高潮| 国产伦在线观看视频一区| 国产一级毛片七仙女欲春2 | 国产成人av教育| 国产国语露脸激情在线看| 亚洲人成电影免费在线| 久久香蕉激情| 国产区一区二久久| 午夜精品在线福利| 亚洲国产精品成人综合色| 亚洲精品美女久久av网站| 美女午夜性视频免费| 一二三四在线观看免费中文在| 免费在线观看视频国产中文字幕亚洲| 妹子高潮喷水视频| 色哟哟哟哟哟哟| 精品久久久久久久人妻蜜臀av| 久久青草综合色| 757午夜福利合集在线观看| 日韩欧美 国产精品| 久热这里只有精品99| 黄频高清免费视频| 免费搜索国产男女视频| 十八禁网站免费在线| 免费女性裸体啪啪无遮挡网站| 午夜福利免费观看在线| 男女视频在线观看网站免费 | 午夜激情福利司机影院| 国产精品久久视频播放| 69av精品久久久久久| a在线观看视频网站| 最近最新免费中文字幕在线| 国产麻豆成人av免费视频| 人人妻人人澡人人看| 日本在线视频免费播放| 校园春色视频在线观看| 窝窝影院91人妻| 99国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 少妇熟女aⅴ在线视频| 日韩国内少妇激情av| 无限看片的www在线观看| 亚洲专区国产一区二区| 日本五十路高清| 欧美三级亚洲精品| 国产精品乱码一区二三区的特点| 国产亚洲av高清不卡| 最好的美女福利视频网| or卡值多少钱| 国产91精品成人一区二区三区| 亚洲无线在线观看| 亚洲精品久久成人aⅴ小说| 久久精品人妻少妇| 久久人人精品亚洲av| 97人妻精品一区二区三区麻豆 | 可以免费在线观看a视频的电影网站| 国产精品乱码一区二三区的特点| 亚洲中文字幕一区二区三区有码在线看| 色在线成人网| 婷婷色综合大香蕉| 啦啦啦韩国在线观看视频| 级片在线观看| 91狼人影院| 日韩精品中文字幕看吧| 在线观看美女被高潮喷水网站| 亚洲四区av| 国产单亲对白刺激| 一级毛片aaaaaa免费看小| 在线a可以看的网站| av国产免费在线观看| 国产精品精品国产色婷婷| 简卡轻食公司| 免费人成在线观看视频色| 国内精品美女久久久久久| 国产精品一及| 久久久久久九九精品二区国产| 亚洲国产精品sss在线观看| 超碰av人人做人人爽久久| 校园春色视频在线观看| 免费av不卡在线播放| 午夜a级毛片| 校园人妻丝袜中文字幕| 国产精品伦人一区二区| 搡老熟女国产l中国老女人| 亚洲精品日韩在线中文字幕 | 亚洲欧美成人综合另类久久久 | 免费无遮挡裸体视频| 精品人妻视频免费看| 嫩草影院精品99| 国产日本99.免费观看| 99久久精品一区二区三区| ponron亚洲| 变态另类丝袜制服| 久久九九热精品免费| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av| 热99在线观看视频| 99久久无色码亚洲精品果冻| 一卡2卡三卡四卡精品乱码亚洲| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| 老司机影院成人| 不卡视频在线观看欧美| 欧美一区二区国产精品久久精品| 久久人妻av系列| 国产三级在线视频| 亚洲欧美中文字幕日韩二区| 免费av不卡在线播放| av免费在线看不卡| 男人和女人高潮做爰伦理| 免费搜索国产男女视频| 久久99热这里只有精品18| 亚洲欧美日韩高清专用| 国产精品电影一区二区三区| 国产精品久久久久久久电影| 欧美精品国产亚洲| 午夜激情福利司机影院| 日日摸夜夜添夜夜添av毛片| 国产老妇女一区| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 国产探花在线观看一区二区| 欧美绝顶高潮抽搐喷水| 久久午夜福利片| 久久精品国产亚洲av天美| 网址你懂的国产日韩在线| 国产成人精品久久久久久| 国产伦精品一区二区三区视频9| 99国产精品一区二区蜜桃av| 老师上课跳d突然被开到最大视频| 99热这里只有精品一区| 黄色一级大片看看| 色哟哟哟哟哟哟| 最近视频中文字幕2019在线8| 亚洲美女搞黄在线观看 | 天堂动漫精品| 99热全是精品| 国产精品国产高清国产av| 菩萨蛮人人尽说江南好唐韦庄 | 国内精品一区二区在线观看| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 亚洲中文日韩欧美视频| av国产免费在线观看| 性色avwww在线观看| 欧美高清性xxxxhd video| 日本成人三级电影网站| 亚洲内射少妇av| 国产精品一二三区在线看| 免费看光身美女| 一级a爱片免费观看的视频| 18禁在线无遮挡免费观看视频 | 小说图片视频综合网站| 菩萨蛮人人尽说江南好唐韦庄 | 国产三级中文精品| 少妇被粗大猛烈的视频| 亚洲最大成人av| 中文字幕精品亚洲无线码一区| 欧美极品一区二区三区四区| 1000部很黄的大片| 亚洲国产欧美人成| 国产欧美日韩一区二区精品| 在线播放无遮挡| 国产一级毛片七仙女欲春2| 日韩三级伦理在线观看| 男人的好看免费观看在线视频| 国产一区二区在线观看日韩| 日本免费a在线| 麻豆av噜噜一区二区三区| 在线播放国产精品三级| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 99九九线精品视频在线观看视频| 极品教师在线视频| 成人亚洲欧美一区二区av| 99热只有精品国产| 成人av在线播放网站| 波多野结衣巨乳人妻| 亚洲乱码一区二区免费版| 我的女老师完整版在线观看| 日日啪夜夜撸| 久久久久久大精品| 亚洲精品久久国产高清桃花| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱 | 国产成人一区二区在线| 亚洲av免费在线观看| 乱系列少妇在线播放| 少妇的逼水好多| 少妇人妻一区二区三区视频| 欧美日韩乱码在线| 成年女人毛片免费观看观看9| 黄色日韩在线| 国产精品久久久久久亚洲av鲁大| 人人妻人人看人人澡| 不卡一级毛片| 国产精品国产三级国产av玫瑰| 97热精品久久久久久| 中国美白少妇内射xxxbb| av.在线天堂| 国产精品爽爽va在线观看网站| 男人狂女人下面高潮的视频| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美三级三区| 成人性生交大片免费视频hd| 偷拍熟女少妇极品色| 91在线精品国自产拍蜜月| 欧美高清性xxxxhd video| 国产免费一级a男人的天堂| 欧美性猛交╳xxx乱大交人| 日本三级黄在线观看| 你懂的网址亚洲精品在线观看 | 国产成人a区在线观看| 久久久午夜欧美精品| 69人妻影院| 精品一区二区三区av网在线观看| 午夜福利在线在线| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 三级毛片av免费| 波野结衣二区三区在线| 国产亚洲91精品色在线| 免费看av在线观看网站| 搡老熟女国产l中国老女人| 成人永久免费在线观看视频| 久久精品国产自在天天线| 亚洲五月天丁香| 青春草视频在线免费观看| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 国产精品人妻久久久久久| 草草在线视频免费看| 国产精品嫩草影院av在线观看| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 在线看三级毛片| 在线观看66精品国产| 丰满乱子伦码专区| 亚洲美女搞黄在线观看 | 性插视频无遮挡在线免费观看| av专区在线播放| 日韩精品有码人妻一区| 久99久视频精品免费| 黄色配什么色好看| 九色成人免费人妻av| 晚上一个人看的免费电影| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 日本熟妇午夜| 狂野欧美激情性xxxx在线观看| 赤兔流量卡办理| 亚洲无线在线观看| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 日韩,欧美,国产一区二区三区 | 高清日韩中文字幕在线| 亚洲人成网站高清观看| 久久人人爽人人爽人人片va| 国产av麻豆久久久久久久| 亚洲熟妇熟女久久| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清| 国产精品99久久久久久久久| 两个人视频免费观看高清| 人妻制服诱惑在线中文字幕| 日日干狠狠操夜夜爽| 黄色配什么色好看| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影| 99久久精品国产国产毛片| 国产午夜福利久久久久久| 国产精华一区二区三区| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 国产爱豆传媒在线观看| 国产视频内射| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 国产精品一及| 欧美最黄视频在线播放免费| 亚洲精品国产成人久久av| 亚洲成av人片在线播放无| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 日本成人三级电影网站| 欧美色视频一区免费| 国产爱豆传媒在线观看| 国产亚洲欧美98| 亚洲精品日韩av片在线观看| 日本在线视频免费播放| 深夜精品福利| 成人精品一区二区免费| 亚洲av一区综合| 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 午夜福利高清视频| 成人鲁丝片一二三区免费| 久久精品人妻少妇| 久久久色成人| 国产aⅴ精品一区二区三区波| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验 | 在线观看av片永久免费下载| 岛国在线免费视频观看| 国产欧美日韩精品一区二区| 色综合亚洲欧美另类图片| 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 国产成人91sexporn| 亚洲经典国产精华液单| 午夜福利高清视频| 国产精品三级大全| 亚洲va在线va天堂va国产| 搡老熟女国产l中国老女人| 久久中文看片网| 国产精品伦人一区二区| 你懂的网址亚洲精品在线观看 | 中文字幕人妻熟人妻熟丝袜美| 网址你懂的国产日韩在线| 精品久久久久久久久av| 丝袜喷水一区| av国产免费在线观看| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 亚洲国产日韩欧美精品在线观看| 一区福利在线观看| 国产美女午夜福利| 少妇熟女aⅴ在线视频| 国国产精品蜜臀av免费| av黄色大香蕉| 看非洲黑人一级黄片| 欧美3d第一页| 97碰自拍视频| 亚洲av免费高清在线观看| 在线a可以看的网站| 欧美在线一区亚洲| 欧美绝顶高潮抽搐喷水| 久久久久久大精品| 免费人成在线观看视频色| 美女黄网站色视频| 直男gayav资源| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 免费看a级黄色片| 国产中年淑女户外野战色| 国产高清视频在线播放一区| 一本久久中文字幕| 欧美日韩综合久久久久久| 丝袜美腿在线中文| 日韩精品中文字幕看吧| 国产亚洲精品久久久com| 神马国产精品三级电影在线观看| 美女高潮的动态| 国产高清激情床上av| 亚洲欧美日韩高清在线视频| 成人漫画全彩无遮挡| 老熟妇乱子伦视频在线观看| 国产片特级美女逼逼视频| 色在线成人网| 国产aⅴ精品一区二区三区波| 久久久久久国产a免费观看| 日韩国内少妇激情av| 插阴视频在线观看视频| 人人妻,人人澡人人爽秒播| 99热这里只有精品一区| 99在线人妻在线中文字幕| 欧美激情国产日韩精品一区| 国产成人影院久久av| 欧美+亚洲+日韩+国产| 成人亚洲精品av一区二区| 国产成年人精品一区二区| 18+在线观看网站| 99久久无色码亚洲精品果冻| 成人毛片a级毛片在线播放| 美女高潮的动态| 久久久久久伊人网av| 午夜视频国产福利| 亚洲aⅴ乱码一区二区在线播放| 永久网站在线| 成年免费大片在线观看| 国产精品免费一区二区三区在线| 国产在线男女| 国产成人a∨麻豆精品| 亚洲成人久久性| 91精品国产九色| 国产精品人妻久久久影院| 日日摸夜夜添夜夜添av毛片| 性色avwww在线观看| 久久久午夜欧美精品| 高清毛片免费看| 亚洲精品粉嫩美女一区| 黄色一级大片看看| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 亚洲三级黄色毛片| 成人午夜高清在线视频| 1000部很黄的大片| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 国内精品一区二区在线观看| 国产片特级美女逼逼视频| 美女免费视频网站| 99热精品在线国产| 亚洲aⅴ乱码一区二区在线播放| 国产女主播在线喷水免费视频网站 | 成人鲁丝片一二三区免费| 日本 av在线| 成人一区二区视频在线观看| 日日摸夜夜添夜夜爱| 成人av一区二区三区在线看| 午夜精品国产一区二区电影 | 亚洲最大成人av| 欧美+日韩+精品| 免费观看的影片在线观看| 国产精品福利在线免费观看| 国产在线精品亚洲第一网站| 国产精品女同一区二区软件| 在线观看免费视频日本深夜| 在线看三级毛片| 国产精品,欧美在线| 久久亚洲国产成人精品v| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 国产色爽女视频免费观看| 俄罗斯特黄特色一大片| 欧美日韩一区二区视频在线观看视频在线 | 狠狠狠狠99中文字幕| 1000部很黄的大片| 成年av动漫网址| 丰满乱子伦码专区| 日本成人三级电影网站| 国产69精品久久久久777片| 亚洲精品色激情综合| 天天一区二区日本电影三级| 简卡轻食公司| 九九久久精品国产亚洲av麻豆| 免费av观看视频| 高清毛片免费观看视频网站| 深夜a级毛片| 亚洲在线观看片| 欧美zozozo另类| 天天躁夜夜躁狠狠久久av| 亚洲第一电影网av| 深爱激情五月婷婷| 亚洲第一区二区三区不卡| 欧美成人精品欧美一级黄| 精品久久国产蜜桃| 日本成人三级电影网站| 女人被狂操c到高潮| 国产国拍精品亚洲av在线观看| 亚洲av五月六月丁香网| 国产美女午夜福利| 少妇丰满av| 国产aⅴ精品一区二区三区波| 免费高清视频大片| 国产在线男女| 日韩精品中文字幕看吧| 免费人成视频x8x8入口观看| 国产老妇女一区| 日韩亚洲欧美综合| 男人舔奶头视频| 色视频www国产| 久久这里只有精品中国| 最近最新中文字幕大全电影3| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 成年版毛片免费区| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 欧美中文日本在线观看视频| 亚洲精品亚洲一区二区| 欧美成人免费av一区二区三区| av国产免费在线观看| 欧美国产日韩亚洲一区| 日韩欧美三级三区| 国产综合懂色| 婷婷精品国产亚洲av| 91久久精品国产一区二区成人|