• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A method of determining nonlinear large strain consolidation parameters of dredged clays

    2014-03-15 07:47:05YupengCAOXuesongWangLongDUJianwenDingYongfengDENG
    Water Science and Engineering 2014年2期

    Yu-peng CAO*, Xue-song Wang, Long DU Jian-wen Ding Yong-feng DENG

    1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, P. R. China

    2. Municipal Facilities Authority, Weifang Economic Development Zone, Weifang 261057, P. R. China

    A method of determining nonlinear large strain consolidation parameters of dredged clays

    Yu-peng CAO*1,2, Xue-song Wang2, Long DU1, Jian-wen Ding1, Yong-feng DENG1

    1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, P. R. China

    2. Municipal Facilities Authority, Weifang Economic Development Zone, Weifang 261057, P. R. China

    A method of obtaining the large strain consolidation parameters of dredged clays considering the influence of the initial water content is investigated in this study. According to the test results of remolded clays with high initial water contents reported by Hong et al. (2010), a relationship between the void ratio (e) and effective stress (σ′) is established. Furthermore, based on the available permeability data from the literature, a new relationship between the permeability coefficient (k) and the ratio (e/eL) of the void ratio to the void ratio at the liquid limit (eL) is proposed. The new proposed expression considering the initial water content improves the e-k equation established by Nagaraj et al. (1994). Finally, the influence of the initial void ratio and effective stress on the large strain consolidation coefficient g(e) defined by Gibson et al. (1981) and k/(1+e) in large strain analysis is discussed. The results show that, under a constant effective stress, the value of k/(1+e) increases with the initial void ratio. The large strain consolidation coefficient shows the law of segmentation change, which decreases with the increase of the effective stress when the effective stress is less than the remolded yield stress, but increases rapidly with the effective stress when the effective stress is larger than the remolded yield stress.

    initial void ratio; permeability; large strain consolidation parameter; remolded yield stress; dredged clay

    1 Introduction

    As methods of determining the coefficient of consolidation, the graphics-fitting method is not suitable for studying soil’s nonlinear consolidation properties, while the index property method cannot easily reflect soil’s consolidation characteristics accurately. A more accurate method of obtaining the coefficient of consolidation is calculation with the e-σ′ and e-k relationships, where e is the void ratio, σ′ is the effective stress, and k is the permeability coefficient. Davis and Raymond (1965) assumed that the permeability and compression coefficients changed synchronously, and deduced a constant consolidation coefficient. However, for most soils, the e-σ′ and e-k relationships do not change in the same pattern.

    Burland (1990) normalized compression curves of remolded clays by introducing a newparameter called the void index. Taylor (1948) proposed that there was a semi-logarithmic relationship between the void ratio and permeability coefficient. Carrier et al. (1983) found that both e-σ′ and e-k showed a strong double logarithmic relationship. These studies improve our understanding of the soil’s compression and permeability characteristics, but the changing laws of the consolidation parameters above are based on traditional consolidation data and laboratory tests, where the initial void ratios are relatively low. In reclamation projects, the soil exhibits large strain consolidation characteristics at high initial water contents. Hence, it is necessary to study the compression and permeability characteristics under a high void ratio. By introducing the nonlinear relationships of e-σ′ and e-k into the consolidation theory proposed by Gibson et al. (1981), the large strain consolidation coefficient g(e) can be obtained. In Gibson’s theory, g(e) is constant, which leads to the difference between the calculated and real results. In order to reasonably reflect soil’s nonlinear consolidation characteristics, Zhang (2002) discussed the consolidation process by assuming that g(e) is in an exponential form. Jiang et al. (2010) pointed out that g(e) changed by an order of magnitude in the consolidation process. Though g(e) is a complex function of the void ratio, it can be fitted by a simple power function. In these studies, the initial void ratio was relatively high, but the influence of the initial void ratio was not taken into account.

    Hong et al. (2010) conducted one-dimensional consolidation tests on clays reconstituted at different initial water contents, and found that the effect of the initial water content could not be ignored when studying soil’s compression characteristics. Note that there is a one-to-one correspondence between the initial water content and the initial void ratio for the same homogeneous saturated soil. Therefore, introducing the initial void ratio into soil’s consolidation analysis will reflect nonlinear consolidation characteristics more accurately.

    In this study, according to the test results of remolded clays at high initial water contents and the concept of remolded yield stress reported by Hong et al. (2010), the relationship between the void ratio and effective stress considering the effect of the initial void ratio was established. Moreover, based on the available permeability data from the literature, a new e-k relationship is proposed, which expands the normalized e-k relation proposed by Nagaraj et al. (1994). Finally, based on the large strain consolidation theory established by Gibson et al. (1981), a new quantitative expression of g(e) considering the initial void ratio and the void ratio at the liquid limit is provided. The influence of the initial void ratio and effective stress on g(e) is discussed.

    2 e-σ' relationship considering initial void ratio

    Based on Burland’s normalized intrinsic compression curve of remolded clays, Hong et al. (2010) carried out further theoretical and experimental research, and widened the application scope of the intrinsic compression curve. A new concept of remolded yield stress σs′ was proposed by Hong et al. (2010), and σs′ is as follows:

    whe re eLis the void ratio at the liquid limit, and e0is the initial void ratio.

    In Hong et al. (2010), the intrinsic compression curve was obtained when the effective stress was larger than or equal to the remolded yield stress, but the e-σ′ quantitative expression was not provided when the effective stress was less than the remolded yield stress. Hong et al. (2010) found that the compression curves of remolded soils with different initial void ratios are significantly different when the effective stress is lower than the remolded yield stress. In reclamation projects, the sludge consolidation occurs under the self-weight loading, but the self-weight stress is very small (Sills 1998). Therefore, it is necessary to study the consolidation properties at low stress levels.

    Fig. 1 shows the relationship between the void index (Iv) and effective stress for Lianyungang clay at different initial water contents (ω0), which is obtained from the test results of Hong et al. (2010). There is a good linear relationship between the void index and effective stress when the effective stress is less than the remolded yield stress. In order to better reflect this linear relationship, the relationship between the void ratio and effective stress for Baimahu clay is shown in Fig. 2 when σ′ < σs′ . The e-σ′ relationships of Kemen and Lianyungang clays are similar to that of Baimahu clay. Figures dealing with these two are not shown here.

    Fig. 1 Relationship between Ivand σ′ for Lianyungang clay at different ω0values

    Fig. 2 Relationship between e and σ′ for Baimahu clay at different e0values when σ′ <σs′

    Further analysis finds that the slope and intercept of the e-σ′ curve have strong correlations with the initial void ratio e0and void ratio at the liquid limit eL. On this basis, the e-σ′ relational expression of Eq. (2) can be provided when the effective stress is less than the remolded yield stress:

    Eq. (2) is obtained according to Baimahu clay with the initial void ratios of 1.7, 2.2, 2.4, 3.1, 4.1, and 4.8; Lianyungang clay with the initial void ratios of 1.4, 1.9, 2.1, 2.6, 3.2, and 3.8; and Kemen clay with the initial void ratios of 1.5, 1.9, 2.1, 2.3, 2.4, 2.6, 2.8, and 3.2. Table 1 shows basic physical properties of these clays, from Hong et al. (2010).

    Table 1 Basic physical properties of clays

    Fig. 3 shows the comparison of the void ratio calculated with Eq. (2) and the measured void ratio for Baimahu and Lianyungang clays. The results indicate that Eq. (2) can well describe the consolidation law while the effective stress is less than the remolded yield stress.

    Fig. 3 Comparison of calculated and measured void ratios for Baimahu and Lianyungang clays

    When the effective stress is larger than or equal to the remolded yield stress, the e-σ′relationship can be obtained from equations in Hong et al. (2010), as follows:

    Combining Eqs. (2) and (3), the e-σ′ relationship throughout the consolidation process can be determined as follows:

    It is noted that the e-σ′ relationship is established for remolded clays, and the initial water content is 0.7 to 2.0 times the liquid limit. The water content of soils in most reclamation projects is within this range. In the actual project, there may be remolded clays or silts with higher water contents, more than 2.0 times the liquid limit (Deng et al. 2009). Studies have shown that the high water content sludge first enters the deposition process before entering the consolidation process (Been and Sills 1981). After deposition, the water content of sludge is nearly 2.0 times the liquid limit (Ji 2009), which is very close to the values in this study. Thus, the proposed relationship is suitable for most reclamation projects.

    3 Nonlinear e-k relationship

    Samarasinghe et al. (1982) proposed that the e-k relationship behaved as an exponential expression. Mesri and Olson (1971) described a double logarithmic e-k relationship. However, these established relational expressions were obtained from permeability tests. Nagaraj et al. (1994) only found that the soil permeability coefficient was related to eeLby analyzing the e-k relationship of the remolded soil at the states of normal consolidation and over-consolidation. Then, Eq. (5) was established using permeability data with soil’s liquid limit ranging from 50% to 300% and eeLranging from 0.4 to 1.0.

    where kvis the vertical permeability coefficient.

    In practical engineering situations, such as those involving reclaimed soil, natural sedimentary soil, and high-sensitivity soil, the soil’s water content is often higher than the liquid limit. In these circumstances, applicability of Eq. (5) needs to be further explored. Therefore, the basic parameters used for establishing e-k equations in Nagaraj et al. (1994), Pane et al. (1983), and Znidarcic et al. (1986) were collected in this study. The liquid limit ranges from 42% to 106%, and eeLis between 0.4 and 2.0. Furthermore, three types of remolded clays, Baimahu clay, Kemen clay, and Huaian clay, were used to establish the e-k relationship in this study. Table 2 shows the soils’ basic properties from previous studies and this study. Based on these data, we obtained the following fitting formula with a correlation coefficient of more than 0.97:

    Eq. (6) indicates that there is a strong exponential relationship between eeLand k, as shown in Fig. 4. Fig. 4 shows that Eq. (5) can accurately reflect the e-k relationship while the void ratio ranges from 0.7 to 1.4, but the error is large when it is outside of this range.

    Table 2 Soils’ basic properties from previous studies and this study

    Fig. 4 k vs. e/eL

    4 Derivation of g(e) considering initial void ratio

    Gibson et al. (1981) established a one-dimensional large strain consolidation equation in the solid phase coordinate according to the balance equation, continuity equation, the principle of effective stress, and Darcy’s law:

    where γwis the specific weight of water, γsis the specific weight of soil particles, z is the solid phase coordinate, and t is time. The symbol + and ? are used when the coordinate direction are opposite to and along the gravity direction, respectively.

    g(e) defined by Gibson et al. (1981) is as follows:

    Substituting Eqs. (4) and (6) into Eq. (8), g(e) as established in the large strain theory can be expressed as

    5 Variations of k/(1+e), dσ'/de, and g(e) with σ'

    Fig. 5 shows the relationship between k (1 +e) and σ′ for Baimahu clay. As can be seen, k (1 +e) decreases rapidly when the effective stress is less than the remolded yield stress, and then changes slowly as the effective stress increases. The changing law reflects the nonlinear consolidation characteristics. Under a constant effective stress, the value of k (1 +e) increases with the initial void ratio.

    Fig. 6 shows the relationship between σ′ and dσ′de calculated with Eq. (4) for Baimahu clay. It can be seen that the change of dσ′de is very small while the effective stressis less than the remolded yield stress. However, when the effective stress is larger than a certain value, dσ′de decreases rapidly. Under a constant effective stress, the larger the initial void ratio is, the larger the value of dσ′de is.

    Fig. 5 k (1 +e) vs. σ′ for Baimahu clay

    Fig. 6 dσ′de vs. σ′ for Baimahu clay

    Fig. 7 shows the relationship between g(e) and σ′, where g(e) is calculated according to Eq. (9). The values of σ′ at the points with the minimum g(e) values are the remolded yield stress of clays corresponding to their initial void ratios. It can be seen that g(e) presents a segmentation change law. When the effective stress is less than the remolded yield stress, g(e) decreases as the effective stress increases, and when the effective stress is larger than the remolded yield stress, g(e) increases rapidly with the effective stress. However, when the effectivestress reaches a certain value, g(e) shows different trends. In Fig. 7(a), g(e) shows a downward trend. In Fig. 7(b), g(e) shows a slower growth trend with small initial void ratios, but shows a downward trend with a relatively high initial void ratio (e0= 3.2). In Fig. 7(c), g(e) grows slower as the effective stress increases.

    Fig. 7 g(e) versus σ′ for three remolded clays

    The variation of g(e) reflects the dominant position of the permeability and compression coefficients. The turning point under low stress conditions is due to the yield pressure of remolded soil. In the high void ratio stage, the permeability coefficient plays a leading role in the changing process of g(e), and the rapidly decreasing permeability coefficient leads to the decrease of g(e). Yield failure occurs in the soil structure when the effective stress is relatively large, and soil’s compressibility plays a leading role in the change of g(e), so g(e) increases rapidly with compressibility. When the loading is larger, soil particles are more closely arranged. At this stage, the permeability and compressibility of soil gradually stabilize, and the increment speed of g(e) slows down.

    On the other hand, when the effective stress is less than the remolded yield stress, the value of g(e) at a high initial void ratio is less than that at a low initial void ratio under a constant effective stress. However, when the effective stress is larger than the remolded yield stress, the change law of g(e) is opposite. This shows that the influence of the initial void ratio on consolidation parameters cannot be ignored.

    6 Conclusions

    Based on the research of Hong et al. (2010) and Nagaraj et al. (1994), the following conclusions have been reached in this study:

    (1) The e-σ′ relationship considering the influence of the initial water content was established, and the relationship differs under the conditions of σ′ < σs′ and σ′ ≥ σs′ .

    (2) An extended e-k expression was obtained based on Nagaraj’s equation, which was suitable for dredged sludge with a liquid limit ranging from 44% to 106% and an e/eLvalue between 0.4 and 2.0.

    (3) g(e) decreases with the increase of the effective stress when the effective stress is less than the remolded yield stress. However, when the effective stress is larger than the remolded yield stress, g(e) increases rapidly with the effective stress. The variation of g(e) reflects the dominant position of the permeability and compression coefficients.

    (4) When the effective stress is less than the remolded yield stress, the value of g(e) at a high initial void ratio is less than that at a low initial void ratio, and the influence of the initial void ratio on consolidation parameters cannot be ignored.

    Been, K., and Sills, G. C. 1981. Self-weight consolidation of soft soils: an experimental and theoretical study. Géotechnique, 31(4), 519-535. [doi:10.1680/geot.1981.31.4.519]

    Burland, J. B. 1990. On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329-378. [doi:10.1680/geot.1990.40.3.329]

    Carrier, W. D., Bromwell, L. G., and Somogyi, F. 1983. Design capacity of slurried mineral waste ponds. Journal of Geotechnical Engineeing, 109(5), 699-716. [doi:10.1061/(ASCE)0733-9410(1983) 109:5(699)]

    Davis, E. H., and Raymond, G. P. 1965. A non-linear theory of consolidation. Géotechnique, 15(2), 161-173. [doi:10.1680/geot.1965.15.2.161]

    Deng, D. S., Hong, Z. S., Liu, C. J., Ding, J. W., and Hong, P. Y. 2009. Large-scale model tests on dewater of dredged clay by use of ventilating vacuum method. Chinese Journal of Geotechnical Engineering, 31(2), 250-253. (in Chinese)

    Gibson, R. E., Schiffman, R. L., and Cargill, K. W. 1981. The theory of one-dimensional consolidation of saturated clays, Ⅱ: Finite nonlinear consolidation of thick homogeneous layers. Canadian Geotechnical Journal, 18(2), 280-293. [doi:10.1139/t81-030]

    Hong, Z. S., Yin, J., and Cui, Y. J. 2010. Compression behaviour of reconstituted soils at high initial water contents. Géotechnique, 60(9), 691-700. [doi:10.1680/geot.09.P.059]

    Ji, F. 2009. Deposition Law of Baimahu Dredged Clays and Experiment Study on Dewatering with Ventilating Vacuum Method. Ph. D. Dissertation. Nanjing: Southeast University. (in Chinese)

    Jiang, H. H., Liu, G. N., and Zhao, Y. M. 2010. A solution of Gibson’s governing equation of one-dimensional consolidation. Chinese Journal of Geotechnical Engineering, 32(5), 745-750. (in Chinese)

    Mesri, G., and Olson, R. E. 1971. Mechanisms controlling the permeability of clays. Clays and Clay Minerals, 19(3), 151-158. [doi:10.1346/CCMN.1971.0190303]

    Nagaraj, T. S., Pandian, N. S., and Narasimha, P. S. R. 1994. Stress-state-permeability relations for overconsolidated clays. Géotechnique, 44(2), 333-336. [doi:10.1680/geot.1994.44.2.349]

    Pane, V., Croce, P., Znidarcic, D., Ko, H. Y., Olsen, H. W., and Schiffman, R. L. 1983. Effects of consolidation on permeability measurements for soft clay. Géotechnique, 33(1), 67-72. [doi:10.1680/geot.1983.33.1.67] Samarasinghe, A. M., Huang, Y. H., and Drnevich, V. P. 1982. Permeability and consolidation of normally consolidated soils. Journal of the Geotechnical Engineering Division, 108(6), 835-850.

    Sills, G. 1998. Development of structure in sedimenting soils. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 356(1747), 2515-2534. [doi:10.1098/ rsta.1998.0284]

    Taylor, D.W. 1948. Fundamentals of Soil Mechanics. New York: John Wiley and Sons.

    Zhang, J. F. 2002. Study on Analytical Theory of One-dimensional Large Strain Consolidation Problem. Ph. D. Dissertation. Hangzhou: Zhejiang University. (in Chinese)

    Znidarcic, D., Schiffman, R. L., Pane, V., Croce, P., Ko, H. Y., and Olsen, H. W. 1986. The theory of one-dimensional consolidation of saturated clays, Part V: Constant rate of deformation testing and analysis. Géotechnique, 36(2), 227-237. [doi:10.1680/geot.1986.36.2.227]

    (Edited by Yan LEI)

    This work was supported by the Innovation Program for 2011 College Graduates of Jiangsu Province (Grant No. CXZZ_0158) and the National Natural Science Foundation of China (Grant No. 51178107).

    *Corresponding author (e-mail: paradise456917@163.com)

    Received Dec. 2, 2012; accepted Apr. 2, 2013

    亚洲欧美激情在线| 久久久国产成人免费| 国产av精品麻豆| 欧美激情高清一区二区三区| 男女免费视频国产| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久人妻精品电影 | 手机成人av网站| 9色porny在线观看| 成人影院久久| 老司机午夜十八禁免费视频| 国产精品秋霞免费鲁丝片| 亚洲av第一区精品v没综合| 岛国在线观看网站| netflix在线观看网站| 亚洲中文日韩欧美视频| 一二三四在线观看免费中文在| 韩国精品一区二区三区| 精品国产一区二区三区四区第35| av视频免费观看在线观看| 中文字幕人妻丝袜一区二区| 人妻 亚洲 视频| 国产三级黄色录像| 欧美激情高清一区二区三区| 国产精品久久久久久人妻精品电影 | 国产精品久久久久久精品电影小说| 精品欧美一区二区三区在线| 亚洲第一青青草原| avwww免费| 涩涩av久久男人的天堂| 91麻豆精品激情在线观看国产 | 99久久精品国产亚洲精品| 免费av中文字幕在线| 黄色毛片三级朝国网站| 久久精品亚洲熟妇少妇任你| 黄色成人免费大全| 老熟妇乱子伦视频在线观看| 国产一区二区三区视频了| 老熟妇仑乱视频hdxx| 国产精品香港三级国产av潘金莲| 欧美黑人欧美精品刺激| 欧美午夜高清在线| h视频一区二区三区| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 国产午夜精品久久久久久| 久久毛片免费看一区二区三区| 99久久人妻综合| 国产精品影院久久| 亚洲成人国产一区在线观看| 国产精品av久久久久免费| 亚洲色图 男人天堂 中文字幕| 老司机午夜福利在线观看视频 | 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一卡2卡三卡4卡5卡| 女人被躁到高潮嗷嗷叫费观| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线观看99| 在线看a的网站| 男女之事视频高清在线观看| 91av网站免费观看| 日本a在线网址| 亚洲av国产av综合av卡| 免费在线观看黄色视频的| 99久久国产精品久久久| av福利片在线| e午夜精品久久久久久久| 女人精品久久久久毛片| 精品一区二区三卡| 亚洲全国av大片| 久久婷婷成人综合色麻豆| 久久久久久人人人人人| 午夜福利视频在线观看免费| 十八禁高潮呻吟视频| 午夜免费成人在线视频| 无遮挡黄片免费观看| 91麻豆精品激情在线观看国产 | 精品一区二区三区av网在线观看 | 超碰97精品在线观看| 免费日韩欧美在线观看| 变态另类成人亚洲欧美熟女 | tube8黄色片| 大型黄色视频在线免费观看| 动漫黄色视频在线观看| 亚洲三区欧美一区| 黄色怎么调成土黄色| av国产精品久久久久影院| 午夜福利视频精品| 亚洲精品久久午夜乱码| 精品一区二区三区av网在线观看 | 老汉色∧v一级毛片| 久久国产精品影院| 侵犯人妻中文字幕一二三四区| 黄色成人免费大全| 大型黄色视频在线免费观看| 热99久久久久精品小说推荐| 人人妻人人爽人人添夜夜欢视频| 色94色欧美一区二区| 丝袜美腿诱惑在线| 亚洲成av片中文字幕在线观看| 日韩三级视频一区二区三区| 免费观看av网站的网址| 侵犯人妻中文字幕一二三四区| 亚洲精品久久午夜乱码| 亚洲精品国产色婷婷电影| 两性午夜刺激爽爽歪歪视频在线观看 | 最新在线观看一区二区三区| 精品一区二区三区av网在线观看 | 免费在线观看影片大全网站| 丝袜喷水一区| 露出奶头的视频| 狠狠狠狠99中文字幕| 国产欧美日韩综合在线一区二区| 免费不卡黄色视频| 亚洲人成电影免费在线| 99精品欧美一区二区三区四区| 丝袜美腿诱惑在线| 1024视频免费在线观看| 亚洲av欧美aⅴ国产| 女警被强在线播放| 美女福利国产在线| 免费在线观看影片大全网站| 99精品欧美一区二区三区四区| 亚洲人成电影观看| 久久久久久久久免费视频了| 亚洲五月色婷婷综合| 国产高清视频在线播放一区| 亚洲少妇的诱惑av| 一二三四社区在线视频社区8| 欧美成狂野欧美在线观看| 天堂8中文在线网| 国产精品一区二区在线不卡| 99久久国产精品久久久| 美女扒开内裤让男人捅视频| 亚洲精品美女久久久久99蜜臀| 老熟妇仑乱视频hdxx| 久久中文看片网| 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 国产高清videossex| 国产精品熟女久久久久浪| 嫩草影视91久久| 国产精品二区激情视频| 中国美女看黄片| 日本wwww免费看| av一本久久久久| 精品福利观看| 丁香欧美五月| 国产男女超爽视频在线观看| 在线观看免费日韩欧美大片| 一级片免费观看大全| www.自偷自拍.com| 国产在线观看jvid| 亚洲,欧美精品.| 日韩欧美一区二区三区在线观看 | 色在线成人网| 国产成人精品无人区| 美女午夜性视频免费| 人妻一区二区av| 18在线观看网站| 亚洲第一欧美日韩一区二区三区 | 下体分泌物呈黄色| 91字幕亚洲| 国产伦理片在线播放av一区| 国产成人影院久久av| 国产片内射在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品国产av在线观看| 午夜福利在线观看吧| svipshipincom国产片| 97人妻天天添夜夜摸| 欧美在线黄色| 国产精品一区二区在线观看99| 久久中文字幕人妻熟女| 男女之事视频高清在线观看| 久久中文字幕人妻熟女| 丝袜人妻中文字幕| 欧美中文综合在线视频| 国产精品电影一区二区三区 | 国产精品一区二区精品视频观看| 国产日韩欧美视频二区| 在线观看免费视频网站a站| 国产成人精品久久二区二区91| 成人三级做爰电影| 色老头精品视频在线观看| 一个人免费看片子| 丝袜美腿诱惑在线| 精品熟女少妇八av免费久了| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 精品亚洲乱码少妇综合久久| 久久av网站| 久久精品成人免费网站| 午夜老司机福利片| 欧美日韩亚洲综合一区二区三区_| 黄片小视频在线播放| 免费观看人在逋| 一级,二级,三级黄色视频| 中文字幕色久视频| 色综合婷婷激情| 侵犯人妻中文字幕一二三四区| 国产精品香港三级国产av潘金莲| 久久精品国产亚洲av高清一级| 亚洲人成伊人成综合网2020| 午夜福利视频精品| 天天躁夜夜躁狠狠躁躁| 性高湖久久久久久久久免费观看| 最黄视频免费看| 国产99久久九九免费精品| 欧美日韩亚洲高清精品| 国产精品二区激情视频| 亚洲熟女精品中文字幕| 啦啦啦中文免费视频观看日本| 免费在线观看视频国产中文字幕亚洲| 亚洲伊人久久精品综合| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 天天躁夜夜躁狠狠躁躁| 热99久久久久精品小说推荐| 日本av免费视频播放| 9191精品国产免费久久| 美女午夜性视频免费| 久久精品91无色码中文字幕| 黄色怎么调成土黄色| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频| 午夜成年电影在线免费观看| 美女国产高潮福利片在线看| 搡老岳熟女国产| 中国美女看黄片| 我的亚洲天堂| 精品人妻1区二区| 大型av网站在线播放| 亚洲欧洲日产国产| 无限看片的www在线观看| 99re在线观看精品视频| 最新的欧美精品一区二区| 窝窝影院91人妻| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 正在播放国产对白刺激| 动漫黄色视频在线观看| 亚洲精品久久成人aⅴ小说| 亚洲人成77777在线视频| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| 国产精品99久久99久久久不卡| 国产精品久久久人人做人人爽| 欧美乱妇无乱码| av不卡在线播放| 国产三级黄色录像| 色视频在线一区二区三区| 亚洲国产看品久久| 亚洲免费av在线视频| 激情视频va一区二区三区| 国产男女超爽视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 免费不卡黄色视频| 窝窝影院91人妻| 丝瓜视频免费看黄片| 国产午夜精品久久久久久| 午夜老司机福利片| 女人被躁到高潮嗷嗷叫费观| 久久性视频一级片| 黄色成人免费大全| 欧美精品人与动牲交sv欧美| 国产亚洲精品一区二区www | 久久这里只有精品19| 女同久久另类99精品国产91| 亚洲国产精品一区二区三区在线| 99久久99久久久精品蜜桃| 国产精品二区激情视频| 最新美女视频免费是黄的| 国产一区有黄有色的免费视频| 一区在线观看完整版| 老司机在亚洲福利影院| 狠狠婷婷综合久久久久久88av| 啦啦啦在线免费观看视频4| 一进一出好大好爽视频| 欧美中文综合在线视频| 国产不卡一卡二| 国产精品秋霞免费鲁丝片| 精品国产亚洲在线| 超色免费av| 色老头精品视频在线观看| 老司机影院毛片| 青青草视频在线视频观看| 久热这里只有精品99| 久久精品国产99精品国产亚洲性色 | 99re在线观看精品视频| 首页视频小说图片口味搜索| 国产野战对白在线观看| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 曰老女人黄片| 99国产综合亚洲精品| 日日夜夜操网爽| 国产精品免费一区二区三区在线 | 丰满迷人的少妇在线观看| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区 | 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 一夜夜www| 男男h啪啪无遮挡| 美女高潮喷水抽搐中文字幕| 91大片在线观看| 自线自在国产av| 99国产精品一区二区蜜桃av | 久久精品成人免费网站| 日本黄色日本黄色录像| 日本一区二区免费在线视频| 精品少妇内射三级| 国产成人系列免费观看| 国产精品 国内视频| 黄色a级毛片大全视频| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 国产成人av教育| 久久精品国产综合久久久| 搡老岳熟女国产| 国产成人影院久久av| 欧美性长视频在线观看| 亚洲av日韩在线播放| 91九色精品人成在线观看| 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| 精品少妇黑人巨大在线播放| 看免费av毛片| 亚洲精品国产精品久久久不卡| 国产成人av激情在线播放| 国产一卡二卡三卡精品| 欧美久久黑人一区二区| 91精品三级在线观看| 国产人伦9x9x在线观看| 精品乱码久久久久久99久播| 免费久久久久久久精品成人欧美视频| av欧美777| 午夜激情久久久久久久| 国产淫语在线视频| 午夜久久久在线观看| 亚洲国产看品久久| 国产亚洲午夜精品一区二区久久| 国产不卡一卡二| 欧美成人免费av一区二区三区 | 丰满饥渴人妻一区二区三| 亚洲av电影在线进入| 美女扒开内裤让男人捅视频| 亚洲专区国产一区二区| h视频一区二区三区| 不卡av一区二区三区| 国产精品麻豆人妻色哟哟久久| 日韩大码丰满熟妇| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| 超色免费av| 欧美人与性动交α欧美软件| 久久天堂一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 搡老熟女国产l中国老女人| 国产不卡av网站在线观看| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 久久精品国产亚洲av香蕉五月 | 国产精品久久久久久人妻精品电影 | 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 亚洲第一青青草原| 操美女的视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 女人被躁到高潮嗷嗷叫费观| 亚洲黑人精品在线| 在线观看66精品国产| 国产黄色免费在线视频| 超碰97精品在线观看| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 女警被强在线播放| 涩涩av久久男人的天堂| 国产单亲对白刺激| 国产淫语在线视频| 搡老乐熟女国产| 精品视频人人做人人爽| 国产精品 欧美亚洲| 国产精品久久久人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 高清在线国产一区| 黄片小视频在线播放| 我的亚洲天堂| 视频区欧美日本亚洲| 王馨瑶露胸无遮挡在线观看| 叶爱在线成人免费视频播放| 久久久久网色| a在线观看视频网站| 国产亚洲一区二区精品| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 日韩大片免费观看网站| 在线观看免费视频网站a站| 一级毛片电影观看| 国产精品免费一区二区三区在线 | 精品久久久精品久久久| 国产成人精品久久二区二区91| 亚洲色图av天堂| 国产黄色免费在线视频| 中文字幕另类日韩欧美亚洲嫩草| 香蕉久久夜色| 国产成人精品久久二区二区91| 黄色视频在线播放观看不卡| 一边摸一边抽搐一进一小说 | 免费在线观看完整版高清| 精品国产乱子伦一区二区三区| 岛国毛片在线播放| 色播在线永久视频| 日本a在线网址| 亚洲色图av天堂| 又大又爽又粗| 美女视频免费永久观看网站| 亚洲伊人久久精品综合| 日韩视频在线欧美| 亚洲国产中文字幕在线视频| 亚洲精品一二三| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av| 精品国产一区二区久久| 黄色 视频免费看| 国产色视频综合| 国产成人欧美| 国产一区二区在线观看av| 色在线成人网| 丰满人妻熟妇乱又伦精品不卡| 日本黄色日本黄色录像| 国产亚洲午夜精品一区二区久久| 深夜精品福利| 美女福利国产在线| 日本a在线网址| 变态另类成人亚洲欧美熟女 | 男女午夜视频在线观看| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 亚洲午夜理论影院| 满18在线观看网站| 精品国产超薄肉色丝袜足j| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 老司机福利观看| 亚洲成人国产一区在线观看| 亚洲中文日韩欧美视频| 69av精品久久久久久 | 精品一区二区三区四区五区乱码| 美女午夜性视频免费| 欧美大码av| 19禁男女啪啪无遮挡网站| 欧美日韩国产mv在线观看视频| 亚洲一码二码三码区别大吗| 妹子高潮喷水视频| 精品久久久久久电影网| 精品视频人人做人人爽| 精品国产乱子伦一区二区三区| 国产一区二区三区在线臀色熟女 | 99九九在线精品视频| 一夜夜www| 国产精品亚洲一级av第二区| 99热国产这里只有精品6| 波多野结衣av一区二区av| 黑人猛操日本美女一级片| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美网| 亚洲精品中文字幕一二三四区 | 国产麻豆69| 亚洲国产看品久久| 日本av手机在线免费观看| 在线观看免费视频日本深夜| 男人操女人黄网站| 亚洲成人免费av在线播放| 2018国产大陆天天弄谢| 久久久久精品人妻al黑| 高清欧美精品videossex| 视频在线观看一区二区三区| 久久久久久人人人人人| 欧美成人免费av一区二区三区 | 欧美日韩中文字幕国产精品一区二区三区 | 999久久久精品免费观看国产| av福利片在线| 亚洲国产毛片av蜜桃av| 搡老乐熟女国产| 欧美日韩中文字幕国产精品一区二区三区 | 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 老熟女久久久| 日本一区二区免费在线视频| 亚洲国产成人一精品久久久| 男人操女人黄网站| 国产日韩欧美视频二区| 亚洲国产欧美一区二区综合| 侵犯人妻中文字幕一二三四区| 欧美日韩成人在线一区二区| 老司机在亚洲福利影院| 精品免费久久久久久久清纯 | 精品一区二区三区av网在线观看 | 一进一出抽搐动态| 在线观看人妻少妇| 国产高清videossex| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区激情视频| 精品一区二区三区四区五区乱码| 国产高清激情床上av| 日日夜夜操网爽| 在线看a的网站| 999久久久精品免费观看国产| 国产区一区二久久| 国产欧美日韩一区二区三| 在线观看免费高清a一片| 亚洲黑人精品在线| 大型黄色视频在线免费观看| 亚洲精品国产一区二区精华液| 十八禁网站网址无遮挡| 欧美国产精品va在线观看不卡| 欧美精品一区二区免费开放| 欧美精品高潮呻吟av久久| 亚洲情色 制服丝袜| 成在线人永久免费视频| 在线观看66精品国产| 久久久精品国产亚洲av高清涩受| 国产精品久久久人人做人人爽| 中文字幕高清在线视频| 一级片免费观看大全| 午夜视频精品福利| 午夜久久久在线观看| 国产亚洲欧美在线一区二区| 国产精品99久久99久久久不卡| 99久久国产精品久久久| av视频免费观看在线观看| 精品少妇内射三级| 最新的欧美精品一区二区| 日本五十路高清| 欧美精品av麻豆av| 午夜福利免费观看在线| 麻豆成人av在线观看| 色婷婷av一区二区三区视频| 18禁国产床啪视频网站| 成人永久免费在线观看视频 | 丁香六月天网| 久久久精品94久久精品| 大陆偷拍与自拍| 女同久久另类99精品国产91| 久久久久久亚洲精品国产蜜桃av| 国产精品免费一区二区三区在线 | 麻豆成人av在线观看| 性少妇av在线| 18禁国产床啪视频网站| 高清欧美精品videossex| 后天国语完整版免费观看| 丁香欧美五月| 啦啦啦中文免费视频观看日本| 精品福利永久在线观看| 黑人巨大精品欧美一区二区蜜桃| svipshipincom国产片| 老司机影院毛片| 成人特级黄色片久久久久久久 | 韩国精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲性夜色夜夜综合| 丰满饥渴人妻一区二区三| 大码成人一级视频| 亚洲精品美女久久av网站| 精品少妇内射三级| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 国产成人影院久久av| 18禁观看日本| 18禁裸乳无遮挡动漫免费视频| 搡老岳熟女国产| 久久ye,这里只有精品| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区久久| 欧美精品一区二区免费开放| 亚洲国产看品久久| 热re99久久国产66热| 在线观看免费日韩欧美大片| 99re在线观看精品视频| 中文字幕高清在线视频| 一区二区三区精品91| 国产精品麻豆人妻色哟哟久久| 日日夜夜操网爽| 久久久久国内视频| 久久久国产欧美日韩av| 日日夜夜操网爽| 亚洲av国产av综合av卡| 国产在线观看jvid| 中文字幕av电影在线播放| 久久久久国内视频| 丁香欧美五月| 成人精品一区二区免费| 91国产中文字幕| 久久精品熟女亚洲av麻豆精品| 精品国产国语对白av| 如日韩欧美国产精品一区二区三区| h视频一区二区三区| 精品久久久精品久久久| 久久香蕉激情| 蜜桃在线观看..| 在线 av 中文字幕| 老司机午夜十八禁免费视频| 十八禁网站免费在线| 在线观看66精品国产| 亚洲第一欧美日韩一区二区三区 |