• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method

    2014-03-15 07:47:06HongPANMinshengBU
    Water Science and Engineering 2014年2期

    Hong PAN*, Min-sheng BU

    1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, P. R. China

    Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method

    Hong PAN*1, Min-sheng BU2

    1. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, P. R. China

    Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals.

    pressure fluctuation; ensemble empirical mode decomposition; intrinsic mode function; correlation coefficient

    1 Introduction

    Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions (Shen et al. 2000; Yuan et al. 2009). Therefore, monitoring and analysis of pressure fluctuations are essential for ensuring the stable and safe operation of hydropower units. In order to perform further analysis, some conventional signal processing methods have been introduced to extract the features of pressure fluctuation signals, including fast Fourier transform (FFT), short-time Fourier transform (STFT), and wavelet transform (WT) (Al-Badour et al. 2011). However, these methods are not self-adaptive signal processingmethods by nature and are not suitable for non-stationary signals.

    In recent years, a new signal processing method, the empirical mode decomposition (EMD) method, has been proposed to analyze non-stationary signals (Huang et al. 1998; Flandrin et al. 2004; Feng and Chu 2005; Donghoh and Hee-Seok 2009). The EMD method can decompose the original signal into a number of intrinsic mode functions (IMFs) which represent the natural oscillatory mode embedded in the signal. Furthermore, the frequency components involved in each IMF not only relate to the sampling frequency, but also change with the original signal. Therefore, the EMD method is a self-adaptive signal processing method and has been widely used in the analysis of vibration signals. However, it has a shortcoming, which is the mode mixing problem. Mode mixing can be defined in two ways: a single IMF contains the oscillatory modes with different scales, or the same frequency resides in different IMFs. In order to solve the mode mixing problem, the ensemble empirical mode decomposition (EEMD) method was developed (Wu and Huang 2009; Lei et al. 2011; De Ridder et al. 2011). In this study, with an axial-flow pump as an example, the EEMD method was used to extract the time-frequency features of pressure fluctuation, and the results were compared with those of the EMD method.

    In section 2 of this paper, the EMD method is briefly reviewed. In section 3, the EEMD method and its comparison with the EMD method are described in order to show the advantages of EEMD in signal purification and shaft orbit reconstruction. In section 4, the EEMD method is used to analyze the pressure fluctuation captured from an axial-flow pump, and the results of EEMD and EMD are compared to show the advantages of EEMD in detecting the pressure fluctuation. Finally, the experimental results are summarized.

    2 EMD method

    The EMD method is based on the simple assumption that any complicated multi-component signal can be decomposed into different simple intrinsic modes of oscillations (Tanaka and Mandic 2007). Each mode should be independent of the others and satisfy the following conditions:

    (1) Across the whole data set, the number of extrema and the number of zero crossings must either be equal or differ at most by one.

    (2) At any point, the mean value of the upper envelope and lower envelope is zero.

    With these conditions, any signal s(t) can be decomposed through the following steps:

    (1) Identification of the local extrema and generation of the the upper and lower envelopes by interpolation of the local minima and maxima, respectively.

    (2) Calculation of the mean of the upper and lower envelopes, m1(t).

    (3) Calculation of the difference between s(t) and m1(t), that is:

    If h1(t) is an IMF, then h1(t) is the first IMF of s(t). Otherwise, h1(t) will betreated as a new s(t) and the process above will be repeated until h1(t) is an IMF. The sifting process can be described as

    where k is the number of iterations. The final h1k(t) is redefined as c1(t), which is the first IMF. In absolute terms, c1(t) is the high-frequency component of the signal.

    (4) Separation of c1(t) froms(t), and definition of the difference as

    here r1(t) should be treated as a new s(t). Repeating the process above, c2(t), c3(t), … ,cn(t) are obtained, where cn(t) is the nth IMF of s(t). Then, we have

    Step (4) can be stopped when rn(t) is a monotonic function.

    (5) Finally, formulation of the original signal as

    c1(t), c2(t), … ,cn(t) contain different frequency bands ranging from high to low, which are defined as IMF1,IMF2,…, IMFn , while rn(t) represents the central tendency of the signal.

    Thus, the EMD method provides a complete and orthogonal decomposition of the inspected signal without missing information or introducing any additional information. However, the major disadvantage of EMD is the mode mixing problem. This is a result of signal intermittency. To illustrate the mode mixing problem existing in EMD, a simulation signal is considered in this section. x(t) is a sine wave of 8 Hz attached by small impulses. EMD decomposed x(t) into three IMFs, and the performance of EMD is shown in Fig. 1. Mode mixing problems occurred in IMF1 and IMF2, and IMF1 simultaneously contained the sine wave and the impulse. IMF3 was the false component.

    Fig. 1 EMD of simulation signal x(t)

    3 EEMD method

    EEMD was developed to solve the mode mixing problem existing in EMD. It is a noise-added data analysis (NADA) method, which is a method based on the insight from studies of the statistical properties of white noise, showing that the decomposed different-scale components of the signal should be automatically projected onto the corresponding scales of white noise in the background when the added white noise is uniformly distributed across the whole time-frequency domain (Li and Ji 2009; Huang et al. 2011). Using EEMD, the white noise in each iteration is different, while the noise can be canceled out by extracting the ensemble mean of IMFs. Then, the final results are the ensemble mean of IMFs.

    The EEMD algorithm can be described as follows:

    (1) The number of the ensemble M and the ratio of the standard deviation of white noise to the standard deviation of the original signal Nstdare initialized, and the number of trials m is set to 1.

    (2) The mth trial for the signal added with the white noise is implemented.

    (a) The white noise is added to the original signal s(t), that is

    where nm(t) is the mth added white noise, and sm(t) is the noise-added signal of the mth trial.

    (b) The signal sm(t) is decomposed into l IMFs cim(i =1, 2,… , l; m =1, 2,… ,M) with the E MD method, where cimis the ith IMFs of the mth trial.

    (c) If m < M, then m = m + 1 and steps (a) and (b) are repeated until m = M, with different white noises each time.

    (3) The ensemble mean of M trials for the ith IMF, Ci, is calculated, that is

    (4) Ci(i =1, 2,…,l) is considered the final ith IMF.

    M was suggested to be 100 by Wu and Huang (2009), and Nstdranges from 0.01 to 0.4.

    To demonstrate the EEMD performance in overcoming the mode mixing problem, the simulation signal in Fig. 1 was decomposed again with the EEMD method, where M = 100 and Nstd= 0.01. The results are shown in Fig. 2. It can be concluded that the sine wave and impulse components of the original signal are clearly separated. IMF1 represents the impulse component and IMF2 represents the sine wave. Therefore, the EEMD method is capable of solving the mode mixing problem and extracting the more precise decomposition results.

    Fig. 2 EEMD of simulation signal x(t)

    4 Application of two methods to pressure fluctuation analysis

    The test facility is illustrated schematically in Fig. 3. The test bed consisted of two motors, two electric valves, four butterfly valves, a head tank, a draft tank, two supply pumps, and a test pump. Various impellers and diffusers could be installed in the test section to test their steady state performance. The instantaneous flow rate was measured with an electromagnetic flowmeter installed in the pipeline. The pressure fluctuations were measured with pressure transducers. The instantaneous torque and rotational speed were measured with a torque meter.

    Fig. 3 Schematic view of test system

    The experimental data of pressure fluctuations were captured from an axial-flow pump. The pressure transducers were installed in the vicinity of the impeller inlet, the impeller outlet, and the outlet conduit. The number of blades was three. The rotational speed of the electric motor was 1 250 r/min. The advanced data acquisition and analysis system EN900 supported by the ENVADA Company in Beijing was used to collect the signal. The sampling frequency was 256 times the rotational frequency, and 1 024 points were collected every time. Taking the pressure fluctuation signal in the vicinity of the impeller outlet as an example, the time domain waveform is shown in Fig. 4.

    Fig. 4 Time domain waveform of pressure fluctuation

    The EMD and EEMD methods were employed to decompose the pressure fluctuation signal into seven IMFs from high frequency to low frequency, as shown in Fig. 5 and Fig. 6. M = 100 and Nstd= 0.01 for the EEMD method.

    Fig. 5 Decomposition results of pressure fluctuation signal with EMD method

    Fig. 6 Decomposition results of pressure fluctuation signal with EEMD method

    The most sensitive IMFs can be chosen according to the correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal (Hu and Yang 2007). The correlation coefficients were calculated and are listed in Table 1. According to the results of Table 1, IMF5, IMF6, and IMF7, produced by the EMD method, are the most sensitive IMFs, while IMF4, IMF5, IMF6, and IMF7, produced by the EEMD method, are the most sensitive IMFs.

    Table 1 Correlation coefficients between IMFs produced by EMD and EEMD methods and original signal

    Spectrum analysis was then applied to the most sensitive IMFs and the results are shown in Fig. 7 and Fig. 8. With the EMD method, 62.5 Hz and 10.4 Hz were extracted clearly. As mentioned before, the rotational speed was 1 250 r/min, so the rotational frequency f0was 20.83 Hz. As shown in Fig. 7, the frequencies of IMF5, IMF6, and IMF7 were 3f0, 0.5f0, and 0.5f0, respectively. The frequency 3f0results from the influence of the number of impellers, which was three, while the frequency 0.5f0is the result of the irregular movements of turbulence. Ho wever, the rotationalfrequency f0cannot be extracted separately. In addition, IMF6 and IMF7 represent the same frequency component. In order to extract more precise decomposition results, EEMD was preformed. As shown in Fig. 8, the frequencies of IMF4, IMF5, IMF6, and IMF7 were 3f0, f0, 0.5f0, and 0.25f0, respectively. It can be concluded that not only the rotational frequency (f0) but also the new frequency (0 .25f0) can be identified clearly. The frequency 0.25f0is also the result of the irregular movements of turbulence. The movements become stronger when the flow is reduced to a certain degree. Therefore, the decomposition results of the pressure fluctuation based on the EEMD method are much better than those based on the EMD method.

    Fig. 7 Spectrum analysis of IMFs produced by EMD method

    Fig. 8 Spectrum analysis of IMFs produced by EEMD method

    From the experiment, it can be found that the EEMD method can effectively resolve the mode mixing problem existing in the EMD method and achieve more precise decomposition results than the EMD method. However, there are some problems that need to be resolved before EEMD operation, such as parameter settings and IMF post-processing. The values of the ensemble number and the ratio of the standard deviation of white noise to the standard deviation of the original signal have a large influence on the accuracy of EEMD. Until now, there has not been a specific principle to provide guidance for the choice of the parameters. Before wide application of EEMD can be achieved, there are a lot of problems that need to be studied further.

    5 Conclusions

    In this paper, the EEMD method is introduced and applied to analysis of the frequency characteristics of pressure fluctuations. In order to select the number of IMFs, the EMD method was used first. Then the signal was decomposed by the EEMD method with the number of IMFs determined by the EMD method. This approach avoids interference from other false components and is essential for selection of sensitive IMFs. It overcomes the mode mixing problems that occurs with the EMD method. Furthermore, EEMD provides a better decomposition performance for the lower frequency components. The experimental results indicate that the EEMD method is effective for multi-component signals. However, there are still some problems that need to be studied further to improve the stability and validity of the EEMD method.

    Al-Badour, F., and Sunar, M., and Cheded, L. 2011. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques. Mechanical Systems and Signal Processing, 25, 2083-2101. [doi:10.1016/j.ymssp.2011.01.017]

    De Ridder, S., Neyt, X., Pattyn, N., and Migeotte, P. F. 2011. Comparison between EEMD, wavelet and FIR denoising: Influence on event detection in impedance cardiography. Proceedings of 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 806-809. Boston: Institute of Electrical and Electronics Engineers. [doi:10.1109/IEMBS.2011.6090184]

    Donghoh, K., and Hee-Seok, O. 2009. EMD: A package for empirical mode decomposition and Hilbert spectrum. The R Journal, 1(1), 40-46.

    Feng, Z. P., and Chu, F. L. 2005. Transient hydraulic pressure fluctuation signal analysis of hydroturbine based on Hilbert-huang transform. Proceedings of the CSEE, 25(10), 111-115. (in Chinese). [doi:0258-8013(2005)10-0111-05]

    Flandrin, P., Rilling, G., and Gon?alvès, P. 2004. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11(2), 112-114. [doi:10.1109/LSP.2003.821662]

    Hu, J. S., and Yang, S. X. 2007. Study on the autocorrelation-based vibration signal EMD decomposition method in rotation machinery. Journal of Mechanical Strength, 29(3), 376-379. (in Chinese) [doi: 10.3321/j.issn:1001-9669.2007.03.005]

    Huang, J., Hu, X. G., and Geng, X. 2011. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine. Electric Power SystemsResearch, 81(2), 400-407. [doi:10.1016/j.epsr.2010.10.029]

    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zeng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(3), 903-995. [doi:10.1098/rspa.1998.0193]

    Lei, Y. G., He, Z. J., and Zi, Y. Y. 2011. EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Systems with Applications, 38(6), 7334-7341. [doi:10.1016/j.eswa.2010.12.095]

    Li, L., and Ji, H. B. 2009. Signal feature extraction based on an improved EMD method. Measurement, 42(5), 796-803. [doi:10.1016/j.measurement.2009.01.001]

    Shen, D., Chu, F. T., and Chen, S. 2000. Diagnosis and identification of vibration accident for hydrogenerator unit. Journal of Hydrodynamics, 15(1), 129-133. (in Chinese)

    Tanaka, T., and Mandic, D. P. 2007. Complex empirical mode decomposition. IEEE Signal Processing Letters, 14(2), 101-104. [doi:10.1109/LSP.2006.882107]

    Wu, Z. H., and Huang, N. E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1-41. [doi:10.1142/S1793536909000047]

    Yuan, S. Q., Ni, Y. Y., Pan, Z. Y., and Yuan, J. P. 2009. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps. Chinese Journal of Mechanical Engineering, 22(1), 64-70. [doi:10.3901/ CJME.2009.01.064]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grant No. 51076041), the Fundamental Research Funds for the Central Universities (Grant No. 2010B25114), and the Natural Science Foundation of Hohai University (Grant No. 2009422111).

    *Corresponding author (e-mail: hongpan@hhu.edu.cn)

    Received Dec. 16, 2012; accepted Mar. 1, 2013

    欧美亚洲日本最大视频资源| 国产成人a∨麻豆精品| 国产精品久久久久久av不卡| 99热6这里只有精品| 国产亚洲精品第一综合不卡 | 人妻制服诱惑在线中文字幕| 婷婷色综合大香蕉| 91在线精品国自产拍蜜月| a 毛片基地| 精品人妻一区二区三区麻豆| 国产欧美亚洲国产| 成人国产麻豆网| 色视频在线一区二区三区| 少妇人妻精品综合一区二区| 日韩一区二区视频免费看| 亚洲第一区二区三区不卡| 最新中文字幕久久久久| 美女内射精品一级片tv| 黑人巨大精品欧美一区二区蜜桃 | 如日韩欧美国产精品一区二区三区 | 欧美少妇被猛烈插入视频| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 啦啦啦啦在线视频资源| 成年人免费黄色播放视频| 日本与韩国留学比较| 亚洲av福利一区| av电影中文网址| 一区二区三区乱码不卡18| 久热久热在线精品观看| 熟女av电影| av网站免费在线观看视频| 国产男人的电影天堂91| 女性被躁到高潮视频| 亚洲国产毛片av蜜桃av| 国产成人精品久久久久久| 七月丁香在线播放| 人妻人人澡人人爽人人| 黄色欧美视频在线观看| 久久热精品热| 丰满迷人的少妇在线观看| 久久人人爽人人片av| 久热这里只有精品99| 国产成人精品无人区| 黑人高潮一二区| 春色校园在线视频观看| 国产高清三级在线| 亚洲第一区二区三区不卡| 久久久久视频综合| 国产精品99久久99久久久不卡 | 久久人人爽av亚洲精品天堂| 三上悠亚av全集在线观看| 九草在线视频观看| av免费在线看不卡| 最后的刺客免费高清国语| 久久久久久久久久久丰满| 黄色一级大片看看| 99热网站在线观看| 插阴视频在线观看视频| h视频一区二区三区| 人成视频在线观看免费观看| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 一级毛片 在线播放| 午夜91福利影院| 亚洲国产精品国产精品| 大话2 男鬼变身卡| 97在线视频观看| 水蜜桃什么品种好| 国产探花极品一区二区| 美女主播在线视频| 欧美日韩国产mv在线观看视频| 精品人妻一区二区三区麻豆| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 亚洲欧美一区二区三区国产| 十八禁网站网址无遮挡| 国产精品秋霞免费鲁丝片| 91精品伊人久久大香线蕉| 亚洲不卡免费看| 亚洲成人av在线免费| 99热网站在线观看| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片| 少妇丰满av| 男男h啪啪无遮挡| 精品人妻一区二区三区麻豆| 一级,二级,三级黄色视频| 伦理电影免费视频| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 欧美日韩精品成人综合77777| 国产av国产精品国产| 午夜精品国产一区二区电影| .国产精品久久| 色婷婷av一区二区三区视频| 国产老妇伦熟女老妇高清| 成人午夜精彩视频在线观看| 亚洲天堂av无毛| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 亚州av有码| 曰老女人黄片| 日韩成人伦理影院| 国产一区二区在线观看日韩| 亚洲四区av| 日韩精品免费视频一区二区三区 | 一区在线观看完整版| 日本爱情动作片www.在线观看| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 国产男人的电影天堂91| 热re99久久精品国产66热6| 在线精品无人区一区二区三| 久久久久久久久大av| 国产亚洲精品久久久com| 在线观看免费视频网站a站| 一级,二级,三级黄色视频| 成人漫画全彩无遮挡| 亚洲成人一二三区av| 精品酒店卫生间| 我的女老师完整版在线观看| 狂野欧美白嫩少妇大欣赏| 麻豆成人av视频| 久久99蜜桃精品久久| 国精品久久久久久国模美| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在| 国产男人的电影天堂91| 亚洲精品456在线播放app| 伦理电影大哥的女人| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 免费看不卡的av| 男人操女人黄网站| 2021少妇久久久久久久久久久| 美女中出高潮动态图| 91午夜精品亚洲一区二区三区| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 熟女电影av网| 中国国产av一级| 欧美日韩亚洲高清精品| 边亲边吃奶的免费视频| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 你懂的网址亚洲精品在线观看| 午夜久久久在线观看| 青春草国产在线视频| 女人久久www免费人成看片| 女人精品久久久久毛片| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 亚洲av福利一区| a级毛色黄片| 国产成人精品福利久久| 九色成人免费人妻av| 韩国高清视频一区二区三区| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 国产一区有黄有色的免费视频| 国产精品 国内视频| 国产视频首页在线观看| 国产在线一区二区三区精| 我的老师免费观看完整版| 亚洲第一区二区三区不卡| a级毛片免费高清观看在线播放| 飞空精品影院首页| 人妻夜夜爽99麻豆av| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃 | 这个男人来自地球电影免费观看 | av有码第一页| 你懂的网址亚洲精品在线观看| 边亲边吃奶的免费视频| 亚洲综合色惰| av国产久精品久网站免费入址| 美女视频免费永久观看网站| 亚洲无线观看免费| 成人毛片60女人毛片免费| 亚洲成人av在线免费| 国产 一区精品| 日韩大片免费观看网站| 亚洲精品av麻豆狂野| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| 亚洲三级黄色毛片| 亚洲中文av在线| 大香蕉久久成人网| 色婷婷av一区二区三区视频| 中国国产av一级| 中文乱码字字幕精品一区二区三区| 人妻系列 视频| 丝袜喷水一区| 性高湖久久久久久久久免费观看| 亚洲精品日韩在线中文字幕| 中文精品一卡2卡3卡4更新| 在线观看免费高清a一片| 另类精品久久| 尾随美女入室| 女的被弄到高潮叫床怎么办| 不卡视频在线观看欧美| 亚洲av.av天堂| 美女cb高潮喷水在线观看| 欧美一级a爱片免费观看看| 男女啪啪激烈高潮av片| 国产精品欧美亚洲77777| 九色亚洲精品在线播放| 午夜视频国产福利| 一区二区三区精品91| 国产高清有码在线观看视频| 成年av动漫网址| 日本免费在线观看一区| 久久久国产一区二区| 免费黄色在线免费观看| 色5月婷婷丁香| 精品国产乱码久久久久久小说| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 满18在线观看网站| xxx大片免费视频| 丰满少妇做爰视频| 99热6这里只有精品| 久久久国产欧美日韩av| 伊人久久精品亚洲午夜| 在线观看免费日韩欧美大片 | 一边摸一边做爽爽视频免费| 秋霞伦理黄片| 中文字幕人妻丝袜制服| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 日韩一区二区三区影片| 午夜免费观看性视频| 大话2 男鬼变身卡| 九色成人免费人妻av| 成年av动漫网址| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 欧美三级亚洲精品| 丝袜美足系列| 免费看光身美女| 一边亲一边摸免费视频| 精品亚洲成a人片在线观看| av播播在线观看一区| 国内精品宾馆在线| 国产av精品麻豆| 在线观看美女被高潮喷水网站| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 国产日韩欧美视频二区| 欧美精品一区二区大全| 春色校园在线视频观看| 国产男女超爽视频在线观看| 久久97久久精品| 久久久欧美国产精品| 亚州av有码| 熟妇人妻不卡中文字幕| 69精品国产乱码久久久| 国产精品一二三区在线看| 我的老师免费观看完整版| 91精品伊人久久大香线蕉| 亚洲国产精品999| 大码成人一级视频| 99久久人妻综合| av播播在线观看一区| 曰老女人黄片| 人妻夜夜爽99麻豆av| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美 | 内地一区二区视频在线| 一区在线观看完整版| 最近的中文字幕免费完整| 插逼视频在线观看| 丰满少妇做爰视频| 国产男女超爽视频在线观看| 国产av国产精品国产| 在线播放无遮挡| 国产男女内射视频| 高清在线视频一区二区三区| 搡女人真爽免费视频火全软件| 麻豆精品久久久久久蜜桃| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 午夜福利,免费看| 亚洲欧洲日产国产| 美女中出高潮动态图| 一级毛片 在线播放| 午夜精品国产一区二区电影| 国产黄频视频在线观看| 韩国av在线不卡| 久久久久久久久久久久大奶| 丝袜脚勾引网站| 免费观看av网站的网址| 中文字幕精品免费在线观看视频 | 国产成人91sexporn| 国产精品蜜桃在线观看| 69精品国产乱码久久久| 如何舔出高潮| 最黄视频免费看| 热re99久久精品国产66热6| 男女边摸边吃奶| 中文乱码字字幕精品一区二区三区| 精品国产一区二区三区久久久樱花| 高清不卡的av网站| 少妇高潮的动态图| 黄色毛片三级朝国网站| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 国产av一区二区精品久久| 亚洲国产欧美在线一区| 日韩视频在线欧美| 精品午夜福利在线看| 91成人精品电影| 国产国语露脸激情在线看| 国产一级毛片在线| 亚洲美女黄色视频免费看| 免费黄色在线免费观看| 国产精品国产三级专区第一集| 国产精品一区www在线观看| 欧美三级亚洲精品| 一级毛片我不卡| 岛国毛片在线播放| 黄色毛片三级朝国网站| 亚洲经典国产精华液单| 国产免费一区二区三区四区乱码| 看免费成人av毛片| 在线观看免费高清a一片| 九草在线视频观看| 男男h啪啪无遮挡| 国产在线免费精品| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 久久精品久久精品一区二区三区| 国产成人freesex在线| 久久人人爽av亚洲精品天堂| 亚洲在久久综合| 国产成人av激情在线播放 | 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲av福利一区| 欧美一级a爱片免费观看看| 久久久久视频综合| 大又大粗又爽又黄少妇毛片口| 爱豆传媒免费全集在线观看| 夜夜爽夜夜爽视频| 国产男女内射视频| 久久久欧美国产精品| av一本久久久久| 少妇的逼水好多| av一本久久久久| 国产精品国产av在线观看| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 国产国拍精品亚洲av在线观看| 男人添女人高潮全过程视频| 一级a做视频免费观看| 日韩一区二区视频免费看| 亚洲欧洲日产国产| 熟女av电影| 18禁在线播放成人免费| 成年人免费黄色播放视频| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线| 能在线免费看毛片的网站| 免费高清在线观看日韩| 国产亚洲精品久久久com| 寂寞人妻少妇视频99o| 久久久久网色| 男女啪啪激烈高潮av片| 久久久精品区二区三区| 日韩伦理黄色片| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 熟妇人妻不卡中文字幕| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲 | 欧美精品亚洲一区二区| 欧美精品一区二区大全| 三级国产精品片| 国产午夜精品久久久久久一区二区三区| 久久99热6这里只有精品| 欧美日韩在线观看h| 国产一级毛片在线| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 日韩三级伦理在线观看| 精品一品国产午夜福利视频| 久久午夜综合久久蜜桃| 国产探花极品一区二区| 久久韩国三级中文字幕| 在线天堂最新版资源| 国产精品熟女久久久久浪| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 一边摸一边做爽爽视频免费| 日本午夜av视频| 香蕉精品网在线| 亚洲欧美成人综合另类久久久| 久久久久久久久久久丰满| 色吧在线观看| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| 老司机影院毛片| 插阴视频在线观看视频| 22中文网久久字幕| 亚洲成人一二三区av| 久久久久精品久久久久真实原创| 丝袜喷水一区| 久久久精品94久久精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 视频在线观看一区二区三区| 妹子高潮喷水视频| 又大又黄又爽视频免费| 国产一区有黄有色的免费视频| 九色成人免费人妻av| 亚洲精华国产精华液的使用体验| 国产av国产精品国产| 亚洲人成77777在线视频| 人妻人人澡人人爽人人| 久久热精品热| 999精品在线视频| 人人妻人人澡人人看| 国产亚洲av片在线观看秒播厂| 又粗又硬又长又爽又黄的视频| 少妇被粗大的猛进出69影院 | 一本大道久久a久久精品| 夜夜看夜夜爽夜夜摸| 王馨瑶露胸无遮挡在线观看| 黄色配什么色好看| 亚洲精品视频女| 免费久久久久久久精品成人欧美视频 | 在线天堂最新版资源| 亚洲精品久久午夜乱码| 亚洲,欧美,日韩| 久久久久人妻精品一区果冻| 一级毛片aaaaaa免费看小| 国产一区亚洲一区在线观看| 18禁动态无遮挡网站| 人妻夜夜爽99麻豆av| 夜夜骑夜夜射夜夜干| 人妻制服诱惑在线中文字幕| 久久久国产一区二区| 亚洲精品一区蜜桃| 日本av免费视频播放| 简卡轻食公司| 久久精品人人爽人人爽视色| 久久午夜福利片| 久久久久精品性色| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 人妻系列 视频| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 在线天堂最新版资源| 高清不卡的av网站| 国产午夜精品一二区理论片| 精品午夜福利在线看| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 嫩草影院入口| 伦精品一区二区三区| av一本久久久久| 午夜影院在线不卡| 少妇人妻 视频| 成年人午夜在线观看视频| 夜夜爽夜夜爽视频| 中国三级夫妇交换| 欧美成人午夜免费资源| 国产极品天堂在线| 精品少妇久久久久久888优播| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 午夜福利视频在线观看免费| 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 大片电影免费在线观看免费| 在线观看人妻少妇| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 肉色欧美久久久久久久蜜桃| 精品少妇内射三级| 中文字幕人妻熟人妻熟丝袜美| 日韩不卡一区二区三区视频在线| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 高清欧美精品videossex| 日本免费在线观看一区| 日韩免费高清中文字幕av| 中国美白少妇内射xxxbb| av一本久久久久| 一级毛片aaaaaa免费看小| 少妇人妻 视频| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 亚洲精品一区蜜桃| 成人国语在线视频| 在线观看一区二区三区激情| 日韩中字成人| 久久久久久人妻| 最黄视频免费看| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄| 特大巨黑吊av在线直播| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 最黄视频免费看| 国产69精品久久久久777片| 母亲3免费完整高清在线观看 | 亚洲婷婷狠狠爱综合网| 午夜视频国产福利| 久久久久久久久大av| 熟妇人妻不卡中文字幕| 一区在线观看完整版| 亚洲av不卡在线观看| freevideosex欧美| 一级黄片播放器| 超色免费av| 久久精品久久久久久久性| 久久99一区二区三区| a级毛片黄视频| 母亲3免费完整高清在线观看 | 人妻一区二区av| xxx大片免费视频| 国产色爽女视频免费观看| 亚洲怡红院男人天堂| 亚洲av在线观看美女高潮| 欧美日韩在线观看h| 免费看av在线观看网站| 国产精品无大码| 妹子高潮喷水视频| 国产不卡av网站在线观看| 91久久精品国产一区二区三区| 久久久精品免费免费高清| 国产片内射在线| 日韩成人伦理影院| 久久影院123| 成年人免费黄色播放视频| 久久久久久久精品精品| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| 成人亚洲欧美一区二区av| 2021少妇久久久久久久久久久| 成年人免费黄色播放视频| 啦啦啦中文免费视频观看日本| 国产伦理片在线播放av一区| 97在线视频观看| h视频一区二区三区| 国产视频首页在线观看| av线在线观看网站| 精品午夜福利在线看| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 国产精品一区二区在线不卡| 欧美激情极品国产一区二区三区 | 王馨瑶露胸无遮挡在线观看| 波野结衣二区三区在线| 天美传媒精品一区二区| 女性生殖器流出的白浆| 丰满少妇做爰视频| 精品国产露脸久久av麻豆| av卡一久久| 国产精品.久久久| 亚洲成人手机| 亚洲国产精品一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 天天操日日干夜夜撸| 另类精品久久| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 日本色播在线视频| 久久久国产欧美日韩av| 97在线视频观看| 伊人久久精品亚洲午夜| 99九九在线精品视频| 国产免费福利视频在线观看| 秋霞在线观看毛片| 最黄视频免费看| 美女视频免费永久观看网站| 日韩伦理黄色片| 丝袜喷水一区| av天堂久久9| 亚洲av二区三区四区| a级毛片黄视频| 午夜av观看不卡| 国产精品麻豆人妻色哟哟久久| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 精品久久蜜臀av无| 久久久欧美国产精品| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 日本黄色片子视频| 成人国语在线视频| 国产av一区二区精品久久| 日日摸夜夜添夜夜爱| 国产免费一级a男人的天堂|