• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    賦矩陣權(quán)圖的鄰接矩陣的逆矩陣(英文)

    2014-10-24 16:11崔登蘭

    崔登蘭

    摘 要 考慮邊賦權(quán)圖,其權(quán)是階數(shù)相同的方陣.加權(quán)圖的鄰接矩陣和定向加權(quán)圖的斜鄰接矩陣以自然的方式定義.給出了具有唯一完美匹配的二部圖的賦權(quán)圖的鄰接矩陣和斜鄰接矩陣的逆矩陣的表達(dá)式,并說明這些公式在分塊矩陣求逆中的應(yīng)用.

    關(guān)鍵詞 加權(quán)圖;鄰接矩陣;斜鄰接矩陣;逆矩陣

    1 Introduction

    We only consider graphs which have no loops or multiple edges. Let G=(V,E) be a connected graph with vertex set V={1,2,…,n} and edge set E. A weighted graph is a graph in which each edge is assigned a weight, which is usually positive number. An unweighted graph, or simply a graph, is thus a weighted graph with each of the edges bearing weight 1.

    A weighted graph is a graph, each edge of which has been assigned a square matrix, called the weight of the edge. All the weight matrices will be assumed to be of the same order and nonnull. In this note, by “weighted graph” we will mean a “weighted graph with each of its edges bearing a nonnull matrix as weight”, unless otherwise stated. The spectra of these weighted graph were investigated by Das in [1~4] recently. We now introduce some more notation. Let G be a weighted graph on n vertices. Denote by wi,j the nonnull weight matrix of order p of the edge ij, and assume that wi,j=wj,i. We write ij∈E if vertices i and j are adjacent.

    The adjacency matrix of a weighted graph is a block matrix, denoted and defined as A(G)=(ai,j), where

    ai,j=wi,j,if ij∈E,

    0,otherwise.

    Note that in the definition above, the zero denotes the p×p zero matrix. Thus A(G) is a square matrix of order np. Note also that the adjacency matrix A=(ai,j) of a weighted digraph satises ai,j=aj,i but is not nesessary symmetric in general. A (weighted or unweighted) graph G is said to be nonsingular if its adjacency matrix A(G) is nonsingular.

    Let G be a (weighted) graph and G be an orientation of a (weighted) graph G, which assigns to each edge of G a direction so that G becomes a (weighted) directed graph, we call these (weighted) oriented graphs. In this paper we only consider digraphs which are oriented graphs.

    The skewadjacency matrix of a weighted graph G (related to an orientation G is a block matrix, denoted and defined as S(G)=(si,j), where

    si,j=wi,j,if ij∈E and i→j,

    -wi,j,if ij∈E and i←j,

    0,otherwise.

    Note that in the definition above, the zero denotes the p×p zero matrix. Thus S(G) is a square matrix of order np. Note that the skewadjacency matrix S(G)=(si,j) of a weighted graph satisfies sj,i=-si,j but S(G) is not necessary skew symmetric in general. A (weighted) digraph G is said to be skewnonsingular if its skewadjacency matrix S(G) is nonsingular. The spectra of skewadjacency matrix of a oriented graph and its applications were investigated in [5~9]. A graph G is said to have a perfect matching if there exists a spanning forest whose components are solely paths on two vertices. A graph in general can have more than one perfect matchings. It is wellknown that if a tree has a perfect matching, then it has a unique perfect matching and such trees are precisely the trees which nonsingular. In general, any graph which has a unique perfect matching is nonsingular[10], and its any orientation is also skew nonsingular, this follows from that det S=(pfS)2 for any skewsymmetric matrix, where pfS is the Pfaffian of the skewsymmetric matrix S[11].Let G be a graph with a perfect matching M. A path P(i,j)=[i=i1,i2,…,I2k=j] from a vertex i to vertex j in G is said to be an alternating path if the edges i1i2,i3i4,…,i2k-1i2k are edges in the perfect matching M. In other words, a path is called an alternating path if its edges are alternately in M and not in M, and the first edge and the last edge are in M.

    A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12] and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4m is given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

    2 The Main Results

    Let G be a bipartite graph with a unique perfect matching M and P(i,j) denotes the collection of all alternating paths between vertices i and j in G. Note that if P(i,j) is an alternating path between vertices i and j, then the number of edges in P(i,j) which are not in M is P(i,j)-12, where P(i,j) is the number of edges in the path P(i,j).

    Lemma 1[14] Let G be a bipartite graph with a unique perfect matching M and the edge ii′ in M. If a vertex v≠i′ is adjacent to i such that there exists an alternating path P(v,j)=[v=x1,x2,…,xn=j between vertices v and j, then P′=[i′,i,P(v, j)]=[i′,i,v,x2,…,x2k=j] is an alternating path from i′ to j.

    Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating path P(i′,j) from i′ to j, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertex v=x1≠i′ adjacent to i such that an alternating path from v to j exists.

    Lemma 2[15] Let G be a graph, then G is bipartite and has a unique perfect matching if and only if the adjacency matrix of G can be expressed as

    A(G)=0LLt0,

    where L is a lowertriangular, square (0,1)matrix with every diagonal entry equal is 1.

    It follows that the determinants of the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(det wi,j)2. Thus, the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matrices wi,j, where ij∈M, are nonsingular.

    The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

    Theorem 1 Let G be a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij) be its adjacency matrix. If all weight matrices wi,j where ij∈M, are nonsingular, then A(G) is nonsingular and its inverse is the block matrix B=(bi,j), where

    A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12] and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4m is given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

    2 The Main Results

    Let G be a bipartite graph with a unique perfect matching M and P(i,j) denotes the collection of all alternating paths between vertices i and j in G. Note that if P(i,j) is an alternating path between vertices i and j, then the number of edges in P(i,j) which are not in M is P(i,j)-12, where P(i,j) is the number of edges in the path P(i,j).

    Lemma 1[14] Let G be a bipartite graph with a unique perfect matching M and the edge ii′ in M. If a vertex v≠i′ is adjacent to i such that there exists an alternating path P(v,j)=[v=x1,x2,…,xn=j between vertices v and j, then P′=[i′,i,P(v, j)]=[i′,i,v,x2,…,x2k=j] is an alternating path from i′ to j.

    Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating path P(i′,j) from i′ to j, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertex v=x1≠i′ adjacent to i such that an alternating path from v to j exists.

    Lemma 2[15] Let G be a graph, then G is bipartite and has a unique perfect matching if and only if the adjacency matrix of G can be expressed as

    A(G)=0LLt0,

    where L is a lowertriangular, square (0,1)matrix with every diagonal entry equal is 1.

    It follows that the determinants of the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(det wi,j)2. Thus, the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matrices wi,j, where ij∈M, are nonsingular.

    The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

    Theorem 1 Let G be a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij) be its adjacency matrix. If all weight matrices wi,j where ij∈M, are nonsingular, then A(G) is nonsingular and its inverse is the block matrix B=(bi,j), where

    A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12] and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4m is given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

    2 The Main Results

    Let G be a bipartite graph with a unique perfect matching M and P(i,j) denotes the collection of all alternating paths between vertices i and j in G. Note that if P(i,j) is an alternating path between vertices i and j, then the number of edges in P(i,j) which are not in M is P(i,j)-12, where P(i,j) is the number of edges in the path P(i,j).

    Lemma 1[14] Let G be a bipartite graph with a unique perfect matching M and the edge ii′ in M. If a vertex v≠i′ is adjacent to i such that there exists an alternating path P(v,j)=[v=x1,x2,…,xn=j between vertices v and j, then P′=[i′,i,P(v, j)]=[i′,i,v,x2,…,x2k=j] is an alternating path from i′ to j.

    Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating path P(i′,j) from i′ to j, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertex v=x1≠i′ adjacent to i such that an alternating path from v to j exists.

    Lemma 2[15] Let G be a graph, then G is bipartite and has a unique perfect matching if and only if the adjacency matrix of G can be expressed as

    A(G)=0LLt0,

    where L is a lowertriangular, square (0,1)matrix with every diagonal entry equal is 1.

    It follows that the determinants of the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(det wi,j)2. Thus, the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matrices wi,j, where ij∈M, are nonsingular.

    The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

    Theorem 1 Let G be a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij) be its adjacency matrix. If all weight matrices wi,j where ij∈M, are nonsingular, then A(G) is nonsingular and its inverse is the block matrix B=(bi,j), where

    在线观看日韩欧美| 日韩亚洲欧美综合| 国产精品av视频在线免费观看| 久久久久久九九精品二区国产| 国内精品美女久久久久久| 国产爱豆传媒在线观看| 久久久久久九九精品二区国产| 嫩草影视91久久| ponron亚洲| av中文乱码字幕在线| 18禁黄网站禁片免费观看直播| 中文字幕人成人乱码亚洲影| 国产一区二区亚洲精品在线观看| 亚洲精品国产精品久久久不卡| 国产精品免费一区二区三区在线| 久久久久免费精品人妻一区二区| 欧美绝顶高潮抽搐喷水| 在线天堂最新版资源| 国产极品精品免费视频能看的| 波多野结衣高清无吗| 国内揄拍国产精品人妻在线| 欧美黄色片欧美黄色片| 色噜噜av男人的天堂激情| 中文字幕人成人乱码亚洲影| 无限看片的www在线观看| 天天一区二区日本电影三级| 成人永久免费在线观看视频| 99国产精品一区二区三区| 国产精品98久久久久久宅男小说| 亚洲人成网站在线播放欧美日韩| 欧美三级亚洲精品| 99国产极品粉嫩在线观看| 日韩欧美精品v在线| 成人特级av手机在线观看| 99在线视频只有这里精品首页| xxx96com| 一区二区三区激情视频| 久久婷婷人人爽人人干人人爱| 女人十人毛片免费观看3o分钟| 又爽又黄无遮挡网站| 99久久99久久久精品蜜桃| 精品人妻偷拍中文字幕| 极品教师在线免费播放| xxxwww97欧美| 欧美精品啪啪一区二区三区| 久久亚洲精品不卡| 日韩欧美免费精品| 欧美中文综合在线视频| 国产精品久久久久久久电影 | 成人av在线播放网站| 午夜精品一区二区三区免费看| 久久香蕉精品热| 欧美午夜高清在线| 麻豆成人午夜福利视频| netflix在线观看网站| 97碰自拍视频| 制服丝袜大香蕉在线| 首页视频小说图片口味搜索| 99久久九九国产精品国产免费| 在线观看一区二区三区| 国产成人影院久久av| 午夜久久久久精精品| 在线观看66精品国产| 99久久精品热视频| 国产精华一区二区三区| 亚洲在线观看片| 身体一侧抽搐| 国产精品自产拍在线观看55亚洲| 少妇的丰满在线观看| 国产精品亚洲美女久久久| 日本与韩国留学比较| 国内毛片毛片毛片毛片毛片| 成人鲁丝片一二三区免费| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 日本 欧美在线| 丰满人妻熟妇乱又伦精品不卡| 婷婷亚洲欧美| 色综合亚洲欧美另类图片| 天天躁日日操中文字幕| 尤物成人国产欧美一区二区三区| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 国产精品日韩av在线免费观看| 成人av在线播放网站| xxx96com| av天堂在线播放| 国产精品精品国产色婷婷| 午夜激情欧美在线| 国产毛片a区久久久久| 国产主播在线观看一区二区| 久久久国产成人免费| 美女被艹到高潮喷水动态| 伊人久久大香线蕉亚洲五| 在线观看一区二区三区| 日本免费一区二区三区高清不卡| 亚洲精品影视一区二区三区av| 亚洲内射少妇av| 亚洲性夜色夜夜综合| 欧美日韩乱码在线| 亚洲精华国产精华精| 亚洲成av人片免费观看| 特大巨黑吊av在线直播| 最近最新中文字幕大全电影3| 9191精品国产免费久久| 欧美日韩国产亚洲二区| 我的老师免费观看完整版| 美女大奶头视频| 国产精品一区二区三区四区久久| 日日干狠狠操夜夜爽| 国产中年淑女户外野战色| 日韩欧美在线乱码| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 国产亚洲精品综合一区在线观看| 欧美区成人在线视频| 亚洲美女黄片视频| 欧美午夜高清在线| av视频在线观看入口| 99热6这里只有精品| 亚洲欧美日韩高清在线视频| 日日干狠狠操夜夜爽| 一二三四社区在线视频社区8| 国产精品 国内视频| 婷婷丁香在线五月| 欧美日本视频| 12—13女人毛片做爰片一| 色噜噜av男人的天堂激情| 亚洲欧美日韩卡通动漫| 操出白浆在线播放| 国产在视频线在精品| 啦啦啦观看免费观看视频高清| 免费人成在线观看视频色| 国语自产精品视频在线第100页| 神马国产精品三级电影在线观看| 国产三级黄色录像| 亚洲精品乱码久久久v下载方式 | 激情在线观看视频在线高清| 丰满的人妻完整版| 久久精品影院6| 国产精品久久视频播放| 又爽又黄无遮挡网站| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| www日本黄色视频网| 亚洲精品粉嫩美女一区| 国产精品久久久久久人妻精品电影| 成人av在线播放网站| 日本黄色片子视频| 黑人欧美特级aaaaaa片| 国产黄片美女视频| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 欧美黑人巨大hd| bbb黄色大片| e午夜精品久久久久久久| 法律面前人人平等表现在哪些方面| 99久久99久久久精品蜜桃| 不卡一级毛片| 久久精品夜夜夜夜夜久久蜜豆| 精品免费久久久久久久清纯| 精品国内亚洲2022精品成人| 亚洲成人中文字幕在线播放| 久久久色成人| 国产乱人伦免费视频| 亚洲精品美女久久久久99蜜臀| 97超级碰碰碰精品色视频在线观看| 老司机在亚洲福利影院| 亚洲无线在线观看| 级片在线观看| 亚洲自拍偷在线| 亚洲精品久久国产高清桃花| 欧美成人免费av一区二区三区| 亚洲国产日韩欧美精品在线观看 | 午夜亚洲福利在线播放| 亚洲欧美日韩高清专用| 国产精品永久免费网站| 看免费av毛片| 欧美绝顶高潮抽搐喷水| 成人国产一区最新在线观看| 草草在线视频免费看| 观看美女的网站| 成人性生交大片免费视频hd| 天堂影院成人在线观看| 特级一级黄色大片| 国产主播在线观看一区二区| 国产麻豆成人av免费视频| 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| 亚洲精品456在线播放app | 欧美日韩国产亚洲二区| 美女黄网站色视频| 成人亚洲精品av一区二区| 亚洲一区二区三区色噜噜| 免费大片18禁| 可以在线观看毛片的网站| 搡老岳熟女国产| 亚洲最大成人手机在线| h日本视频在线播放| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 国产三级中文精品| 青草久久国产| 久久久久国产精品人妻aⅴ院| 十八禁网站免费在线| 中出人妻视频一区二区| 日韩欧美国产一区二区入口| 欧美成人一区二区免费高清观看| 香蕉久久夜色| 国产野战对白在线观看| 深爱激情五月婷婷| 十八禁人妻一区二区| 免费av毛片视频| 欧美激情在线99| 首页视频小说图片口味搜索| 一本综合久久免费| 91av网一区二区| 波多野结衣高清作品| 久久6这里有精品| 一a级毛片在线观看| 久久久久久大精品| 亚洲欧美激情综合另类| 99热这里只有精品一区| 国产不卡一卡二| 90打野战视频偷拍视频| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 日本黄色视频三级网站网址| 亚洲欧美日韩无卡精品| 一个人观看的视频www高清免费观看| svipshipincom国产片| 亚洲最大成人中文| 天堂动漫精品| 狂野欧美白嫩少妇大欣赏| 午夜免费男女啪啪视频观看 | www日本在线高清视频| 一a级毛片在线观看| 岛国在线免费视频观看| 女警被强在线播放| 天堂av国产一区二区熟女人妻| 好男人电影高清在线观看| 欧美黑人欧美精品刺激| 99riav亚洲国产免费| 午夜免费男女啪啪视频观看 | or卡值多少钱| 夜夜夜夜夜久久久久| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 欧美日韩中文字幕国产精品一区二区三区| 精品熟女少妇八av免费久了| 日韩欧美在线乱码| 热99在线观看视频| 老鸭窝网址在线观看| 国产单亲对白刺激| 熟妇人妻久久中文字幕3abv| 午夜福利高清视频| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 欧美中文综合在线视频| 久久久久国产精品人妻aⅴ院| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕一区二区三区有码在线看| 草草在线视频免费看| 成人av在线播放网站| 啦啦啦韩国在线观看视频| 岛国在线观看网站| 欧美+亚洲+日韩+国产| 亚洲av免费在线观看| 国产伦人伦偷精品视频| 精品一区二区三区视频在线 | 国内揄拍国产精品人妻在线| 制服丝袜大香蕉在线| 国内精品久久久久久久电影| 国产伦在线观看视频一区| 嫩草影视91久久| 亚洲av一区综合| 性欧美人与动物交配| 一本综合久久免费| 18禁黄网站禁片免费观看直播| 岛国在线免费视频观看| 亚洲久久久久久中文字幕| 午夜福利在线在线| 中亚洲国语对白在线视频| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 国产精品免费一区二区三区在线| 国产精品永久免费网站| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看| 日韩精品青青久久久久久| 免费观看的影片在线观看| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 国产三级黄色录像| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 天堂影院成人在线观看| 免费av毛片视频| 校园春色视频在线观看| 男人舔女人下体高潮全视频| 国产精品久久久久久久久免 | av欧美777| 国产69精品久久久久777片| 欧美一区二区精品小视频在线| 久久久久国内视频| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 757午夜福利合集在线观看| 欧美性猛交╳xxx乱大交人| 国产精品电影一区二区三区| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 最新美女视频免费是黄的| 国产不卡一卡二| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看| 熟女人妻精品中文字幕| 亚洲成人久久性| 毛片女人毛片| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 九九在线视频观看精品| 成人无遮挡网站| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 免费无遮挡裸体视频| 18禁美女被吸乳视频| 欧美日韩国产亚洲二区| 欧美日韩乱码在线| 天天一区二区日本电影三级| 岛国在线免费视频观看| 手机成人av网站| 亚洲av第一区精品v没综合| netflix在线观看网站| 成人特级av手机在线观看| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 看片在线看免费视频| 九色成人免费人妻av| 亚洲在线自拍视频| 99在线人妻在线中文字幕| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 欧美大码av| 香蕉av资源在线| 日本在线视频免费播放| 午夜免费观看网址| 黑人欧美特级aaaaaa片| 亚洲成人中文字幕在线播放| 午夜精品在线福利| 日本撒尿小便嘘嘘汇集6| 亚洲一区高清亚洲精品| 老熟妇乱子伦视频在线观看| 色吧在线观看| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 欧美+日韩+精品| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 91在线观看av| 国产一区在线观看成人免费| 真人一进一出gif抽搐免费| 欧美日韩国产亚洲二区| 免费电影在线观看免费观看| 久久午夜亚洲精品久久| 9191精品国产免费久久| 午夜影院日韩av| a在线观看视频网站| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 在线观看午夜福利视频| 韩国av一区二区三区四区| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9| 国产一级毛片七仙女欲春2| 超碰av人人做人人爽久久 | av女优亚洲男人天堂| 高潮久久久久久久久久久不卡| av欧美777| 国内精品久久久久久久电影| 九九在线视频观看精品| 亚洲av电影在线进入| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 桃红色精品国产亚洲av| 国产午夜精品论理片| eeuss影院久久| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 午夜激情欧美在线| 在线观看66精品国产| 色综合站精品国产| 成年女人毛片免费观看观看9| 国产免费一级a男人的天堂| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 两个人的视频大全免费| 国内毛片毛片毛片毛片毛片| 日本一本二区三区精品| 精华霜和精华液先用哪个| 国产精华一区二区三区| 久久精品国产亚洲av涩爱 | 免费在线观看亚洲国产| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美日本亚洲视频在线播放| 校园春色视频在线观看| 丰满人妻一区二区三区视频av | 久久99热这里只有精品18| 国产av一区在线观看免费| 久久久久久久久久黄片| 国产精品一区二区三区四区免费观看 | 欧美激情在线99| 亚洲av二区三区四区| www.www免费av| 身体一侧抽搐| 在线看三级毛片| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 在线观看一区二区三区| 中文在线观看免费www的网站| 中文字幕人妻丝袜一区二区| 99精品在免费线老司机午夜| or卡值多少钱| 久久久久国产精品人妻aⅴ院| 欧美成人a在线观看| 国产精品久久久久久久电影 | 午夜影院日韩av| 成熟少妇高潮喷水视频| 色吧在线观看| 国产高清videossex| 国产免费av片在线观看野外av| 啦啦啦观看免费观看视频高清| 最新中文字幕久久久久| xxx96com| 90打野战视频偷拍视频| 内射极品少妇av片p| 欧美zozozo另类| 九九在线视频观看精品| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 99热这里只有精品一区| 88av欧美| 欧美日本视频| 99久久无色码亚洲精品果冻| 亚洲精品在线美女| 无人区码免费观看不卡| 18禁黄网站禁片免费观看直播| 日本三级黄在线观看| 黄片小视频在线播放| 可以在线观看毛片的网站| 欧美性感艳星| 亚洲色图av天堂| 成年人黄色毛片网站| 日韩人妻高清精品专区| 久久草成人影院| 国产高清激情床上av| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 一区二区三区免费毛片| 精品人妻偷拍中文字幕| 老司机福利观看| 午夜免费观看网址| 中文字幕高清在线视频| 女人十人毛片免费观看3o分钟| 亚洲成人免费电影在线观看| 三级毛片av免费| 中文字幕人成人乱码亚洲影| 99热这里只有是精品50| 俄罗斯特黄特色一大片| 一个人看的www免费观看视频| 久久久色成人| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| 亚洲熟妇中文字幕五十中出| 搡老熟女国产l中国老女人| 欧美黑人巨大hd| 亚洲一区二区三区色噜噜| xxxwww97欧美| 国产免费av片在线观看野外av| 成人一区二区视频在线观看| 精品免费久久久久久久清纯| 精品国产超薄肉色丝袜足j| 久久久久性生活片| 热99在线观看视频| 美女被艹到高潮喷水动态| 精品免费久久久久久久清纯| 精品国产超薄肉色丝袜足j| aaaaa片日本免费| 在线观看一区二区三区| 国产精品电影一区二区三区| 欧美成人性av电影在线观看| 国产视频一区二区在线看| 午夜激情欧美在线| 亚洲美女视频黄频| 国产精品永久免费网站| 久久久成人免费电影| 国产久久久一区二区三区| avwww免费| 亚洲第一欧美日韩一区二区三区| av天堂在线播放| 少妇人妻精品综合一区二区 | 国产成人av教育| 国内少妇人妻偷人精品xxx网站| 一本一本综合久久| 日本黄大片高清| 午夜免费激情av| 欧美三级亚洲精品| 日本一二三区视频观看| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 久久精品91蜜桃| 国产淫片久久久久久久久 | 成人高潮视频无遮挡免费网站| 69人妻影院| 国产黄片美女视频| 日本 欧美在线| 一级黄色大片毛片| 麻豆久久精品国产亚洲av| 亚洲五月天丁香| 精品福利观看| 性色av乱码一区二区三区2| 9191精品国产免费久久| 久久精品综合一区二区三区| 国产高清videossex| 国产精品一及| 日本一本二区三区精品| 国产成年人精品一区二区| 夜夜躁狠狠躁天天躁| 波多野结衣高清作品| 日日夜夜操网爽| 变态另类丝袜制服| 麻豆一二三区av精品| 噜噜噜噜噜久久久久久91| 亚洲国产日韩欧美精品在线观看 | 日本在线视频免费播放| 久久亚洲精品不卡| 一本久久中文字幕| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 久久久久久久久中文| 俄罗斯特黄特色一大片| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 岛国在线观看网站| 欧美成人a在线观看| 在线天堂最新版资源| 高清毛片免费观看视频网站| 悠悠久久av| 在线看三级毛片| 美女大奶头视频| 99久久综合精品五月天人人| 国产精品香港三级国产av潘金莲| 精品99又大又爽又粗少妇毛片 | 在线a可以看的网站| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品电影| 一区二区三区国产精品乱码| 午夜老司机福利剧场| 国产av在哪里看| 国产成人a区在线观看| 亚洲欧美一区二区三区黑人| 午夜福利高清视频| 精品久久久久久久久久久久久| 亚洲性夜色夜夜综合| 精品一区二区三区视频在线观看免费| 国产单亲对白刺激| 19禁男女啪啪无遮挡网站| 老司机在亚洲福利影院| 久久久久性生活片| 亚洲18禁久久av| 欧美激情久久久久久爽电影| bbb黄色大片| 国产精品久久久人人做人人爽| 亚洲无线观看免费| 1024手机看黄色片| 国产精品香港三级国产av潘金莲| 午夜免费男女啪啪视频观看 | 日韩欧美国产一区二区入口| 中文在线观看免费www的网站| 国产伦人伦偷精品视频| 我的老师免费观看完整版| 国产成人啪精品午夜网站| 99久久综合精品五月天人人| 国产三级黄色录像| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | eeuss影院久久| 精品久久久久久久人妻蜜臀av| 久久久久国内视频| 18禁黄网站禁片免费观看直播| 日日夜夜操网爽| 18美女黄网站色大片免费观看| 亚洲欧美日韩无卡精品| av专区在线播放| 俺也久久电影网| 啦啦啦免费观看视频1| 99热这里只有是精品50| 日韩av在线大香蕉| 成人国产一区最新在线观看| 两个人看的免费小视频| 91久久精品国产一区二区成人 | 久9热在线精品视频| 九九久久精品国产亚洲av麻豆| 国产亚洲精品一区二区www| 99在线视频只有这里精品首页| 国产精品av视频在线免费观看|