• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    賦矩陣權(quán)圖的鄰接矩陣的逆矩陣(英文)

    2014-10-24 16:11崔登蘭

    崔登蘭

    摘 要 考慮邊賦權(quán)圖,其權(quán)是階數(shù)相同的方陣.加權(quán)圖的鄰接矩陣和定向加權(quán)圖的斜鄰接矩陣以自然的方式定義.給出了具有唯一完美匹配的二部圖的賦權(quán)圖的鄰接矩陣和斜鄰接矩陣的逆矩陣的表達(dá)式,并說明這些公式在分塊矩陣求逆中的應(yīng)用.

    關(guān)鍵詞 加權(quán)圖;鄰接矩陣;斜鄰接矩陣;逆矩陣

    1 Introduction

    We only consider graphs which have no loops or multiple edges. Let G=(V,E) be a connected graph with vertex set V={1,2,…,n} and edge set E. A weighted graph is a graph in which each edge is assigned a weight, which is usually positive number. An unweighted graph, or simply a graph, is thus a weighted graph with each of the edges bearing weight 1.

    A weighted graph is a graph, each edge of which has been assigned a square matrix, called the weight of the edge. All the weight matrices will be assumed to be of the same order and nonnull. In this note, by “weighted graph” we will mean a “weighted graph with each of its edges bearing a nonnull matrix as weight”, unless otherwise stated. The spectra of these weighted graph were investigated by Das in [1~4] recently. We now introduce some more notation. Let G be a weighted graph on n vertices. Denote by wi,j the nonnull weight matrix of order p of the edge ij, and assume that wi,j=wj,i. We write ij∈E if vertices i and j are adjacent.

    The adjacency matrix of a weighted graph is a block matrix, denoted and defined as A(G)=(ai,j), where

    ai,j=wi,j,if ij∈E,

    0,otherwise.

    Note that in the definition above, the zero denotes the p×p zero matrix. Thus A(G) is a square matrix of order np. Note also that the adjacency matrix A=(ai,j) of a weighted digraph satises ai,j=aj,i but is not nesessary symmetric in general. A (weighted or unweighted) graph G is said to be nonsingular if its adjacency matrix A(G) is nonsingular.

    Let G be a (weighted) graph and G be an orientation of a (weighted) graph G, which assigns to each edge of G a direction so that G becomes a (weighted) directed graph, we call these (weighted) oriented graphs. In this paper we only consider digraphs which are oriented graphs.

    The skewadjacency matrix of a weighted graph G (related to an orientation G is a block matrix, denoted and defined as S(G)=(si,j), where

    si,j=wi,j,if ij∈E and i→j,

    -wi,j,if ij∈E and i←j,

    0,otherwise.

    Note that in the definition above, the zero denotes the p×p zero matrix. Thus S(G) is a square matrix of order np. Note that the skewadjacency matrix S(G)=(si,j) of a weighted graph satisfies sj,i=-si,j but S(G) is not necessary skew symmetric in general. A (weighted) digraph G is said to be skewnonsingular if its skewadjacency matrix S(G) is nonsingular. The spectra of skewadjacency matrix of a oriented graph and its applications were investigated in [5~9]. A graph G is said to have a perfect matching if there exists a spanning forest whose components are solely paths on two vertices. A graph in general can have more than one perfect matchings. It is wellknown that if a tree has a perfect matching, then it has a unique perfect matching and such trees are precisely the trees which nonsingular. In general, any graph which has a unique perfect matching is nonsingular[10], and its any orientation is also skew nonsingular, this follows from that det S=(pfS)2 for any skewsymmetric matrix, where pfS is the Pfaffian of the skewsymmetric matrix S[11].Let G be a graph with a perfect matching M. A path P(i,j)=[i=i1,i2,…,I2k=j] from a vertex i to vertex j in G is said to be an alternating path if the edges i1i2,i3i4,…,i2k-1i2k are edges in the perfect matching M. In other words, a path is called an alternating path if its edges are alternately in M and not in M, and the first edge and the last edge are in M.

    A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12] and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4m is given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

    2 The Main Results

    Let G be a bipartite graph with a unique perfect matching M and P(i,j) denotes the collection of all alternating paths between vertices i and j in G. Note that if P(i,j) is an alternating path between vertices i and j, then the number of edges in P(i,j) which are not in M is P(i,j)-12, where P(i,j) is the number of edges in the path P(i,j).

    Lemma 1[14] Let G be a bipartite graph with a unique perfect matching M and the edge ii′ in M. If a vertex v≠i′ is adjacent to i such that there exists an alternating path P(v,j)=[v=x1,x2,…,xn=j between vertices v and j, then P′=[i′,i,P(v, j)]=[i′,i,v,x2,…,x2k=j] is an alternating path from i′ to j.

    Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating path P(i′,j) from i′ to j, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertex v=x1≠i′ adjacent to i such that an alternating path from v to j exists.

    Lemma 2[15] Let G be a graph, then G is bipartite and has a unique perfect matching if and only if the adjacency matrix of G can be expressed as

    A(G)=0LLt0,

    where L is a lowertriangular, square (0,1)matrix with every diagonal entry equal is 1.

    It follows that the determinants of the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(det wi,j)2. Thus, the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matrices wi,j, where ij∈M, are nonsingular.

    The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

    Theorem 1 Let G be a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij) be its adjacency matrix. If all weight matrices wi,j where ij∈M, are nonsingular, then A(G) is nonsingular and its inverse is the block matrix B=(bi,j), where

    A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12] and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4m is given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

    2 The Main Results

    Let G be a bipartite graph with a unique perfect matching M and P(i,j) denotes the collection of all alternating paths between vertices i and j in G. Note that if P(i,j) is an alternating path between vertices i and j, then the number of edges in P(i,j) which are not in M is P(i,j)-12, where P(i,j) is the number of edges in the path P(i,j).

    Lemma 1[14] Let G be a bipartite graph with a unique perfect matching M and the edge ii′ in M. If a vertex v≠i′ is adjacent to i such that there exists an alternating path P(v,j)=[v=x1,x2,…,xn=j between vertices v and j, then P′=[i′,i,P(v, j)]=[i′,i,v,x2,…,x2k=j] is an alternating path from i′ to j.

    Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating path P(i′,j) from i′ to j, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertex v=x1≠i′ adjacent to i such that an alternating path from v to j exists.

    Lemma 2[15] Let G be a graph, then G is bipartite and has a unique perfect matching if and only if the adjacency matrix of G can be expressed as

    A(G)=0LLt0,

    where L is a lowertriangular, square (0,1)matrix with every diagonal entry equal is 1.

    It follows that the determinants of the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(det wi,j)2. Thus, the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matrices wi,j, where ij∈M, are nonsingular.

    The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

    Theorem 1 Let G be a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij) be its adjacency matrix. If all weight matrices wi,j where ij∈M, are nonsingular, then A(G) is nonsingular and its inverse is the block matrix B=(bi,j), where

    A combinatorial description of the inverse of the adjacency matrix of nonsingular tree has been given in[12] and in[13]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph without a cycle of length 4m is given in Cvetkovic[10]. A combinatorial description of the inverse of the adjacency matrix of a bipartite graph with a unique matching is given in[14]. In this note we supply a simple combinatorial description of the inverse of the adjacency matrix and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching, which contains the formula due to [14] as a special case.

    2 The Main Results

    Let G be a bipartite graph with a unique perfect matching M and P(i,j) denotes the collection of all alternating paths between vertices i and j in G. Note that if P(i,j) is an alternating path between vertices i and j, then the number of edges in P(i,j) which are not in M is P(i,j)-12, where P(i,j) is the number of edges in the path P(i,j).

    Lemma 1[14] Let G be a bipartite graph with a unique perfect matching M and the edge ii′ in M. If a vertex v≠i′ is adjacent to i such that there exists an alternating path P(v,j)=[v=x1,x2,…,xn=j between vertices v and j, then P′=[i′,i,P(v, j)]=[i′,i,v,x2,…,x2k=j] is an alternating path from i′ to j.

    Note that the converse of Lemma 1 holds clearly. That is, if there is an alternating path P(i′,j) from i′ to j, it must have the form [i′,i,x1,x2,…,xm=j]. Thus there must exist a vertex v=x1≠i′ adjacent to i such that an alternating path from v to j exists.

    Lemma 2[15] Let G be a graph, then G is bipartite and has a unique perfect matching if and only if the adjacency matrix of G can be expressed as

    A(G)=0LLt0,

    where L is a lowertriangular, square (0,1)matrix with every diagonal entry equal is 1.

    It follows that the determinants of the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching are ±∏i,j∈M(det wi,j)2. Thus, the adjacency and skewadjacency matrix of a weighted bipartite graph with a unique perfect matching is nonsingular if and only if all weight matrices wi,j, where ij∈M, are nonsingular.

    The following result gives a combinatorial description of the inverse of the adjacency matrix of a weighted bipartite graph with a unique perfect matching.

    Theorem 1 Let G be a weighted bipartite graph with a unique perfect matching M and let A(G)=(aij) be its adjacency matrix. If all weight matrices wi,j where ij∈M, are nonsingular, then A(G) is nonsingular and its inverse is the block matrix B=(bi,j), where

    一区二区三区国产精品乱码| 男人舔奶头视频| 久久精品国产综合久久久| 伦理电影免费视频| 国产av一区在线观看免费| 两个人看的免费小视频| 国产精品一区二区免费欧美| 热re99久久国产66热| 激情在线观看视频在线高清| 少妇 在线观看| 免费在线观看视频国产中文字幕亚洲| 精品卡一卡二卡四卡免费| 超碰成人久久| 午夜两性在线视频| 在线观看www视频免费| 亚洲午夜理论影院| 老司机在亚洲福利影院| 欧美乱码精品一区二区三区| 丁香六月欧美| 又黄又粗又硬又大视频| 一级a爱视频在线免费观看| 久久 成人 亚洲| 成人永久免费在线观看视频| 国产亚洲精品一区二区www| 免费无遮挡裸体视频| 侵犯人妻中文字幕一二三四区| 中文字幕av电影在线播放| 最新美女视频免费是黄的| 成人18禁高潮啪啪吃奶动态图| 99国产精品99久久久久| 777久久人妻少妇嫩草av网站| 日韩欧美 国产精品| 日韩 欧美 亚洲 中文字幕| 丰满的人妻完整版| 岛国视频午夜一区免费看| 黄色视频不卡| 黑丝袜美女国产一区| 日本 欧美在线| bbb黄色大片| 精品欧美一区二区三区在线| 黑人欧美特级aaaaaa片| 淫妇啪啪啪对白视频| 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| 麻豆成人av在线观看| 欧美不卡视频在线免费观看 | 亚洲精品国产精品久久久不卡| 亚洲性夜色夜夜综合| 欧美成人一区二区免费高清观看 | 亚洲三区欧美一区| 国内揄拍国产精品人妻在线 | 97超级碰碰碰精品色视频在线观看| 色av中文字幕| 国产激情偷乱视频一区二区| 黄色成人免费大全| 熟女电影av网| 亚洲中文字幕日韩| 亚洲av成人不卡在线观看播放网| 日韩欧美一区视频在线观看| 亚洲精品国产精品久久久不卡| 国产精品 国内视频| 国产熟女午夜一区二区三区| 日本撒尿小便嘘嘘汇集6| 无人区码免费观看不卡| 99热这里只有精品一区 | 999久久久国产精品视频| 精品人妻1区二区| av在线播放免费不卡| 宅男免费午夜| 91成年电影在线观看| 亚洲五月天丁香| 操出白浆在线播放| 亚洲五月婷婷丁香| 99riav亚洲国产免费| 丝袜人妻中文字幕| 日本一区二区免费在线视频| 精品午夜福利视频在线观看一区| 法律面前人人平等表现在哪些方面| 欧美久久黑人一区二区| 亚洲av片天天在线观看| 黑人巨大精品欧美一区二区mp4| 久久久久久九九精品二区国产 | 国产一区在线观看成人免费| 国产精品免费一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 色播亚洲综合网| 99精品久久久久人妻精品| 久久草成人影院| 一区二区三区国产精品乱码| 久久久久久九九精品二区国产 | 亚洲精品国产精品久久久不卡| 一边摸一边抽搐一进一小说| 国产精品久久电影中文字幕| 色老头精品视频在线观看| 色在线成人网| 午夜福利一区二区在线看| or卡值多少钱| 成人手机av| 欧洲精品卡2卡3卡4卡5卡区| 欧美国产精品va在线观看不卡| 国产精品综合久久久久久久免费| 亚洲,欧美精品.| 麻豆av在线久日| 听说在线观看完整版免费高清| 91国产中文字幕| 成人18禁在线播放| 婷婷精品国产亚洲av| 一二三四在线观看免费中文在| 国语自产精品视频在线第100页| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 欧美黑人巨大hd| 首页视频小说图片口味搜索| 国产激情偷乱视频一区二区| 熟女电影av网| 一区二区日韩欧美中文字幕| 亚洲av熟女| 国产欧美日韩一区二区精品| 欧美一级毛片孕妇| 99国产精品99久久久久| 国产精品亚洲一级av第二区| 啦啦啦免费观看视频1| 久久久久久久午夜电影| 18禁裸乳无遮挡免费网站照片 | 看片在线看免费视频| 亚洲国产高清在线一区二区三 | 亚洲五月婷婷丁香| 亚洲成a人片在线一区二区| 最新美女视频免费是黄的| 又黄又爽又免费观看的视频| 91成人精品电影| 亚洲性夜色夜夜综合| 国产成人av教育| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 久久99热这里只有精品18| 亚洲无线在线观看| 日韩有码中文字幕| 校园春色视频在线观看| 欧美国产日韩亚洲一区| 亚洲国产欧美网| 成人av一区二区三区在线看| 免费在线观看完整版高清| 黄片大片在线免费观看| 正在播放国产对白刺激| 在线观看66精品国产| 国产免费av片在线观看野外av| 午夜亚洲福利在线播放| 99热6这里只有精品| 日韩大尺度精品在线看网址| 国产精品98久久久久久宅男小说| 日韩精品青青久久久久久| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一小说| www.熟女人妻精品国产| 欧美性长视频在线观看| 黄网站色视频无遮挡免费观看| 亚洲自偷自拍图片 自拍| 老汉色∧v一级毛片| 久热这里只有精品99| 亚洲成av片中文字幕在线观看| 亚洲精品美女久久久久99蜜臀| 免费搜索国产男女视频| 黄色片一级片一级黄色片| 色av中文字幕| 亚洲国产精品合色在线| 亚洲精品在线观看二区| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 伦理电影免费视频| 国产免费男女视频| 欧美三级亚洲精品| 一级a爱片免费观看的视频| 变态另类丝袜制服| 久久中文字幕人妻熟女| 国产精品久久视频播放| 亚洲免费av在线视频| 精品久久久久久久人妻蜜臀av| 日本成人三级电影网站| 亚洲国产看品久久| 国产亚洲欧美在线一区二区| 国产精品 国内视频| 久久久国产成人精品二区| 国产成人av激情在线播放| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 亚洲黑人精品在线| 久久草成人影院| 国产精品乱码一区二三区的特点| 无遮挡黄片免费观看| 一夜夜www| aaaaa片日本免费| 精品卡一卡二卡四卡免费| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 99久久国产精品久久久| 亚洲国产欧美网| 久久精品人妻少妇| 亚洲av成人av| 18禁美女被吸乳视频| 亚洲欧美激情综合另类| 看免费av毛片| 亚洲一区二区三区色噜噜| 国产免费av片在线观看野外av| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美98| 麻豆一二三区av精品| 手机成人av网站| 欧美日韩黄片免| 男女下面进入的视频免费午夜 | 日韩视频一区二区在线观看| 又大又爽又粗| 国产亚洲欧美精品永久| 国产99久久九九免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲自拍偷在线| 亚洲av电影在线进入| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 黄网站色视频无遮挡免费观看| АⅤ资源中文在线天堂| 国产麻豆成人av免费视频| 日韩大尺度精品在线看网址| 亚洲成人免费电影在线观看| 日本 av在线| 俄罗斯特黄特色一大片| 精品欧美国产一区二区三| 午夜亚洲福利在线播放| x7x7x7水蜜桃| 久久午夜亚洲精品久久| av欧美777| 亚洲精品美女久久久久99蜜臀| 国产一区二区三区在线臀色熟女| 99在线视频只有这里精品首页| 精品一区二区三区av网在线观看| 国产乱人伦免费视频| 亚洲真实伦在线观看| 欧美性猛交黑人性爽| 欧美成狂野欧美在线观看| 亚洲一区高清亚洲精品| 国内精品久久久久精免费| 99国产精品一区二区三区| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 桃红色精品国产亚洲av| 欧美一级毛片孕妇| 欧美乱色亚洲激情| 麻豆久久精品国产亚洲av| av欧美777| 日韩av在线大香蕉| 色综合欧美亚洲国产小说| 国产熟女xx| 国产一级毛片七仙女欲春2 | 黄频高清免费视频| 97超级碰碰碰精品色视频在线观看| 波多野结衣巨乳人妻| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 久久久久九九精品影院| 久久久久久久久免费视频了| 日韩欧美 国产精品| 琪琪午夜伦伦电影理论片6080| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 不卡av一区二区三区| 精品国产亚洲在线| 欧美激情极品国产一区二区三区| 无人区码免费观看不卡| 成人永久免费在线观看视频| www日本黄色视频网| 久久久久久久精品吃奶| 级片在线观看| 免费在线观看视频国产中文字幕亚洲| 12—13女人毛片做爰片一| 人人妻人人澡欧美一区二区| 亚洲av美国av| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 欧美一级a爱片免费观看看 | 男男h啪啪无遮挡| 国产午夜福利久久久久久| 少妇被粗大的猛进出69影院| 女生性感内裤真人,穿戴方法视频| av视频在线观看入口| 亚洲狠狠婷婷综合久久图片| 欧美成人性av电影在线观看| 久久久久久亚洲精品国产蜜桃av| 一级毛片高清免费大全| 日韩欧美国产一区二区入口| 欧美黑人巨大hd| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 一夜夜www| 夜夜躁狠狠躁天天躁| 自线自在国产av| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 一二三四在线观看免费中文在| 国产av一区二区精品久久| 大型av网站在线播放| 国内精品久久久久久久电影| 我的亚洲天堂| 日本黄色视频三级网站网址| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| 久久国产亚洲av麻豆专区| 精华霜和精华液先用哪个| 在线观看午夜福利视频| 久久久久久久久免费视频了| 亚洲一区二区三区色噜噜| 亚洲男人天堂网一区| 俺也久久电影网| 国内精品久久久久精免费| 亚洲中文字幕日韩| 久久精品影院6| 亚洲黑人精品在线| 一卡2卡三卡四卡精品乱码亚洲| 成人国产综合亚洲| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 精品国产亚洲在线| 露出奶头的视频| 午夜久久久久精精品| 天天躁狠狠躁夜夜躁狠狠躁| 免费看十八禁软件| 9191精品国产免费久久| av在线播放免费不卡| 色播亚洲综合网| 国产1区2区3区精品| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 中文字幕高清在线视频| 在线观看一区二区三区| 午夜精品在线福利| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品999在线| 久久精品91无色码中文字幕| 国产精品野战在线观看| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片 | 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆 | 国产人伦9x9x在线观看| 大型黄色视频在线免费观看| 深夜精品福利| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| 国产av一区二区精品久久| 久久性视频一级片| 国内精品久久久久精免费| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 久久精品国产亚洲av香蕉五月| 天堂√8在线中文| 久久草成人影院| 亚洲中文字幕日韩| 黑丝袜美女国产一区| 日韩欧美国产在线观看| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看 | 久99久视频精品免费| 老司机深夜福利视频在线观看| 国产精品久久久久久精品电影 | 白带黄色成豆腐渣| 国产精品久久久久久精品电影 | 日本黄色视频三级网站网址| 黄色视频不卡| 精品熟女少妇八av免费久了| 搞女人的毛片| 变态另类丝袜制服| 国产精品久久电影中文字幕| 91字幕亚洲| 国产成人精品无人区| 欧美最黄视频在线播放免费| av欧美777| 非洲黑人性xxxx精品又粗又长| 精品少妇一区二区三区视频日本电影| videosex国产| 天堂影院成人在线观看| 国产野战对白在线观看| 大香蕉久久成人网| 久久精品亚洲精品国产色婷小说| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 亚洲精品在线美女| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 99久久综合精品五月天人人| 久久精品人妻少妇| 桃红色精品国产亚洲av| 激情在线观看视频在线高清| 久久中文字幕人妻熟女| 中文在线观看免费www的网站 | 国内少妇人妻偷人精品xxx网站 | 在线十欧美十亚洲十日本专区| 午夜福利高清视频| 亚洲熟妇中文字幕五十中出| 成人国语在线视频| 国产99白浆流出| 制服丝袜大香蕉在线| 久久人妻av系列| 老熟妇仑乱视频hdxx| 亚洲无线在线观看| 亚洲男人的天堂狠狠| 免费在线观看影片大全网站| 免费女性裸体啪啪无遮挡网站| 亚洲在线自拍视频| 少妇粗大呻吟视频| 啪啪无遮挡十八禁网站| 中文资源天堂在线| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 欧美日本亚洲视频在线播放| tocl精华| 手机成人av网站| 黑丝袜美女国产一区| 久久热在线av| 中文字幕人成人乱码亚洲影| 青草久久国产| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 欧美绝顶高潮抽搐喷水| 淫秽高清视频在线观看| 人妻丰满熟妇av一区二区三区| 少妇被粗大的猛进出69影院| 中出人妻视频一区二区| 久久久久久九九精品二区国产 | 中文字幕人成人乱码亚洲影| 好男人在线观看高清免费视频 | 亚洲久久久国产精品| 免费看日本二区| 日韩免费av在线播放| 国产精品 国内视频| 日韩大尺度精品在线看网址| 久久狼人影院| 亚洲成国产人片在线观看| 国产精品乱码一区二三区的特点| www.www免费av| 欧美性长视频在线观看| 亚洲av电影在线进入| 麻豆一二三区av精品| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 国产一区二区三区视频了| www.www免费av| 日本成人三级电影网站| 制服丝袜大香蕉在线| 国产激情偷乱视频一区二区| 黄片小视频在线播放| 亚洲免费av在线视频| 又紧又爽又黄一区二区| 色综合站精品国产| 色综合欧美亚洲国产小说| 不卡一级毛片| 国产三级黄色录像| 亚洲av电影不卡..在线观看| 亚洲成人精品中文字幕电影| 桃红色精品国产亚洲av| 精品第一国产精品| 亚洲 欧美 日韩 在线 免费| 久久中文看片网| 99riav亚洲国产免费| 中文字幕最新亚洲高清| 国产乱人伦免费视频| 国产高清激情床上av| 亚洲黑人精品在线| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 男女之事视频高清在线观看| 啦啦啦韩国在线观看视频| 男人舔奶头视频| 黄色视频,在线免费观看| 国产97色在线日韩免费| 久久精品亚洲精品国产色婷小说| 亚洲自拍偷在线| 亚洲av第一区精品v没综合| 亚洲成国产人片在线观看| 天天一区二区日本电影三级| 97人妻精品一区二区三区麻豆 | 免费人成视频x8x8入口观看| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| 亚洲专区中文字幕在线| 国产精品爽爽va在线观看网站 | 久久伊人香网站| 又紧又爽又黄一区二区| 亚洲男人天堂网一区| 久久久国产成人免费| 国产1区2区3区精品| 2021天堂中文幕一二区在线观 | 国产aⅴ精品一区二区三区波| 国产视频一区二区在线看| 免费在线观看完整版高清| 麻豆国产av国片精品| 男男h啪啪无遮挡| 91成人精品电影| 69av精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 欧美成人午夜精品| 波多野结衣高清作品| bbb黄色大片| 无限看片的www在线观看| 男人舔女人下体高潮全视频| 在线观看午夜福利视频| 人妻丰满熟妇av一区二区三区| 亚洲全国av大片| 国产精品自产拍在线观看55亚洲| 亚洲成国产人片在线观看| 欧美日韩瑟瑟在线播放| 国产私拍福利视频在线观看| 久久九九热精品免费| 久久 成人 亚洲| 国产精品久久久av美女十八| 日韩av在线大香蕉| 国产精品乱码一区二三区的特点| 国产成人精品久久二区二区91| 曰老女人黄片| a级毛片在线看网站| 一二三四在线观看免费中文在| 国产成人影院久久av| 欧美三级亚洲精品| 69av精品久久久久久| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 一区二区三区高清视频在线| 叶爱在线成人免费视频播放| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| 99国产综合亚洲精品| 国产高清videossex| 亚洲专区中文字幕在线| av视频在线观看入口| 国产成人av激情在线播放| 91成人精品电影| 俺也久久电影网| 在线观看舔阴道视频| 欧美黑人欧美精品刺激| 欧美久久黑人一区二区| 午夜免费观看网址| 黑人欧美特级aaaaaa片| 天堂动漫精品| 麻豆一二三区av精品| 欧美日韩乱码在线| 搞女人的毛片| 99国产综合亚洲精品| 精品高清国产在线一区| 亚洲成av片中文字幕在线观看| 国产人伦9x9x在线观看| 国产高清激情床上av| 成熟少妇高潮喷水视频| 国产精品久久久av美女十八| 成熟少妇高潮喷水视频| 色在线成人网| 久99久视频精品免费| 日本成人三级电影网站| 久久中文字幕人妻熟女| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 国产精品免费视频内射| 免费高清在线观看日韩| 国产又黄又爽又无遮挡在线| 午夜福利18| 国产真实乱freesex| 在线观看66精品国产| 欧美日韩亚洲综合一区二区三区_| 人人澡人人妻人| 午夜a级毛片| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 亚洲七黄色美女视频| 波多野结衣巨乳人妻| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 久久欧美精品欧美久久欧美| 日韩有码中文字幕| 午夜影院日韩av| 免费在线观看成人毛片| 91成人精品电影| 老司机午夜福利在线观看视频| 国产又色又爽无遮挡免费看| 99热这里只有精品一区 | 国产黄色小视频在线观看| 久久久久免费精品人妻一区二区 | 亚洲人成电影免费在线| 一进一出抽搐gif免费好疼| 99精品久久久久人妻精品| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 久久精品91蜜桃| 日本 欧美在线| 欧美国产精品va在线观看不卡| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 国产精品二区激情视频| 天堂影院成人在线观看| av欧美777| 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| 免费在线观看亚洲国产| 精品电影一区二区在线| 久久性视频一级片| 又紧又爽又黄一区二区| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 嫩草影院精品99|