• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋰離子電池負(fù)極硅/碳復(fù)合材料的制備及其性能研究(英文)

    2014-10-22 12:17:53魏來劉開宇李艷
    關(guān)鍵詞:鋰離子電池負(fù)極

    魏來+劉開宇+李艷+等

    摘要采用鱗片石墨、納米硅及水合葡萄糖為原料,通過液相固化及高溫?zé)峤夥ㄖ苽淞斯?碳復(fù)合材料.采用X射線衍射光譜法(XRD)、掃描電子顯微鏡法(SEM)、透射電子顯微鏡法(TEM)及電化學(xué)測試表征了該材料的結(jié)構(gòu)及性能.實(shí)驗(yàn)結(jié)果表明:這種復(fù)合材料由納米硅顆粒、鱗片石墨及熱解無定形碳組成,在無定形碳的包覆網(wǎng)絡(luò)中,納米硅顆粒分布在石墨片層上.該材料首次充電容量為733.6 mAh· g-1,首次庫倫效率為69.98%,經(jīng)20次循環(huán)后其容量保持率為80.01%,而純納米硅電極的容量保持率只有15.21%.在不同的電流密度下,該復(fù)合材料也展現(xiàn)了良好的電極循環(huán)性能,電化學(xué)性能的改善被認(rèn)為是該材料的特殊結(jié)構(gòu)以及碳包覆的結(jié)果.

    關(guān)鍵詞硅/碳復(fù)合物;負(fù)極;鋰離子電池;碳包覆

    To address these problems, many efforts have been taken to improve the overall electrochemical performance of Si-based electrode. The synthesis of novel nanostructure of Si have been studied, such as “porous Si” [4], “Si nanowire” [5] “silicon-based thin films” [6], “silicon nano spheres” [7] and “Si-carbon hollow core-shell” [8]. Other methods focus on the combination of Si with other components such as metals [9-10] or compounds [11-12]. Furthermore, the decoration of the surface of nano-Si [13] or the modifying of current collector [14] were also investigated for improving the cohesion force of binder and collector of Si electrode. Comparing with these studies, creating Si/C composites is a promising approach because of their relative mild preparation with stable electrochemical performance. Carbon materials have been frequently used as the active matrix because of its softness, good electronic conductivity and small volume change. Si/C composites were usually synthesized by the way of high energy ball milling with other components [15] or by the phrolysis of different organic carbon sources [16-17]. The types of carbon sources and the methods of preparation seem to be quite important for Si/C composites with good performance.

    In this paper, Si/C composites were prepared by a facile method of dispersing nano-Si and graphite in the solution of glucose monohydrate, followed by carbonization in the high temperature at argon atmosphere. The microstructure, morphology and electrochemical performance of the as-prepared Si/C composites were also investigated by different methods as anode materials for lithium ion batteries, and this material exhibited obviously enhanced electrochemical performance comparing to pristine pure nano-Si and graphite.

    2Experimental

    2.1Preparation of the materials

    The Si/C composites were synthesized as follows: Firstly, glucose monohydrate (C6H12O6·H2O, 1.5g) was dissolved in 50 mL deionized water and ethanol (3∶1 in volume) solution with constant magnetic stirring. The nano-silicon powders (commercial available,>99.9%, Shuitian Materials Technology Co, Ltd, Shanghai, China) and flake graphite powders (200 mesh) were mixed in a ratio of 3:7. Subsequently, the mixture was slowly added into the previous glucose solution with strong magnetic stirring for 12 h, then the solvent was evaporated at 80 ℃ over night to get a solid blend, the obtained solid blend precursor was heated to 750 ℃ under nitrogen atmosphere in a furnace for 2 h (5 ℃·min-1) and cooled naturally to room temperature. The products were grounded and sieved by 200-mesh shifter to obtain the Si/C composites.

    2.2Structural and morphological characterization of the materials

    The morphologies of the composites were investigated by scanning electron microscopy (SEM, Quanta-200). The phase components of the materials were confirmed by powder X-Ray diffraction (XRD, D/maxш, Rigaku) with Cu Kα radiation (10°~80°).The microstructures of the composites were examined by transmission electron microscope (TEM, JEOL-3010).

    2.3Electrochemical measurement

    The composites were evaluated using CR2016 coin-type cells with pure lithium tablets as the counter electrode under the same conditions and instruments. A micro-porous polypropylene (PE) membrane was used as the separator and the electrolyte was LiPF6 (1 M) in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of 3∶7. The working electrode was prepared by adding active materials (80 wt. %), acetylene black (10 wt. %) as conducting agent and polyvinylidene fluoride (PVDF, 10wt. %) as binder. The mixture was dispersed in N-methyl pyrrolidinone (NMP) and the obtained slurry was then spread uniformly on a copper foil and dried at 120 ℃ for 12 h. The electrodes were punched into round pellets with diameter of 14 mm and cells were assembled in an argon-filled glove box. The charging/discharging test of cells were carried out on the Land battery tester (CT2001,Wuhan) with the potential ranges of 0.005 V to 1.5 V (vs. Li+/Li) at room temperature. The cyclic voltammogram (CV) was measured with a RST electrochemical analyzer, the scanning rates was 0.1 mV·s-1.

    3Results and discussion

    3.1Structure and morphology of the materials

    Fig.1X-ray diffraction patterns of (a) flake graphite, (b) nano-silicon, (c) glucose pyrolyzed carbon and (d) Si/C composites

    Fig.1 shows X-ray diffraction patterns of flake graphite, nano-Si, pyrolyzed carbon from glucose at the given conditions and the prepared Si/C composites. For the XRD pattern of the Si/C composites, it is clear to find the diffraction peaks of Si (28.4°, 47.3°, 56.1°, 69.1° and 76.4°) and graphite (26.6°, 42.5°, 43.5°, 54.7° and 77.6°), indicating the presence of graphite and silicon, and both silicon and graphite retain its own crystalline structure during the synthesized process, and any other phases (such as SiC or SiO2) are not observed. As for the XRD pattern of pyrolyzed glucose, obvious peaks are not detected except a diffused broad peak around 2θ=23° (amplifying figure in Fig.1), proving that the pyrolyzed carbon in the composites under given conditions was an amorphous phase. This results show that other inactive phases do not exist in the composites, and the composites are the blends of graphite, silicon and amorphous carbon pyrolyzed from glucose.

    The morphology of the raw materials and as-prepared Si/C composites are presented in Fig.2 by SEM investigation. Fig.2 (a) and Fig.2 (b) are the morphology of pristine nano-Si and flake graphite, respectively, which were used to prepare Si/C composites. The nano-Si powders show uniform and nano sized spherical particles, and the average size of the particles is about 100 nm. The flake graphite has primary sizes around 50 μm, and the particles are thin and flat. The image of the as-prepared Si/C composites is shown in Fig.3 (c), indicating that the morphology of the composites is irregular.

    Fig.2SEM images of nano-Si (a), flake graphite (b) and Si/C composites (c)

    The TEM images of Si/C composites are presented in Fig.3. Fig.3 (a) shows that the composites have fine sizes, nano-sized Si particles are bonded to the graphite sheets by the coating of disordered carbon from glucose. However, the Si particles consist of agglomerates of clusters, as particles may not be perfectly dispersed by pyrolysis process. Fig.3 (b) clearly displays the figure of the carbon coated Si particle. It is evident that Si particles are uniformly coated by the carbon layer. The thickness of this layer forming a complete shell is around 10 nm. Fig.3 (c) and Fig.3 (d) are the HRTEM images of the material. The crystal plane spacing fit well with the number of Si (111) and flake graphite (002), indicating that composites are composed of three phases, graphite, nano-Si and disordered carbon from pyrolyzed glucose. Nano-Si and graphite particles are dispersed into carbon networks from glucose, and the structure provides a buffer for Si particles to accommodate the huge stress and the and volume change during the Li+ inserting and extracting processes[18].

    Fig.3TEM images of Si/C composites (a) and (b); HRTEM of Si/C composites (c) and (d)

    3.2Electrochemical performance of the electrode materials

    The charge-discharge curves of the as prepared Si/C composites at different cycles under current density of 50 mA g-1are shown in Fig.4 (a). Obviously, there is a distinct potential platform during the first discharge curve from 0.1 to 0.9 V, which could mainly attribute to the formation of a solid electrolyte interphase (SEI) on the surface of electrode. During this process, a part of Li+ in the electrolyte were consumed to the formation of SEI and the decomposition of the electrolyte, contributing to the irreversible capacity loss of the electrode. After the first cycle, the potential platform disappears, and the structure of crystal structure silicon transforms to amorphous phase, which can be prov

    Fig.4(a) Charge-discharge profile of Si/C composites at different cycles; (b) initial charge-discharge curves of nano-Si, flake graphite and Si/C composites

    ed from the shift of the subsequent discharge curves. The distinct charge potential platform around 0.4 V is due to the extraction of Li+ from Si, while the slope ranging from 0.15 to 0.2 V can be related to the process of lithium ion extracting from the flake graphite [19]. As for the discharge curve, the straight potential platform below 0.2 V is mainly ascribed to the insertion of lithium ion for both silicon and flake graphite, as silicon and graphite possess similar discharge potential vs. Li+ (0~0.1 V, 0~0.2 V, respectively [1,19]). Fig.4 (b) shows the first charge-discharge curves of nano-Si, flake graphite and the as prepared Si/C composites at the current rate of 50 mA· g-1. Visibly, the discharge platform around 0~0.2 V is the Li+ inserting of active materials, including graphite and silicon, and the main extraction process there are several distinct potential platforms can be attributed to nano-Si anode (0.4 V) and flake graphite anode (0.15 V) can also be observed, although the first charge and discharge specific capacity of nano-Si are 1800.18 mAh· g-1 and 3483.56 mAh· g-1, respectively, The initial columbic efficiency is only 51.72% ,which is similar to the previously reports of the nano-Si . The Si/C composites, however, exhibit a first charge capacity of 733.65 mAh· g-1 and discharge capacity of 1048.27 mAh· g-1, along with an initial columbic efficiency of 69.98%, based on the ratio of graphite and nano-Si during the preparation and the theoretical calculating methods of the specific capacity of Si/graphite composites [20], the initial charge and discharge capacity of the material are maintained within reasonable values.

    Fig.5 (a) compares the cycling performance of nano-Si, flake graphite and Si/C composites at 50 mA· g-1. Evidently, the pure nano-Si electrode exhibits high initial charge (1800.18 mAh· g-1) and discharge capacity (3483.56 mAh· g-1), however, the capacity decays rapidly to 274.48 mAh· g-1 after 20 cycles. It is well known that the capacity fade and large initial irreversible capacity for Si anode is owing to the large volume changes during the insertion and extraction processes of Li+, leading to the poor capacity retention of pure Si electrode. The flake graphite exhibits an initial discharge capacity of 433.54 mAh· g-1 and keeps a steady capacity at about 380 mAh· g-1 during the cycling, which is even higher than the theoretical specific capacity of graphite. This result may be due to the previous grinding process during the preparation of the half cells. It has been reported th

    Fig.5(a) Cycling performance of nano-Si, flake graphite and Si/C composites at 50 mA· g-1; (b) cycling performance of Si/C composites at different current densities

    at graphite have a higher reversible capacity after grinding process, and the grinding process of crystalline graphite is essentially a non-graphitization process from a structural chemistry perspective [21]. In this regard, the as-prepared Si/C composites exhibit a relatively stable capacity during the cycling, capacity fading is significantly alleviated and the capacity of 586.98 mAh· g-1 is reserved after 20 cycles with the capacity retention of 80.01%, while that of nano-Si is 15.21%. The cycling performance at different rates of Si/C composites are shown in Fig.5 (b).As seen, at the current density of 150 mA· g-1, 300 mA· g-1, and 600 mA· g-1, the initial capacities of Si/C composites are 664.57 mAh· g-1, 625.35 mAh· g-1 and 431.44 mAh· g-1, respectively, and the coulombic efficiencies of Si/C composites are 69.97%, 69.85% and 69.56%, respectively. After 20 cycles, 83~50%, 77.26% and 85.38% of the initial capacity can be reserved. It is evident that improved capacity retention of the Si/C composites is achieved. The enhanced cycleability can be related to the following reasons: (1) Nano-Si and graphite are coated by the glucose-pyrolyzed carbon, providing the carbon network for the connection between Si particles and flake graphite and maintains stable electrical contact of nano-Si particles in the Si/C composites during the charge-discharge process, that is to say, nano-Si particles and graphite sheets are connected by the electronic conducting network from the glucose-pyrolyzed carbon. (2) The presence of coated carbon on the surface of active materials reduced the direct contact between electrode and electrolyte, which is beneficial for maintaining its mechanical stability by reliving stresses resulting from volume change from Si. (3) The volume change occurred in the Si electrode may lead to the fracture of SEI, resulting in increased Li+ to the formation of new SEI on the surface of electrode during the subsequent processes, the addition of coated carbon and graphite can accommodate the volume change occurred in Si electrode and therefore the enough insertion/extraction of Li+ in the electrolyte is guaranteed.

    Fig.6Cyclic voltammograms of the Si/C composites for first three cycles at scanning rate of 0.1 mV·s-1 from 0~1.5 V

    To further investigate the charge-discharge process of the Si/C composites, cyclic voltammograms (CV) was conducted. Fig.6 displays the first three CV cycles of the materials at the scanning rate of 0.1 mV·s-1. There is a broad cathodic platform ranging from 0.4 to 0.8 V during the first cycle, the platform corresponds to the formation of the SEI on the surface of the electrode, which can be the result of the decomposition of electrolyte, after the first curve, the platform disappears. The distinct cathodic peak below 0.15 V is due to the Li+ insertion into the active material, including both Si and graphite. There are two anodic peaks during the charge process, the anodic peak between 0.15 and 0.3 V is mainly related to the Li+ extraction from flake graphite, while the anodic peak around 0.45 V is related to the extraction of Li+ from nano-Si. The other cathodic peak located at 0.2 V from the 2nd cycle corresponds to dealloying process of crystal Si to amorphous phase. It is evident that all the results are in agreement with the charge-discharge curves discussed above.

    4Conclusion

    Si/C composites were successfully synthesized by steps of liquid solidification and subsequent pyrolysis process. The Si/C composites exhibit high reversible capacity of 733.65 mAh· g-1 with an initial coulombic efficiency of 69.98% at the current of 50 mA· g-1, and improved capacity retention is achieved after 20 cycles at different current. The improved overall electrochemical performance can be attributed to the characters of the composites including the special structure and the uniformly carbon coating. This indicates that the composites may be a promising anode material for lithium ion batteries. However, further studies on optimizing the particle distribution of the raw materials in the composites and promoting the enhanced electrochemical performance of this material are still necessary.

    References:

    [1]WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012,7(5):414-429.

    [2]HOSSAIN S, KIM Y K, SALEH Y, et al. Comparative studies of mcmb and C-C composite as anodes for lithium-ion battery systems[J]. J Power Sources, 2003,114(2):264-276.

    [3]HANAI K, LIU Y, IMANISH N, et al. Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries[J]. J Power Sources, 2005,146(1-2):156-160.

    [4]ZHENG Y, YANG J, WANG J L, et al. Nano-porous Si/C composites for anode material of lithium-ion batteries[J]. Electrochimica Acta, 2007,52(19):5863-5867.

    [5]WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012,7(5):310-315.

    [6] ZHANG Y, XIA X, WANG X, et al. Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries[J]. J Power Sources, 2012,213:106-111.

    [7]YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano letters, 2011,11(7):2949-2954.

    [8]ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013,87:663-668.

    [9]YAN J M, HUANG H Z, ZHANG J, et al. The study of Mg2Si/carbon composites as anode materials for lithium ion batteries[J]. J Power Sources, 2008,175(1):547-552.

    [10]HUANG S, CHENG Y, XIAO H, et al. Characterization of Sn and Si nanocrystals embedded in SiO2 matrix fabricated by magnetron co-sputtering[J]. Surface Coatings Technol, 2010,205(7):2247-2250.

    [11]ZHOU W, UPRET S, WHITTING M S, et al. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J]. Electrochem Comm, 2011,13(10):1102-1104.

    [12]HWA Y, KIM W S, YU B C, et al. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol-gel method[J]. J Phy Chem C, 2013,117(14):7013-7017.

    [13]NAM S H, KIM K S, SHIM H S, et al. Probing the lithium ion storage properties of positively and negatively carved Silicon[J]. Nano letters, 2011,11(9):3656-3662.

    [14]KIM Y L, SUN Y K, LEE S M, et al. Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008,53(13):4500-4504.

    [15]LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochem Comm, 2004,6(5):465-469.

    [16]WANG M S, FAN L Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J]. J Power Sources, 2013, 244:570-574.

    [17]CAI J J, ZUO P J, CHENG X Q, et al. Nano-Silicon/polyaniline composite for lithium storage[J]. Electrochemi Comm, 2010,12(11):1572-1575.

    [18]LAI J, GUO H J, Wang Z X, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. J Alloys Comp, 2012,530:30-35.

    [19]SU M R, WANG Z X, GUO H, et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol, 2013,24(6):921-925.

    [20]DIMOV N, KUGINO S, YOSHIO M, et al. Mixed silicon-graphite composites as anode material for lithium ion batteries[J]. J Power Sources, 2004,136(1):108-114.

    [21]ALACNTARA R, LAVELA P, ORTIZ G F, et al. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J]. Carbon, 2003,41(15):3003-3013.

    (編輯楊春明)

    [11]ZHOU W, UPRET S, WHITTING M S, et al. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J]. Electrochem Comm, 2011,13(10):1102-1104.

    [12]HWA Y, KIM W S, YU B C, et al. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol-gel method[J]. J Phy Chem C, 2013,117(14):7013-7017.

    [13]NAM S H, KIM K S, SHIM H S, et al. Probing the lithium ion storage properties of positively and negatively carved Silicon[J]. Nano letters, 2011,11(9):3656-3662.

    [14]KIM Y L, SUN Y K, LEE S M, et al. Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008,53(13):4500-4504.

    [15]LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochem Comm, 2004,6(5):465-469.

    [16]WANG M S, FAN L Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J]. J Power Sources, 2013, 244:570-574.

    [17]CAI J J, ZUO P J, CHENG X Q, et al. Nano-Silicon/polyaniline composite for lithium storage[J]. Electrochemi Comm, 2010,12(11):1572-1575.

    [18]LAI J, GUO H J, Wang Z X, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. J Alloys Comp, 2012,530:30-35.

    [19]SU M R, WANG Z X, GUO H, et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol, 2013,24(6):921-925.

    [20]DIMOV N, KUGINO S, YOSHIO M, et al. Mixed silicon-graphite composites as anode material for lithium ion batteries[J]. J Power Sources, 2004,136(1):108-114.

    [21]ALACNTARA R, LAVELA P, ORTIZ G F, et al. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J]. Carbon, 2003,41(15):3003-3013.

    (編輯楊春明)

    [11]ZHOU W, UPRET S, WHITTING M S, et al. High performance Si/MgO/graphite composite as the anode for lithium-ion batteries[J]. Electrochem Comm, 2011,13(10):1102-1104.

    [12]HWA Y, KIM W S, YU B C, et al. Enhancement of the cyclability of a Si anode through Co3O4 coating by the sol-gel method[J]. J Phy Chem C, 2013,117(14):7013-7017.

    [13]NAM S H, KIM K S, SHIM H S, et al. Probing the lithium ion storage properties of positively and negatively carved Silicon[J]. Nano letters, 2011,11(9):3656-3662.

    [14]KIM Y L, SUN Y K, LEE S M, et al. Enhanced electrochemical performance of Silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimica Acta, 2008,53(13):4500-4504.

    [15]LEE H Y, LEE S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochem Comm, 2004,6(5):465-469.

    [16]WANG M S, FAN L Z. Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries[J]. J Power Sources, 2013, 244:570-574.

    [17]CAI J J, ZUO P J, CHENG X Q, et al. Nano-Silicon/polyaniline composite for lithium storage[J]. Electrochemi Comm, 2010,12(11):1572-1575.

    [18]LAI J, GUO H J, Wang Z X, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries[J]. J Alloys Comp, 2012,530:30-35.

    [19]SU M R, WANG Z X, GUO H, et al. Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries[J]. Adv Powder Technol, 2013,24(6):921-925.

    [20]DIMOV N, KUGINO S, YOSHIO M, et al. Mixed silicon-graphite composites as anode material for lithium ion batteries[J]. J Power Sources, 2004,136(1):108-114.

    [21]ALACNTARA R, LAVELA P, ORTIZ G F, et al. Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries[J]. Carbon, 2003,41(15):3003-3013.

    (編輯楊春明)

    猜你喜歡
    鋰離子電池負(fù)極
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    我國各種新能源汽車的優(yōu)缺點(diǎn)及發(fā)展趨勢
    科技傳播(2016年19期)2016-12-27 15:26:41
    溶劑—凝膠法制備鋰離子電池的陰極材料LiMn2O4及其性能研究
    鋰離子電池的安全性能評價(jià)技術(shù)
    鋰離子電池石墨烯復(fù)合電極材料專利分析
    手機(jī)鋰離子電池充電電路的設(shè)計(jì)與實(shí)現(xiàn)
    高功率鈦酸鋰電池倍率及低溫性能研究
    科技視界(2016年10期)2016-04-26 21:21:15
    分步電沉積法制備Cu-Sn-Sb合金負(fù)極材料
    成人二区视频| av女优亚洲男人天堂| 亚洲欧洲国产日韩| 久久久精品94久久精品| 咕卡用的链子| 成人影院久久| 久久久久人妻精品一区果冻| 99九九在线精品视频| 亚洲欧美日韩另类电影网站| 美女午夜性视频免费| 91精品三级在线观看| 中文字幕人妻丝袜制服| 成人黄色视频免费在线看| 99热网站在线观看| 91精品伊人久久大香线蕉| 欧美日韩av久久| 极品少妇高潮喷水抽搐| 久久久国产精品麻豆| 2022亚洲国产成人精品| 99热网站在线观看| 欧美日韩国产mv在线观看视频| 亚洲三区欧美一区| 午夜免费男女啪啪视频观看| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 国产1区2区3区精品| 麻豆精品久久久久久蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 色94色欧美一区二区| 国产成人精品久久二区二区91 | 国产精品一区二区在线观看99| 一级片免费观看大全| 制服诱惑二区| 中国三级夫妇交换| 亚洲精品国产av成人精品| 如何舔出高潮| 国产欧美亚洲国产| 少妇被粗大猛烈的视频| 啦啦啦在线免费观看视频4| 秋霞在线观看毛片| 18+在线观看网站| 亚洲欧美一区二区三区黑人 | 国产淫语在线视频| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 国产老妇伦熟女老妇高清| 亚洲国产精品国产精品| 欧美激情高清一区二区三区 | 美国免费a级毛片| 免费看av在线观看网站| 亚洲av综合色区一区| 一级毛片我不卡| 麻豆av在线久日| 黑丝袜美女国产一区| 久久精品国产亚洲av高清一级| 在线天堂中文资源库| 免费少妇av软件| 美女中出高潮动态图| av.在线天堂| 女人精品久久久久毛片| 亚洲精品日本国产第一区| 国产一区有黄有色的免费视频| 精品国产露脸久久av麻豆| 极品人妻少妇av视频| 在线观看免费高清a一片| 女的被弄到高潮叫床怎么办| 国产精品.久久久| 最黄视频免费看| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 男女免费视频国产| av一本久久久久| 99热全是精品| 欧美人与善性xxx| freevideosex欧美| 亚洲,一卡二卡三卡| 在线观看www视频免费| 18禁国产床啪视频网站| 欧美人与性动交α欧美精品济南到 | 成人亚洲欧美一区二区av| 91国产中文字幕| 男女国产视频网站| 韩国高清视频一区二区三区| av有码第一页| 成人国语在线视频| 亚洲欧美精品综合一区二区三区 | 午夜福利网站1000一区二区三区| 亚洲国产精品999| 啦啦啦在线免费观看视频4| 女人精品久久久久毛片| 亚洲天堂av无毛| 久久99一区二区三区| 午夜福利在线免费观看网站| 女人久久www免费人成看片| 精品国产一区二区三区久久久樱花| 国产成人一区二区在线| 岛国毛片在线播放| 亚洲美女视频黄频| 一边亲一边摸免费视频| 国产精品一二三区在线看| 欧美人与善性xxx| 亚洲美女黄色视频免费看| 天堂8中文在线网| 老汉色∧v一级毛片| 成年人免费黄色播放视频| 日韩伦理黄色片| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 欧美精品av麻豆av| 自线自在国产av| 人体艺术视频欧美日本| 97在线视频观看| 欧美成人午夜精品| 色94色欧美一区二区| 女人精品久久久久毛片| 亚洲精品第二区| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| av在线播放精品| 在线亚洲精品国产二区图片欧美| 亚洲av日韩在线播放| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| 满18在线观看网站| 我的亚洲天堂| 国产日韩欧美亚洲二区| 男女边摸边吃奶| 在线观看美女被高潮喷水网站| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久久久久| 亚洲内射少妇av| 丝袜脚勾引网站| 亚洲精华国产精华液的使用体验| 一区二区av电影网| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| 精品一区二区免费观看| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 一级毛片电影观看| 自线自在国产av| 日本-黄色视频高清免费观看| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 国产精品一区二区在线观看99| 国产一区亚洲一区在线观看| 国产精品久久久久久久久免| 国产成人精品久久久久久| 国产精品一二三区在线看| 一级黄片播放器| 中文字幕最新亚洲高清| 亚洲av免费高清在线观看| 自线自在国产av| 看免费成人av毛片| 99国产精品免费福利视频| 尾随美女入室| 欧美xxⅹ黑人| 26uuu在线亚洲综合色| 亚洲国产精品一区三区| 亚洲国产精品成人久久小说| 美女中出高潮动态图| 亚洲国产精品一区二区三区在线| 久久精品久久久久久噜噜老黄| 免费av中文字幕在线| 久久精品久久精品一区二区三区| 最近手机中文字幕大全| 国产精品蜜桃在线观看| 久久久a久久爽久久v久久| 性高湖久久久久久久久免费观看| 亚洲av欧美aⅴ国产| 久久精品国产自在天天线| 成人影院久久| 国产精品久久久久久精品电影小说| 99久久人妻综合| 欧美人与善性xxx| 纵有疾风起免费观看全集完整版| 久久久久精品久久久久真实原创| 在线 av 中文字幕| 国产探花极品一区二区| 欧美日韩亚洲国产一区二区在线观看 | 欧美最新免费一区二区三区| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 午夜福利网站1000一区二区三区| 精品少妇内射三级| 欧美黄色片欧美黄色片| 少妇人妻 视频| 91在线精品国自产拍蜜月| 亚洲美女视频黄频| 亚洲综合色惰| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 999精品在线视频| 久久精品国产亚洲av涩爱| 人体艺术视频欧美日本| av网站在线播放免费| 老司机亚洲免费影院| 少妇被粗大的猛进出69影院| 欧美日韩成人在线一区二区| www.精华液| 久久久久国产精品人妻一区二区| 久久狼人影院| 香蕉丝袜av| 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 美女脱内裤让男人舔精品视频| 日本午夜av视频| videossex国产| 亚洲精品在线美女| 18禁国产床啪视频网站| 国产免费福利视频在线观看| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 亚洲精品日本国产第一区| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 99精国产麻豆久久婷婷| 少妇被粗大猛烈的视频| 久久ye,这里只有精品| 久久午夜福利片| 18禁动态无遮挡网站| 成人午夜精彩视频在线观看| 午夜福利在线免费观看网站| 国产午夜精品一二区理论片| 汤姆久久久久久久影院中文字幕| 欧美人与性动交α欧美软件| 久久精品人人爽人人爽视色| 在线观看国产h片| 国产日韩欧美亚洲二区| 国产极品粉嫩免费观看在线| 久久精品久久久久久久性| 国产免费现黄频在线看| 青春草亚洲视频在线观看| 丁香六月天网| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 满18在线观看网站| 色播在线永久视频| 岛国毛片在线播放| 观看美女的网站| 久久狼人影院| 国产成人免费观看mmmm| 久久久久久久国产电影| 制服诱惑二区| 亚洲三区欧美一区| 日韩av不卡免费在线播放| videossex国产| 高清视频免费观看一区二区| 久久久精品94久久精品| 日韩电影二区| 18禁裸乳无遮挡动漫免费视频| 久久久久久免费高清国产稀缺| 满18在线观看网站| 中文字幕精品免费在线观看视频| 国产高清不卡午夜福利| 久久韩国三级中文字幕| 亚洲在久久综合| 亚洲精品国产一区二区精华液| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 青青草视频在线视频观看| 国产xxxxx性猛交| 免费在线观看黄色视频的| a级毛片黄视频| 午夜影院在线不卡| 熟女av电影| 高清视频免费观看一区二区| 两性夫妻黄色片| 久久热在线av| www日本在线高清视频| 国产一区有黄有色的免费视频| 久久精品人人爽人人爽视色| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 黄网站色视频无遮挡免费观看| 精品酒店卫生间| 在线观看免费日韩欧美大片| 国产男女内射视频| 下体分泌物呈黄色| 蜜桃在线观看..| 亚洲av国产av综合av卡| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 九草在线视频观看| av国产精品久久久久影院| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 一级片'在线观看视频| 亚洲国产精品国产精品| 观看av在线不卡| 亚洲精品第二区| 边亲边吃奶的免费视频| 高清欧美精品videossex| 五月开心婷婷网| 精品第一国产精品| 亚洲视频免费观看视频| 亚洲精品国产色婷婷电影| 美女午夜性视频免费| av免费在线看不卡| 丝袜喷水一区| 十分钟在线观看高清视频www| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 超碰97精品在线观看| 最新的欧美精品一区二区| 美女国产高潮福利片在线看| 一级毛片黄色毛片免费观看视频| 一本大道久久a久久精品| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 亚洲成av片中文字幕在线观看 | 亚洲欧美精品综合一区二区三区 | 亚洲欧洲精品一区二区精品久久久 | 卡戴珊不雅视频在线播放| 一二三四中文在线观看免费高清| 亚洲欧美精品综合一区二区三区 | 一级,二级,三级黄色视频| 一级毛片电影观看| 少妇熟女欧美另类| 亚洲,欧美精品.| 日本午夜av视频| 亚洲国产欧美网| 老熟女久久久| 国产免费福利视频在线观看| 搡老乐熟女国产| 午夜精品国产一区二区电影| 青草久久国产| 韩国高清视频一区二区三区| 香蕉国产在线看| 久久久精品区二区三区| 青草久久国产| 国产一级毛片在线| 国产成人免费观看mmmm| 日韩欧美精品免费久久| 成年av动漫网址| 亚洲精品中文字幕在线视频| a级片在线免费高清观看视频| 一区二区三区精品91| 国产精品久久久久成人av| 国产欧美亚洲国产| 黑人猛操日本美女一级片| 久久久久久久国产电影| 亚洲精品视频女| 欧美人与性动交α欧美软件| 女人久久www免费人成看片| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美精品综合一区二区三区 | 成人黄色视频免费在线看| 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 欧美黄色片欧美黄色片| 久久久精品94久久精品| 亚洲少妇的诱惑av| 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 精品亚洲成a人片在线观看| 久久免费观看电影| av卡一久久| 午夜福利一区二区在线看| av免费观看日本| 久久精品国产综合久久久| 十八禁高潮呻吟视频| 免费女性裸体啪啪无遮挡网站| 国产男女内射视频| 久久久精品区二区三区| 久久久久国产网址| 男女高潮啪啪啪动态图| 欧美日韩亚洲国产一区二区在线观看 | 欧美成人午夜精品| 青草久久国产| 午夜精品国产一区二区电影| 国产成人91sexporn| 男女午夜视频在线观看| 国产成人精品婷婷| 少妇被粗大的猛进出69影院| 天堂8中文在线网| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 精品少妇内射三级| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 伊人亚洲综合成人网| 少妇 在线观看| 亚洲av国产av综合av卡| 国产成人欧美| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 亚洲综合色网址| 成年女人在线观看亚洲视频| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 亚洲国产欧美网| 在线天堂最新版资源| 老司机亚洲免费影院| 母亲3免费完整高清在线观看 | 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 只有这里有精品99| 18禁观看日本| 一本色道久久久久久精品综合| 欧美97在线视频| 多毛熟女@视频| 18+在线观看网站| 在线观看美女被高潮喷水网站| 久久久久国产网址| 一本久久精品| 美女大奶头黄色视频| 亚洲精品第二区| 制服诱惑二区| 国产乱人偷精品视频| 精品久久蜜臀av无| 另类亚洲欧美激情| 国产日韩一区二区三区精品不卡| 国产成人精品福利久久| 亚洲综合精品二区| 日韩av在线免费看完整版不卡| 麻豆精品久久久久久蜜桃| 成人黄色视频免费在线看| 日韩制服丝袜自拍偷拍| 欧美精品国产亚洲| 免费在线观看完整版高清| 高清不卡的av网站| 香蕉丝袜av| 黄色视频在线播放观看不卡| 国产精品一国产av| 日日啪夜夜爽| 国产激情久久老熟女| 国产午夜精品一二区理论片| 亚洲 欧美一区二区三区| 黑丝袜美女国产一区| 亚洲精品日本国产第一区| 丝袜人妻中文字幕| 亚洲国产成人一精品久久久| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 丰满迷人的少妇在线观看| 国产在线免费精品| 欧美 亚洲 国产 日韩一| 日韩一本色道免费dvd| 亚洲成人一二三区av| 久久这里只有精品19| 少妇精品久久久久久久| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 久久精品国产综合久久久| 国产成人精品福利久久| 日日爽夜夜爽网站| 黄频高清免费视频| 亚洲欧美日韩另类电影网站| 亚洲激情五月婷婷啪啪| 最近的中文字幕免费完整| 国产精品国产三级专区第一集| 亚洲国产成人一精品久久久| 精品午夜福利在线看| kizo精华| 嫩草影院入口| 电影成人av| 老汉色∧v一级毛片| 亚洲综合色惰| 久久毛片免费看一区二区三区| 丝袜美足系列| 成人漫画全彩无遮挡| 男女无遮挡免费网站观看| 可以免费在线观看a视频的电影网站 | 亚洲国产精品一区三区| kizo精华| 男女国产视频网站| 久久这里有精品视频免费| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 九九爱精品视频在线观看| 青草久久国产| 久久精品夜色国产| 老鸭窝网址在线观看| 五月天丁香电影| 国产免费福利视频在线观看| 春色校园在线视频观看| 中文字幕另类日韩欧美亚洲嫩草| 国产免费一区二区三区四区乱码| 国产欧美亚洲国产| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 成年人免费黄色播放视频| 十分钟在线观看高清视频www| 午夜老司机福利剧场| 免费高清在线观看日韩| 国产精品欧美亚洲77777| 在线观看美女被高潮喷水网站| 久久婷婷青草| 国产片内射在线| 亚洲男人天堂网一区| 啦啦啦中文免费视频观看日本| 捣出白浆h1v1| 91精品国产国语对白视频| 亚洲人成77777在线视频| 国产成人a∨麻豆精品| 性高湖久久久久久久久免费观看| 午夜福利视频精品| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 日韩av不卡免费在线播放| 亚洲精品在线美女| 69精品国产乱码久久久| 中文字幕制服av| 婷婷色综合大香蕉| 18禁观看日本| 国产国语露脸激情在线看| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 色婷婷av一区二区三区视频| 亚洲国产毛片av蜜桃av| av网站在线播放免费| 日韩一区二区视频免费看| 男女高潮啪啪啪动态图| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 宅男免费午夜| 看免费av毛片| 欧美激情极品国产一区二区三区| av在线播放精品| 女性生殖器流出的白浆| 热re99久久国产66热| 欧美激情高清一区二区三区 | 一二三四中文在线观看免费高清| 捣出白浆h1v1| av在线播放精品| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 国产av精品麻豆| 国产精品秋霞免费鲁丝片| 国产成人欧美| 69精品国产乱码久久久| 999久久久国产精品视频| 亚洲欧洲国产日韩| 伊人久久国产一区二区| av又黄又爽大尺度在线免费看| 成年动漫av网址| 在线观看国产h片| 黄色配什么色好看| 男男h啪啪无遮挡| 亚洲成色77777| 性色avwww在线观看| 亚洲欧美一区二区三区黑人 | 亚洲国产精品一区二区三区在线| 成年人午夜在线观看视频| 精品福利永久在线观看| 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| 黄网站色视频无遮挡免费观看| 观看av在线不卡| 高清在线视频一区二区三区| 欧美精品国产亚洲| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 九草在线视频观看| 99久久综合免费| 中文字幕另类日韩欧美亚洲嫩草| 最近手机中文字幕大全| 欧美精品一区二区大全| 午夜福利影视在线免费观看| 欧美激情高清一区二区三区 | 婷婷成人精品国产| 亚洲欧美成人综合另类久久久| 丁香六月天网| 国产精品免费大片| 国产伦理片在线播放av一区| 国产1区2区3区精品| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| freevideosex欧美| 亚洲精品中文字幕在线视频| 国产麻豆69| 亚洲三级黄色毛片| 国产日韩一区二区三区精品不卡| 久久久久国产网址| 大片免费播放器 马上看| 亚洲av电影在线进入| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆| 一本久久精品| 日韩人妻精品一区2区三区| 日韩一区二区三区影片| 国产一区二区三区av在线| 久久久久久久国产电影| 性少妇av在线| 国产日韩欧美在线精品| 国产视频首页在线观看| 黄色配什么色好看| 我的亚洲天堂| 大香蕉久久网| 日日摸夜夜添夜夜爱| 亚洲国产日韩一区二区| 好男人视频免费观看在线| 美女脱内裤让男人舔精品视频| 日本欧美国产在线视频| 青草久久国产| 极品少妇高潮喷水抽搐| 国产精品三级大全| 不卡视频在线观看欧美| 夜夜骑夜夜射夜夜干| 亚洲av国产av综合av卡| 午夜精品国产一区二区电影|