• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    譜負(fù)MAP波動(dòng)理論的一個(gè)注記

    2014-10-22 12:30:02張超權(quán)唐勝達(dá)秦永松
    關(guān)鍵詞:極值時(shí)刻波動(dòng)

    張超權(quán) 唐勝達(dá) 秦永松

    摘要譜負(fù)MAP是應(yīng)用概率論領(lǐng)域的重要內(nèi)容之一.利用Asmussen-kella鞅推廣了譜負(fù)MAP(X,J)的波動(dòng)理論,給出譜負(fù)MAP在與之獨(dú)立且服從Erlang分布的隨機(jī)時(shí)刻點(diǎn)上水平與極值的聯(lián)合變換所滿(mǎn)足的等式,進(jìn)而由Erlangization方法,給出譜負(fù)MAP(X,J)的水平與極值的聯(lián)合變換的瞬時(shí)趨近算法.

    關(guān)鍵詞譜負(fù)MAP;波動(dòng)理論;Erlangization方法;趨近計(jì)算式

    中圖分類(lèi)號(hào)O211.5文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)1000-2537(2014)02-0078-06

    Levy過(guò)程是應(yīng)用概率領(lǐng)域內(nèi)的重要隨機(jī)過(guò)程之一,但是Levy過(guò)程的平穩(wěn)性使其在實(shí)際應(yīng)用中受到一定的局限性.在實(shí)際建模中,過(guò)程會(huì)因長(zhǎng)時(shí)間的演變、外界隨機(jī)因素的干擾等原因而不再具有平穩(wěn)性,如價(jià)格的季節(jié)性,行為的模式化等.由此,可將Levy過(guò)程推廣為機(jī)制轉(zhuǎn)換模型(regime-switching model):連續(xù)時(shí)間的Markov加過(guò)程(Markov additive process),簡(jiǎn)稱(chēng)MAP,這是Levy過(guò)程的一個(gè)自然推廣,MAP已成為隨機(jī)復(fù)雜系統(tǒng)的重要建模工具之一,它已被廣泛應(yīng)用于網(wǎng)絡(luò)通訊、存儲(chǔ)論、交通管理、風(fēng)險(xiǎn)過(guò)程、金融工程等領(lǐng)域[1-2].

    許多學(xué)者對(duì)MAP的相關(guān)性質(zhì)作了深入的研究,Cinlar,Ney,Asmussen [3-5]給出了MAP的基本結(jié)構(gòu)及性質(zhì),Ivanovs[6]給出了MAP的指數(shù)矩陣特征值的性質(zhì),DAuria等[7]給出了MAP首達(dá)時(shí)過(guò)程的轉(zhuǎn)移率矩陣的結(jié)構(gòu),并將其應(yīng)用于單邊反射MAP及雙邊MMBM[8],Breuer[9]給出了首達(dá)時(shí)過(guò)程的轉(zhuǎn)移率矩陣的迭代計(jì)算方法,Ivanovs[10]給出了MAP的scale 矩陣,Kypianou等[11]對(duì)MAP波動(dòng)理論進(jìn)行了研究.

    Avram[12]在研究風(fēng)險(xiǎn)過(guò)程中得出破產(chǎn)時(shí)刻的Laplace變換等價(jià)于指數(shù)隨機(jī)時(shí)間內(nèi)的破產(chǎn)概率,Asmussen等[13]采用fluid embedding方法將這一結(jié)果推廣并得出服從Erlang(n,q)分布的隨機(jī)時(shí)刻內(nèi)的破產(chǎn)概率,當(dāng)給定分布期望不變時(shí),隨著分布的階數(shù)趨于無(wú)窮,這一隨機(jī)時(shí)刻趨于它的期望定值,利用這一方法,Asmussen等得到了在有限時(shí)刻內(nèi)破產(chǎn)的趨近算法,且這一算法具有良好的穩(wěn)定性且收斂速度快,這一方法稱(chēng)為Erlangization方法;Stanford[14]將這一方法推廣為PH分布情形;Ramaswami等[15]將這一方法應(yīng)用于隨機(jī)流體理論,用于各種有限時(shí)刻內(nèi)的各種首達(dá)時(shí)的研究,Woolford等[16]將這一方法用于分析山火的控制研究.

    本文基于上述研究,主要給出譜負(fù)MAP(X,J)的水平與極值的聯(lián)合變換的瞬時(shí)趨近算法.這一結(jié)果在實(shí)際數(shù)值計(jì)算中具有十分重要的意義,本文利用Asmussen-kella鞅,推廣了MAP的波動(dòng)理論,將MAP在指數(shù)時(shí)刻的相關(guān)量推廣至Erlang分布的隨機(jī)時(shí)刻上,繼而由Erlangization方法,給定任意時(shí)刻時(shí)的MAP相應(yīng)量的趨近計(jì)算式.從而解決了譜負(fù)MAP(X,J)瞬時(shí)波動(dòng)理論的瞬時(shí)時(shí)間點(diǎn)上的計(jì)算問(wèn)題.

    參考文獻(xiàn):

    [1]ASMUSSEN S. Applied probability and queues[M]. 2nd Ed. Berlin:Springer, 2003.

    [2]PRABHU N. Stochastic storage processes—queues, insurance risk, dams, and data communication[M].New York:Springer-Verlag, 1998.

    [3]INLAR E. Markov additive processes Ⅰ[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1972,24(2):85-93.

    [4]INLAR E. Markov additive processes Ⅱ[J]. Probability Theory Related Fields,1972,24(2):95-121.

    [5]NEY P, NUMMELIN E. Markov additive processes Ⅰ. Eigenvalue properties and limit theorems[J]. Ann Probab, 1987,15(2):561-592.

    [6]IVANOVS J, BOXMA O, MANDJES M. Singularities of the matrix exponent of a Markov additive process with one-sided jumps[J]. Stochastic Pro Appl, 2010,120(9):1776-1794.

    [7]DAURIA B, IVANOVS J, KELLA O, et al. First passage of a Markov additive process and generalized Jordan chains[J]. J Appl Probab, 2010,47(4):1048-1057.

    [8]DAURIA B, IVANOVS J, KELLA O, et al. Two-sided reflection of Markovmodulated Brownian motion[J]. Stochastic Models, 2012, 28(1):316-332.

    [9]BREUER L. First passage times for Markov additive processes with positive jumps of phase type[J]. J Appl Probability, 2008,45(3):779-799.

    [10]IVANOVS J. PALMOWSKI Z. Occupation densities in solving exit problems for Markov additive processes and their reflections[J]. Stochastic Processes Appl, 2012,122(9):3342-3360.

    [11]KYPRIANOU A, PALMOWSKI Z. Fluctuations of spectrally negative Markov additive processes[C]//Séminaire de Probabilités XL[M]. Springer: Berlin, 2008,121-135.

    [12]AVRAM F, USABEL M. Finite time ruin probabilities of processes with phase type jumps[J]. Insurance, Math Economics, 2003, 32(3):371-377.

    [13]ASMUSSEN S, AVRAM F, USABEL M. Erlangian approximations for finite horizon ruin probabilities[J].Astin Bull, 2002,32(2):267-281.

    [14]STANFORD D A, AVRAM F, BADESCU A B, et al. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models[J]. Astin Bull, 2005,35(1):131-144.

    [15]RAMASWAMI V, DOUGLAS G, WOOLFORD D, et al. The erlangization method for Markovian fluid flows [J]. Ann Oper Res, 2008,160(1):215-225.

    [16]STANFORD D L, ATOUCHE G, WOOLFORD D, et al. Erlangized fluid queues with application to uncontrolled fire perimeter[J]. Stochastic Models, 2005,21(23):631-642.

    [17]JAGERMAN D L. An inversion technique for the Laplace transform with application to approximation[J]. Bell Syst Tech J, 1978,57(3):669-710.

    [18]JAGERMAN D L. An inversion technique for the Laplace transform[J]. Bell Syst Tech J, 1982,61(8):1995-2002.

    [19]ASMUSSEN S, KELLA O. A multi-dimensional martingale for Markov additive processes and its applications[J]. Adv Appl Probab, 2000,32(2):376-393.

    (編輯沈小玲)

    [10]IVANOVS J. PALMOWSKI Z. Occupation densities in solving exit problems for Markov additive processes and their reflections[J]. Stochastic Processes Appl, 2012,122(9):3342-3360.

    [11]KYPRIANOU A, PALMOWSKI Z. Fluctuations of spectrally negative Markov additive processes[C]//Séminaire de Probabilités XL[M]. Springer: Berlin, 2008,121-135.

    [12]AVRAM F, USABEL M. Finite time ruin probabilities of processes with phase type jumps[J]. Insurance, Math Economics, 2003, 32(3):371-377.

    [13]ASMUSSEN S, AVRAM F, USABEL M. Erlangian approximations for finite horizon ruin probabilities[J].Astin Bull, 2002,32(2):267-281.

    [14]STANFORD D A, AVRAM F, BADESCU A B, et al. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models[J]. Astin Bull, 2005,35(1):131-144.

    [15]RAMASWAMI V, DOUGLAS G, WOOLFORD D, et al. The erlangization method for Markovian fluid flows [J]. Ann Oper Res, 2008,160(1):215-225.

    [16]STANFORD D L, ATOUCHE G, WOOLFORD D, et al. Erlangized fluid queues with application to uncontrolled fire perimeter[J]. Stochastic Models, 2005,21(23):631-642.

    [17]JAGERMAN D L. An inversion technique for the Laplace transform with application to approximation[J]. Bell Syst Tech J, 1978,57(3):669-710.

    [18]JAGERMAN D L. An inversion technique for the Laplace transform[J]. Bell Syst Tech J, 1982,61(8):1995-2002.

    [19]ASMUSSEN S, KELLA O. A multi-dimensional martingale for Markov additive processes and its applications[J]. Adv Appl Probab, 2000,32(2):376-393.

    (編輯沈小玲)

    [10]IVANOVS J. PALMOWSKI Z. Occupation densities in solving exit problems for Markov additive processes and their reflections[J]. Stochastic Processes Appl, 2012,122(9):3342-3360.

    [11]KYPRIANOU A, PALMOWSKI Z. Fluctuations of spectrally negative Markov additive processes[C]//Séminaire de Probabilités XL[M]. Springer: Berlin, 2008,121-135.

    [12]AVRAM F, USABEL M. Finite time ruin probabilities of processes with phase type jumps[J]. Insurance, Math Economics, 2003, 32(3):371-377.

    [13]ASMUSSEN S, AVRAM F, USABEL M. Erlangian approximations for finite horizon ruin probabilities[J].Astin Bull, 2002,32(2):267-281.

    [14]STANFORD D A, AVRAM F, BADESCU A B, et al. Phase-type approximations to finite-time ruin probabilities in the Sparre Andersen and stationary renewal risk models[J]. Astin Bull, 2005,35(1):131-144.

    [15]RAMASWAMI V, DOUGLAS G, WOOLFORD D, et al. The erlangization method for Markovian fluid flows [J]. Ann Oper Res, 2008,160(1):215-225.

    [16]STANFORD D L, ATOUCHE G, WOOLFORD D, et al. Erlangized fluid queues with application to uncontrolled fire perimeter[J]. Stochastic Models, 2005,21(23):631-642.

    [17]JAGERMAN D L. An inversion technique for the Laplace transform with application to approximation[J]. Bell Syst Tech J, 1978,57(3):669-710.

    [18]JAGERMAN D L. An inversion technique for the Laplace transform[J]. Bell Syst Tech J, 1982,61(8):1995-2002.

    [19]ASMUSSEN S, KELLA O. A multi-dimensional martingale for Markov additive processes and its applications[J]. Adv Appl Probab, 2000,32(2):376-393.

    (編輯沈小玲)

    猜你喜歡
    極值時(shí)刻波動(dòng)
    冬“傲”時(shí)刻
    極值點(diǎn)帶你去“漂移”
    捕獵時(shí)刻
    極值點(diǎn)偏移攔路,三法可取
    羊肉價(jià)回穩(wěn) 后期不會(huì)大幅波動(dòng)
    微風(fēng)里優(yōu)美地波動(dòng)
    2019年國(guó)內(nèi)外油價(jià)或?qū)⒉▌?dòng)加劇
    一類(lèi)“極值點(diǎn)偏移”問(wèn)題的解法與反思
    干濕法SO2排放波動(dòng)對(duì)比及分析
    街拍的歡樂(lè)時(shí)刻到來(lái)了
    来安县| 宁武县| 监利县| 三河市| 台北市| 周宁县| 德格县| 礼泉县| 额尔古纳市| 田东县| 宜良县| 济宁市| 织金县| 波密县| 犍为县| 皋兰县| 鄱阳县| 南华县| 井研县| 板桥市| 永善县| 黑龙江省| 随州市| 沙湾县| 奉化市| 宁化县| 大田县| 宜城市| 昭苏县| 饶河县| 增城市| 精河县| 三台县| 桐柏县| 榆树市| 大港区| 珠海市| 泰宁县| 临颍县| 长白| 克拉玛依市|