夏冠云
【摘要】 小學(xué)數(shù)學(xué)教學(xué)就是概念教學(xué)的過程,即培養(yǎng)學(xué)生認(rèn)知能力的過程,因而要把小學(xué)數(shù)學(xué)概念的教學(xué)提上日程,針對(duì)小學(xué)生的心理特點(diǎn),設(shè)計(jì)出合理的概念教學(xué)策略. 本文從小學(xué)數(shù)學(xué)概念教學(xué)出發(fā),分析了概念教學(xué)的三個(gè)步驟,并提出了幾點(diǎn)建設(shè)性的建議,旨在提高小學(xué)數(shù)學(xué)概念教學(xué)的質(zhì)量.
【關(guān)鍵詞】 小學(xué)數(shù)學(xué);概念教學(xué);鞏固
在現(xiàn)階段的小學(xué)數(shù)學(xué)教學(xué)中,很多學(xué)生抱怨數(shù)學(xué)難學(xué),究其原因主要是由于學(xué)生沒有理解一些數(shù)學(xué)概念. 數(shù)學(xué)概念的教學(xué)大致分為三個(gè)步驟,分別為概念引入階段、概念理解階段和概念鞏固階段. 針對(duì)這三個(gè)方面的步驟,筆者進(jìn)行了深入思考,其思考結(jié)果分析如下:
一、概念引入階段
小學(xué)生的記憶能力比較好,但邏輯能力和抽象能力比較差,他們正處于認(rèn)知事物的初級(jí)階段,理解能力也極為有限,因而對(duì)于此階段的學(xué)生,教師必須要具有高度的責(zé)任心、耐心和信心. 在新概念引入的過程中,要綜合考慮多種因素,設(shè)計(jì)出形式多樣的引入方法. 第一,實(shí)例引入法. 教師在引入新概念時(shí)要盡可能的化抽象為具體,讓學(xué)生從具體的事物中認(rèn)識(shí)和感知數(shù)學(xué)概念. 實(shí)例引入法可以激發(fā)學(xué)生學(xué)習(xí)的興趣和動(dòng)力,學(xué)習(xí)起來自然會(huì)充滿高昂的積極性. 比如在引入“平均數(shù)”的概念時(shí),可以以粉筆為例. 教師拿出6個(gè)粉筆,并將這6個(gè)粉筆分成三份,第一份有1支粉筆,第二份有2支粉筆,第三份有3支粉筆,提問:“一共有多少支粉筆?這些粉筆被分成了幾份?每一份有幾支粉筆?哪份多,哪份少?”學(xué)生很容易就回答出教師的提問. 緊接著教師再把這6支粉筆混淆在一起,重新分成三份,每一份都有2支粉筆,再次提出相同的問題,學(xué)生自然也是對(duì)答如流,教師就可以借此提出“平均數(shù)”的概念,告訴學(xué)生“2”就是這三份粉筆的“平均數(shù)”. 這樣對(duì)于學(xué)生掌握“平均數(shù)”的概念具有真實(shí)的意義. 第二,從舊概念中引入新概念. 數(shù)學(xué)中有很多概念表述起來較為拗口難懂,但是學(xué)生學(xué)習(xí)過與之相似的概念,這時(shí)教師就能夠借助舊概念引入新概念. 比如在引入“正方體”的概念時(shí),僅憑教師的講解是無(wú)法讓學(xué)生瞬間從平面幾何過渡到立體幾何中的. 在引入前可以先讓學(xué)生回顧正方形的概念,進(jìn)而將正方體與之相對(duì)比,通過探究二者之間的相同點(diǎn)和不同點(diǎn)來引入正方體的概念. 以舊帶新,不僅可以簡(jiǎn)單輕松地引入新的概念,而且可以鞏固加深對(duì)舊概念的理解.
二、概念理解階段
概念理解是概念教學(xué)的核心,也是概念教學(xué)的重難點(diǎn). 很多時(shí)候?qū)W生認(rèn)識(shí)了新的概念,但是對(duì)新概念的理解只是停留在表層部分,甚至于有的學(xué)生根本沒有理解概念的本質(zhì). 在概念理解階段,教師可以從兩個(gè)方面入手. 一方面是利用概念的對(duì)比加深理解. 小學(xué)數(shù)學(xué)概念中存在很多相似相通的概念,這些概念表面上看起來極為相似,但是實(shí)際上卻有著本質(zhì)的區(qū)別. 比如“除”和“除以”,這兩個(gè)概念是小學(xué)數(shù)學(xué)中極容易混淆的兩個(gè)概念,因此在學(xué)習(xí)時(shí)要將這兩個(gè)概念加以對(duì)比和區(qū)分,在經(jīng)過對(duì)比后可以發(fā)現(xiàn),“除”和“除以”都表示除法運(yùn)算,但是卻有著不同的讀法,被除數(shù)在前時(shí)讀“除以”,除數(shù)在前時(shí)讀“除”,這比將兩個(gè)概念分別進(jìn)行理解要容易得多. 另一方面是在實(shí)踐中加深理解. 概念的理解如果只停留在理論的理解上,就不能說是真正的理解,必須把概念放到實(shí)踐中去檢驗(yàn)和應(yīng)用,才能對(duì)概念有一個(gè)更深層次的理解. 在此仍以上文中提到的“平均數(shù)”的概念為例. 學(xué)生在認(rèn)識(shí)了“平均數(shù)”的概念之后,并不清楚“平均數(shù)”到底可以用來干什么,如果不把“平均數(shù)”應(yīng)用到實(shí)際生活當(dāng)中,那么過不了多久“平均數(shù)”的概念又會(huì)從學(xué)生的印象中消失,重新成為陌生的概念,因而必須在實(shí)際生活中應(yīng)用“平均數(shù)”,才能做到真正的理解和掌握. 教師可以在課堂上組織學(xué)生玩游戲,游戲的前提是要將學(xué)生分成人數(shù)相等的幾組,教師把這個(gè)任務(wù)交給學(xué)生去完成,學(xué)生在分配人數(shù)時(shí),不僅會(huì)用到“平均數(shù)”的概念,而且掌握了計(jì)算“平均數(shù)”的方法. 游戲過后,教師可以問學(xué)生:“同學(xué)們,剛才在分配人數(shù)的時(shí)候,你們是怎么分的呢?用到了哪些我們學(xué)過的知識(shí)呢?”學(xué)生便會(huì)展開一場(chǎng)熱烈的討論,“平均數(shù)”的概念也由此深入人心.
三、概念鞏固階段
數(shù)學(xué)概念的學(xué)習(xí)并不僅僅要求學(xué)生能夠理解概念,也要在后續(xù)的學(xué)習(xí)中不斷地復(fù)習(xí)和鞏固. 首先可以通過習(xí)題鞏固. 習(xí)題在數(shù)學(xué)課堂教學(xué)中的重要作用可想而知,學(xué)習(xí)質(zhì)量的高低需要通過習(xí)題來進(jìn)行檢驗(yàn)和提高. 學(xué)生可以在大大小小的考試中得到鞏固訓(xùn)練,也可以從教材中選擇一些習(xí)題進(jìn)行針對(duì)性的鞏固訓(xùn)練. 教材中的課后習(xí)題大致上分為基礎(chǔ)題、提高題和探究應(yīng)用題三種類型,這些題目是編書者通過層層篩選之后得到的,是習(xí)題中的精華,其中有很大一部分是以實(shí)際生活中的實(shí)例為背景改編而成的,學(xué)生可以結(jié)合自身的學(xué)習(xí)能力和學(xué)習(xí)效率選擇適合自己的習(xí)題,盡可能的在做題的過程中查漏補(bǔ)缺,提高學(xué)習(xí)效率. 其次是通過歸納整理達(dá)到鞏固的效果. 學(xué)生在學(xué)習(xí)完一個(gè)章節(jié)之后,可以把學(xué)過的概念進(jìn)行歸納整理,從整體上把握和理解概念. 比如在學(xué)完“分?jǐn)?shù)”的所有概念之后,可以讓學(xué)生歸納整理所有與“分?jǐn)?shù)”相關(guān)的知識(shí),總結(jié)“分?jǐn)?shù)”中“分子”與“分母”的概念;列舉出“分?jǐn)?shù)”的基本性質(zhì);分析比較“分?jǐn)?shù)”與“百分?jǐn)?shù)”、“分?jǐn)?shù)”與“除法”的區(qū)別和聯(lián)系. 經(jīng)過這一系列的歸納總結(jié)之后,才能在更深刻地掌握“分?jǐn)?shù)”概念的同時(shí)形成“分?jǐn)?shù)”的概念體系,從而達(dá)到學(xué)習(xí)的最高境界.
總之,小學(xué)數(shù)學(xué)的概念教學(xué)是學(xué)生學(xué)好數(shù)學(xué)的基礎(chǔ),在數(shù)學(xué)教學(xué)中具有重要的地位,也是小學(xué)生打好數(shù)學(xué)根基的基本前提,教師在教學(xué)過程中要遵循概念教學(xué)“三步走”的原則,給小學(xué)的數(shù)學(xué)學(xué)習(xí)夯下堅(jiān)實(shí)的基礎(chǔ).
【參考文獻(xiàn)】
[1]劉文萍.淺談小學(xué)數(shù)學(xué)概念教學(xué)的基本策略[M].小學(xué)數(shù)學(xué)教育,2010(6).
[2]孫少輔.小學(xué)數(shù)學(xué)概念教學(xué)[M].北京:光明日?qǐng)?bào)出版社,2008.
[3]皮連生. 數(shù)學(xué)學(xué)習(xí)與教學(xué)設(shè)計(jì)(小學(xué)卷)[M]. 上海教育出版社,2005.