• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    小粒野生稻導(dǎo)入系子粒大小和形狀的QTL定位

    2014-10-20 11:10:08劉開(kāi)強(qiáng)等
    湖北農(nóng)業(yè)科學(xué) 2014年16期

    劉開(kāi)強(qiáng)等

    摘要:通過(guò)AB-QTL分析法,應(yīng)用Windows QTL Cartographer 2.5軟件,于2009~2010年分別在武昌和南寧對(duì)一套小粒野生稻(Oryza minuta)導(dǎo)入系的子粒大小、粒長(zhǎng)、粒寬與子粒長(zhǎng)寬比進(jìn)行QTL定位。2009年檢測(cè)到18個(gè)QTLs,其中千粒重、粒長(zhǎng)、粒寬和子粒長(zhǎng)寬比分別檢測(cè)到6、4、5和3個(gè)QTLs,單個(gè)QTL可解釋表型貢獻(xiàn)率的5.18%~21.33%;2010年檢測(cè)到12個(gè)QTLs,其中千粒重、粒長(zhǎng)、粒寬和子粒長(zhǎng)寬比分別檢測(cè)到6、2、2和2個(gè)QTLs,單個(gè)QTL可解釋表型貢獻(xiàn)率的6.68%~16.55%。兩年均檢測(cè)到的QTLs共有10個(gè),其中4個(gè)新鑒定的QTLs的表型貢獻(xiàn)率較大,分別為qTGW-9.2、qTGW-12、qGL-9和qGW-12,其增效基因均來(lái)自于小粒野生稻。這些攜帶有利QTL的小粒野生稻導(dǎo)入系是進(jìn)行水稻(Oryza sativa)產(chǎn)量和品質(zhì)改良的優(yōu)良材料。

    關(guān)鍵詞:小粒野生稻(Oryza minuta);導(dǎo)入系;子粒大?。涣P?;QTL定位

    中圖分類(lèi)號(hào):Q78 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)16-3731-05

    Abstract: Quantitative trait loci of grain size and shape were mapped with substitution lines from Oryza minuta with software Windows QTL Cartographer 2.5 in Wuchang and Nanning in 2009 and 2010. In 2009,18 QTLs were identified,among which 6, 4, 5 and 3 QTLs were detected for grain size,grain length,grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 5.18% to 21.33%; In 2010,12 QTLs were identified,among which 6, 2, 2 and 2 QTLs were detected for grain size,grain length, grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 6.68% to 16.55%. A total of 10 QTLs were detected in both two years, among which 4 QTLs newly detected have large phenotypic contribution rate explained by individual QTLs, named as qTGW-9.2, qTGW-12, qGL-9 and qGW-12, with efficiency genes from Oryza minuta. These substitution lines carrying favorable QTLs were elite materials for improving rice yield and quality.

    Key words: Oryza minuta; substitution line; grain size; grain shape; QTL mapping

    水稻(Oryza sativa)是重要的糧食作物,是全球一半以上人口主要的食物和營(yíng)養(yǎng)來(lái)源。高產(chǎn)、優(yōu)質(zhì)一直是水稻的遺傳與育種研究的關(guān)鍵所在。不斷提高水稻產(chǎn)量和品質(zhì),是保障我國(guó)農(nóng)業(yè)可持續(xù)發(fā)展的重要條件。子粒大小是水稻產(chǎn)量的主要構(gòu)成因子之一,不僅與水稻的產(chǎn)量顯著正相關(guān),還嚴(yán)重影響稻米的品質(zhì);粒形(粒長(zhǎng)、粒寬及子粒長(zhǎng)寬比)直接決定稻米的外觀品質(zhì)和加工品質(zhì),因此發(fā)掘水稻子粒大小和粒形的關(guān)鍵基因,獲得具有自主知識(shí)產(chǎn)權(quán)的高產(chǎn)、優(yōu)質(zhì)基因,對(duì)培育高產(chǎn)、優(yōu)質(zhì)水稻新品種具有重要意義。

    目前,已克隆了水稻中幾個(gè)影響子粒大小和形狀的數(shù)量性狀基因座(Quantitative trait loci, QTL)。如控制水稻粒長(zhǎng)和粒重的QTL GS3(Grain Size 3),編碼了一個(gè)預(yù)測(cè)的膜蛋白[1]。GS3通過(guò)抑制細(xì)胞分裂,調(diào)控水稻粒長(zhǎng)和粒重[1,2]。GS3在水稻中的同源基因DEP1(Dense and Erect Panicle)影響種子的密度和穗型,同時(shí)也調(diào)控了粒長(zhǎng)[3,4]。最近報(bào)道的控制粒長(zhǎng)的QTL qGL3,編碼了一個(gè)預(yù)測(cè)的磷酸酶蛋白(OsPPKL1),通過(guò)抑制細(xì)胞分裂,調(diào)控粒長(zhǎng)和粒重[5,6]。qGL3能夠使Cyclin-T1;3基因去磷酸化,從而導(dǎo)致子粒變小[5]。因此,qGL3可能通過(guò)對(duì)Cyclin-T1;3基因進(jìn)行調(diào)控間接控制細(xì)胞分裂,從而影響粒長(zhǎng)和粒重。目前已克隆了幾個(gè)影響水稻粒寬的QTLs。其中QTL GW2編碼了一個(gè)E3泛素連接酶,可能參與降解促進(jìn)細(xì)胞分裂的蛋白,從而負(fù)調(diào)控水稻粒寬、粒重及產(chǎn)量[7]。另外QTL qSW5/GW5編碼了一個(gè)未知功能蛋白,能夠結(jié)合多聚泛素(polyubiquitin)[8,9],表明GW5可能參與蛋白質(zhì)的降解途徑。GW2和GW5的研究結(jié)果表明泛素或蛋白質(zhì)降解途徑在子粒大小和重量調(diào)控中起著關(guān)鍵作用。QTL GS5編碼了一個(gè)預(yù)測(cè)的絲氨酸羧肽酶(serine carboxypeptidase),是粒寬和粒重的正調(diào)控因子。GS5過(guò)量表達(dá)導(dǎo)致子粒變大,而T-DNA插入的gs5突變體導(dǎo)致子粒變小[10]。GS5主要是通過(guò)促進(jìn)細(xì)胞分裂影響水稻粒寬和粒重。GW8編碼了SPL16轉(zhuǎn)錄因子,通過(guò)促進(jìn)細(xì)胞分裂調(diào)控粒寬[11]。

    目前,我國(guó)在水稻產(chǎn)量(粒重等)基因克隆研究方面取得了長(zhǎng)足發(fā)展,已克隆的調(diào)控子粒大小與重量的基因大多已在水稻育種中得到廣泛應(yīng)用。例如,南方秈稻品種主要利用GS3的缺失功能等位基因[1,2],而北方粳稻主要利用GS3的同源基因DEP1[3,4]。因此,為了進(jìn)一步提高我國(guó)水稻產(chǎn)量,需要發(fā)掘新的調(diào)控水稻子粒大小與重量等高產(chǎn)性狀的關(guān)鍵基因,在現(xiàn)有品種的基礎(chǔ)上通過(guò)遺傳改良提高水稻產(chǎn)量。

    四倍體小粒野生稻(Oryza minuta)擁有多種病蟲(chóng)害抗性,品質(zhì)優(yōu)良,是優(yōu)異的種質(zhì)資源[12]。在前期的研究中,從國(guó)際水稻所引進(jìn)了小粒野生稻種質(zhì)資源,通過(guò)多年鑒定發(fā)現(xiàn)其稻米品質(zhì)優(yōu)良。因此構(gòu)建了一套小粒野生稻導(dǎo)入系[13],期望利用其發(fā)掘?qū)υ耘嗟居欣膬?yōu)質(zhì)基因。本研究采用AB-QTL(Advanced backcross quantitative trait loci,AB-QTL)分析法對(duì)小粒野生稻導(dǎo)入系群體進(jìn)行子粒大小和粒形的QTL分析,希望從小粒野生稻中發(fā)掘?qū)υ耘嗟居欣淖恿4笮『土P蜵TL,獲得有利的QTL連鎖標(biāo)記,以期為培育高產(chǎn)、優(yōu)質(zhì)水稻新品種提供實(shí)踐依據(jù)和重要基因資源。

    1 材料與方法

    1.1 試驗(yàn)材料

    本研究供試材料是前期的研究工作中以小粒野生稻(國(guó)際水稻研究所種質(zhì)資源庫(kù)材料,編號(hào)Acc.No.101133)為供體親本,IR24為受體親本,構(gòu)建的一套包括216個(gè)株系的小粒野生稻導(dǎo)入系[13]。2009年夏季在華中農(nóng)業(yè)大學(xué)水稻試驗(yàn)基地(湖北武漢),2010年春季在廣西農(nóng)業(yè)科學(xué)院水稻研究所(廣西南寧),分別種植216份BC4F2株系群體和IR24,每點(diǎn)設(shè)兩次重復(fù),按隨機(jī)區(qū)組設(shè)計(jì),每個(gè)小區(qū)3行,每行10株,種植密度為16.5 cm×18.9 cm,選取中間8株考察千粒重(TGW)、粒長(zhǎng)(GL)、粒寬(GW)、子粒長(zhǎng)寬比(GL/GW)4個(gè)性狀。分析數(shù)據(jù)取8個(gè)單株的平均值。

    1.2 性狀的相關(guān)分析

    各性狀間的相關(guān)分析在Excel軟件中完成,數(shù)據(jù)為每點(diǎn)兩次重復(fù)的平均值。

    1.3 SSR分析

    提取216份導(dǎo)入系的DNA,獲得其基因型。DNA的提取、PCR反應(yīng)、電泳和銀染檢測(cè)的方法均參照文獻(xiàn)[13]。

    1.4 QTL分析

    前期已構(gòu)建了164個(gè)標(biāo)記,覆蓋水稻基因組1 671.7 cM的遺傳連鎖圖[13]。QTL分析均采用Windows QTL Cartographer 2.5 軟件[14],先應(yīng)用復(fù)合區(qū)間作圖法(composite interval mapping, CIM)分析,挑選LOD>3.0的QTL,然后應(yīng)用多區(qū)間作圖法(Multiple interval mapping, MIM) 對(duì)這些QTL進(jìn)行驗(yàn)證。隨后優(yōu)化各個(gè)QTL 的位置,再檢測(cè)其顯著性,并確定其存在。QTL的命名方法按照Mccouch等[15]的命名原則進(jìn)行。

    2 結(jié)果與分析

    2.1 導(dǎo)入系及親本性狀的表現(xiàn)

    對(duì)導(dǎo)入系群體(BC4F2)的4個(gè)農(nóng)藝性狀進(jìn)行考察分析,所獲數(shù)據(jù)基本呈連續(xù)分布狀態(tài)且有廣泛分布頻率,為多基因控制的數(shù)量性狀。由表l可見(jiàn),導(dǎo)入系千粒重、粒長(zhǎng)和子粒長(zhǎng)寬比的平均值雖介于兩親本值中間,但偏向高值親本IR24;粒寬的平均值高于高值親本IR24。

    2.2 導(dǎo)入系各性狀間的相關(guān)性分析

    由表2可見(jiàn),千粒重與粒長(zhǎng)、粒寬呈極顯著正相關(guān),但與子粒長(zhǎng)寬比呈顯著負(fù)相關(guān)。粒長(zhǎng)與子粒長(zhǎng)寬比呈極顯著正相關(guān),而與粒寬呈顯著負(fù)相關(guān);粒寬與子粒長(zhǎng)寬比呈極顯著負(fù)相關(guān)。

    2.3 導(dǎo)入系各性狀的QTL定位分析

    由排列測(cè)驗(yàn)1 000次(permutation=1 000,P=0.05)確定各性狀的LOD閾值,結(jié)果表明在武漢和南寧其平均值均接近3.0。在相應(yīng)的閾值下對(duì)各性狀進(jìn)行了分析,共檢測(cè)到20個(gè)QTLs,這些QTLs的表型貢獻(xiàn)率介于5.18%~21.33%(表3)。由于所有性狀受環(huán)境的影響較大,對(duì)兩地的各性狀數(shù)據(jù)分別進(jìn)行了定位分析如表3所示,由表3可知在武漢共檢測(cè)到18個(gè)QTLs,其中有8個(gè)來(lái)自于小粒野生稻,占44.4%;在南寧共檢測(cè)到12個(gè)QTLs,其中來(lái)自于小粒野生稻的有利QTLs為7個(gè),占58.3%。

    千粒重(TGW):8個(gè)控制千粒重的QTLs分別位于第1、3、7、9、12染色體,其中,第1、7、9染色體上有2個(gè),第3和12染色體上各有1個(gè)。在武漢和南寧分別能解釋總共62.97%和67.37%的表型變異。位于第12染色體上的qTGW-12效應(yīng)最大,在武漢和南寧分別能解釋15.41%和16.55%的表型變異,其增效基因來(lái)自于小粒野生稻。

    粒長(zhǎng)(GL):4個(gè)控制粒長(zhǎng)的QTLs分別位于第3、5、9染色體,其中,第3染色體上有2個(gè),第5和9染色體上各有1個(gè)。在武漢和南寧分別能解釋44.07%和21.11%的表型變異。位于第9染色體上的qGL-9效應(yīng)最大,能解釋18.28%的變異,其增效基因來(lái)自于小粒野生稻。

    粒寬(GW):5個(gè)控制粒寬的QTLs分別位于第1、4、7、12染色體,其中,第1染色體上有2個(gè),第4、7和12染色體上各有1個(gè)。在武漢和南寧分別能解釋48.33%和22.66%的表型變異。位于第12染色體上的qGW-12效應(yīng)最大,能解釋25.33%的表型變異,其增效基因來(lái)自于小粒野生稻。

    子粒長(zhǎng)寬比(GL/GW):3個(gè)控制子粒長(zhǎng)寬比的QTLs分別位于第4、7、12染色體,在武漢和南寧分別能解釋25.44%和19.00%的表型變異。位于第7染色體上的qGL/GW-7效應(yīng)最大,能解釋11.26%的表型變異,其增效基因來(lái)自于IR24。

    3 討論

    同栽培稻相比,野生稻基因組中與產(chǎn)量有關(guān)的不利基因出現(xiàn)的頻率遠(yuǎn)遠(yuǎn)高于栽培稻。Xiao等[16]利用AB-QTL策略來(lái)檢測(cè)普通野生稻中有利于改良栽培稻性狀的QTL。對(duì)12個(gè)性狀進(jìn)行QTL定位。一共定位了68個(gè)QTLs,其中35個(gè)(占51.0%)有利等位基因來(lái)自表型較差的普通野生稻親本。隨后不同研究者利用相同方法檢測(cè)到來(lái)自于普通野生稻的有利QTLs占33.0%~74.0%[17-19]。Yoon等[20]應(yīng)用至少含有51個(gè)重穎野生稻片段的中間材料與一份韓國(guó)粳稻品種雜交獲得的F2∶3家系,對(duì)13個(gè)農(nóng)藝性狀進(jìn)行了QTLs分析,共檢測(cè)到39個(gè)的QTLs,正效的QTLs有18(46.2%)個(gè)來(lái)自于重穎野生稻。Rahman等[21]應(yīng)用至少含有14個(gè)小粒野生稻片段的中間材料與一份韓國(guó)粳稻品種雜交獲得的F2∶3家系,對(duì)16個(gè)農(nóng)藝性狀進(jìn)行QTLs分析,共檢測(cè)到36個(gè)QTLs,其中有22個(gè)與產(chǎn)量及產(chǎn)量相關(guān)性狀的QTLs為首次報(bào)道。其中來(lái)自于小粒野生稻正效QTLs占57.0%。

    通過(guò)以上分析可見(jiàn),總體而言野生稻中不利基因出現(xiàn)頻率高,但在性狀之間存在差異,因而在利用野生稻資源時(shí)應(yīng)視具體性狀而論。另外,不同染色體出現(xiàn)有利基因的頻率也存在差異。本研究共檢測(cè)到20個(gè)QTLs,其中來(lái)自于小粒野生稻的有利QTLs有9個(gè),占45.0%,分布在1、7、9和12條染色體上,有利基因出現(xiàn)在第9和12染色體上頻率最高。

    本研究檢測(cè)到的QTLs與其他群體定位的QTLs結(jié)果進(jìn)行比較,發(fā)現(xiàn)許多QTLs是重疊或相同的(表3),其中部分為首次報(bào)道。在被檢測(cè)到的20個(gè)QTLs中,有10個(gè)為首次報(bào)道。共定位到8個(gè)控制千粒重的QTLs,其中4個(gè)早前已有報(bào)道,分別為qTGW-1.1、qTGW-1.2[22]、qTGW-3[17]、qTGW-9.1[18]。4個(gè)新的QTLs分別為qTGW-7.1、qTGW-7.2、qTGW-9.2和qTGW-12,其中qTGW-7.2僅在武漢被檢測(cè)到,qTGW-7.1僅在南寧被檢測(cè)到,其增效基因分別來(lái)自小粒野生稻和IR24。而qTGW-9.2和qTGW-12在兩地均被檢測(cè)到,且表型貢獻(xiàn)率較大,其增效基因都來(lái)自小粒野生稻。3個(gè)粒型性狀共檢測(cè)到12個(gè)QTLs,其中6個(gè)為已有報(bào)道,分別為qGW-1.1、qGW-1.2[22]、qGL-3.1、qGW-7[23]、qGL-3.2[17]、qGL-5[24]。而qGL-9、qGW-4、qGW-12、qGL/GW-4、qGL/GW-7、qGL/GW-12均為首次報(bào)道。其中表型貢獻(xiàn)率較大的有2個(gè)分別為qGL-9和qGW-12,在武昌和南寧均被檢測(cè)到,表型貢獻(xiàn)率的平均值分別為14.26%和17.32%,增效基因均來(lái)自小粒野生稻。

    另外,本研究中的4個(gè)性狀均檢測(cè)到來(lái)自小粒野生稻的正效QTLs,對(duì)水稻的產(chǎn)量和品質(zhì)具有改良潛力。這些來(lái)自小粒野生稻的正效QTLs存在的形式多種多樣,有的單獨(dú)存在,有的處于多效QTLs區(qū)間呈簇狀分布。因此針對(duì)不同QTLs的特點(diǎn),在進(jìn)一步利用時(shí)必須采取不同的方法區(qū)別對(duì)待。對(duì)一些控制單一性狀的QTLs位點(diǎn),可以直接利用。如第5染色體上RM548~RM509標(biāo)記區(qū)間檢測(cè)到控制粒長(zhǎng)的QTLs。而對(duì)于多效性的QTLs,由于控制多個(gè)性狀,所以在利用時(shí)應(yīng)多個(gè)性狀相互兼顧。如第9染色體上RM215~RM205標(biāo)記區(qū)間檢測(cè)到控制千粒重和粒長(zhǎng)的QTLs,在增加粒重的同時(shí)增加粒長(zhǎng),很可能將高產(chǎn)與優(yōu)質(zhì)相結(jié)合。而對(duì)第12染色體上RM19~RM512標(biāo)記區(qū)間檢測(cè)到一個(gè)控制千粒重和粒寬的QTLs,在增加產(chǎn)量的同時(shí),粒寬也增加,很可能對(duì)稻米品質(zhì)產(chǎn)生負(fù)效應(yīng),在利用時(shí)應(yīng)綜合考慮。

    參考文獻(xiàn):

    [1] FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112:1164-1171.

    [2] MAO H, SUN S, YAO J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. PNAS,2010,107:19579-19584.

    [3] HUANG X, QIAN Q, LIU Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009,41:494-497.

    [4] ZHOU Y, ZHU J, LI Z, et al. Deletion in a Quantitative Trait Gene qPE9-1 Associated With Panicle Erectness Improves Plant Architecture During Rice Domestication[J]. Genetics,2009,183:315-324.

    [5] QI P, LIN Y, SONG X, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3[J]. Cell Res,2012,22:1666-1680.

    [6] ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. PNAS,2012,109:21534-21539.

    [7] SONG X, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet,2007,39:623-630.

    [8] SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat Genet, 2008,40:1023-1028.

    [9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

    [10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

    [11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

    [12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

    [13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

    [14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

    [15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

    [16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

    [17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

    [18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

    [19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

    [20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

    [21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

    [22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

    [23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

    [24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

    (責(zé)任編輯 韓 雪)

    [9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

    [10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

    [11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

    [12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

    [13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

    [14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

    [15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

    [16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

    [17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

    [18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

    [19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

    [20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

    [21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

    [22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

    [23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

    [24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

    (責(zé)任編輯 韓 雪)

    [9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

    [10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

    [11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

    [12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

    [13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

    [14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

    [15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

    [16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

    [17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

    [18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

    [19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

    [20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

    [21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

    [22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

    [23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

    [24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

    (責(zé)任編輯 韓 雪)

    杭锦后旗| 合水县| 务川| 两当县| 财经| 嘉善县| 大丰市| 聊城市| 重庆市| 广水市| 和政县| 邹平县| 庆城县| 宜兰市| 仁寿县| 大同县| 唐山市| 阿拉善盟| 广南县| 东港市| 康保县| 榆林市| 新闻| 新昌县| 宁国市| 五河县| 洛阳市| 株洲市| 常德市| 会同县| 上林县| 兴文县| 宜兰县| 临汾市| 泽州县| 灵璧县| 民和| 白水县| 靖西县| 龙南县| 周宁县|