戴永勝+陳相治++
摘要: 提出了一種基于LTCC多級(jí)結(jié)構(gòu)實(shí)現(xiàn)高性能微型帶通濾波器的實(shí)現(xiàn)方法。該濾波器電路由6個(gè)由電感耦合的諧振腔組成。在一般抽頭式梳狀線濾波器設(shè)計(jì)的基礎(chǔ)上,引入了交叉耦合,形成傳輸零點(diǎn),并結(jié)合電路仿真以及三維電磁場(chǎng)仿真,輔之以DOE的設(shè)計(jì)方法,設(shè)計(jì)出了一種尺寸小、頻率選擇性好、邊帶陡峭、阻帶抑制高的濾波器。實(shí)際測(cè)試結(jié)果與仿真結(jié)果吻合較好,中心頻率為2.925 GHz,其1 dB帶寬為170 MHz,在1~2.703 GHz頻率上的衰減均優(yōu)于35 dB,在3.147~6 GHz頻率上的衰減均優(yōu)于35 dB,體積僅為4.5 mm×3.4 mm×1.5 mm。
關(guān)鍵詞: 高性能帶通濾波器; LTCC; 諧振腔; 傳輸零點(diǎn)
中圖分類號(hào): TN911?34 文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào): 1004?373X(2014)08?0079?03
Achievement of high?performance miniature?bandpass filter based on LTCC multilevel?structure
DAI Yong?sheng, CHEN Xiang?zhi
(School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)
Abstract: An implementation method of high?performance?miniature?bandpass filter based on LTCC multistage?structure is proposed. The filter?circuit is composed of six?resonant cavities composed of inductive coupling. The transmission zeros were realized by cross?coupling. Based on the design of the tapped combline filter, a small size filter with high frequency selectivity, steep sideband and high stopband rejection was designed with the help of DOE, circuit simulation and 3?D EM simulation. The measured results of the filter agree well with the electromagnetic simulation. Simulation and measured results show that the bandpass filter has a central frequency of 2.925 GHz, the 1 dB bandwidth is 170 MHz, the stop?band attenuation is better than 35 dB at 1~2.703 GHz and 35 dB at 3.147~6 GHz. The final size of the fabricated filter is only 4.5 mm×3.4 mm×1.5 mm.
Keywords: high?performance bandpass filter; LTCC; resonant cavity; transmission zero
0引言
隨著無線通信和國(guó)防精密電子設(shè)備的發(fā)展,微波/射頻領(lǐng)域的發(fā)展趨勢(shì)愈來愈向高性能、低成本和小型化發(fā)展。在微波頻段,運(yùn)用LTCC(低溫共燒陶瓷即低溫共燒陶瓷)技術(shù)實(shí)現(xiàn)無源器件,如濾波器,采用三維集成的方式,具有結(jié)構(gòu)緊湊,易于集成,設(shè)計(jì)方便等突出優(yōu)勢(shì),因而成為這個(gè)領(lǐng)域的研究熱點(diǎn)。帶通濾波器是無線通信系統(tǒng)中的重要無源元件 [1]。RF濾波器作為射頻收發(fā)模塊和無線通信系統(tǒng)中的重要無源元件,一直是微波射頻領(lǐng)域研究的熱點(diǎn)。LTCC技術(shù)具有三維集成的優(yōu)勢(shì),從而在微波頻帶被廣泛用于加工各種微波無源器件,實(shí)現(xiàn)了高度集成的無源元件。同時(shí)LTCC技術(shù)也是實(shí)現(xiàn)SIP和SOP技術(shù)的重要平臺(tái)?;贚TCC技術(shù)設(shè)計(jì)的濾波器相比其他技術(shù)具有體積小,成本低,性能好,可靠性高等優(yōu)勢(shì),所以LTCC技術(shù)是未來無線通信系統(tǒng)的發(fā)展趨勢(shì)[2?3]隨著無線通信系統(tǒng)的快速發(fā)展,頻率資源越來越緊張,當(dāng)濾波器被用在多個(gè)相鄰的中心頻率的系統(tǒng)中,為了減少相鄰信道之間的相互干擾,需要用到邊帶陡峭和阻帶抑制高的濾波器。尤其在一些復(fù)雜的尖端防御設(shè)備中,為了確保系統(tǒng)性能,系統(tǒng)對(duì)濾波器的電性能和尺寸有著特別苛刻的要求[4?5]。
本文設(shè)計(jì)了一種LTCC梳狀線結(jié)構(gòu)的六級(jí)帶通濾波器的中心頻率f0=2.925 GHz,通帶寬度170 MHz,通帶內(nèi)起伏<1 dB,帶內(nèi)駐波<1.5, 通過引入交叉耦合產(chǎn)生傳輸零點(diǎn)的方法在LTCC濾波器的設(shè)計(jì)中可以很好的實(shí)現(xiàn)[6?8],從而達(dá)到具有邊帶陡峭和高抑制的高性能。而濾波器尺寸僅為4.5 mm×3.4 mm×1.5 mm。
1理論分析
1.1原理分析
圖1是六階諧振單元帶通濾波器的電路圖,該濾波器的實(shí)現(xiàn)是基于六階耦合諧振單元帶通濾波器的原型[9]。
圖1 六階耦合諧振單元帶通濾波器的電路圖
[Li=lπu8archeπw2bH] (1)
[Ci=8lεarcheπw2bπF] (2)
[Cri=lεwdF] (3)
[f0=12πLC=12πLiCi+Cri] (4)
[Mij=f21-f22f21+f22] (5)
式中:f0為濾波器的中心頻率(單位:Hz);w為帶狀線的寬度;b為帶狀線上下兩塊接地板的距離;l為帶狀線的長(zhǎng)度;d為相鄰兩根帶狀線間距;μ為磁導(dǎo)率;ε介電常數(shù);f1和f2是利用HFSS的本征模求解器,設(shè)置的兩個(gè)本征頻率。
1.2零點(diǎn)產(chǎn)生原理分析
微波電路中傳輸零點(diǎn)的形成方式有很多種,例如信號(hào)通過不同的電路耦合形成反相抵消、通過一個(gè)串聯(lián)諧振信號(hào)流入地、在主路加入并聯(lián)諧振器進(jìn)行全反射等,在這里只分析第一種情形,即利用交叉耦合原理形成傳輸零點(diǎn)[10?12]。圖2是交叉耦合相位示意圖。微波信號(hào)通過第一諧振級(jí)之后,其中一部分通過主路的第二諧振級(jí)、第三諧振級(jí)、第四諧振級(jí)、第五諧振級(jí)的磁耦合到第六諧振級(jí),另一部分信號(hào)通過交叉路的電耦合從第二諧振級(jí)傳輸?shù)降谖逯C振級(jí)。根據(jù)相位分析,信號(hào)通過磁耦合相移-90°,通過電耦合相移+90°,諧振頻點(diǎn)的信號(hào)通過諧振器相移為0°,比諧振頻率低的信號(hào)相移+90°,比諧振頻率高的信號(hào)相移-90°。根據(jù)圖2計(jì)算相位:對(duì)于比諧振頻率低的信號(hào),主路相位=-90°+90°-90°+90°-90°+90°-90°
+90°-90°=-90°,交叉路相位=-90°+90°+90°+90°-90°=+90°,兩路信號(hào)反相抵消形成零點(diǎn);然而對(duì)于比諧振頻率高的信號(hào),主路相位=-90°-90°-90°-90°-90°-90°-
90°-90°-90°=-90°,交叉路相位=-90°-90°+90°-90°-90°=+90°,兩路信號(hào)也反相抵消形成零點(diǎn),所以此結(jié)構(gòu)在通帶兩邊各有一個(gè)零點(diǎn)。
圖2 交叉耦合相位示意圖
2三維實(shí)現(xiàn)方式
2.1設(shè)計(jì)方法與流程
(1) 根據(jù)給定的技術(shù)指標(biāo),確定濾波器的級(jí)數(shù),選擇合適的電路拓?fù)浣Y(jié)構(gòu) [13?14];
(2) 運(yùn)用帶狀線計(jì)算公式以及HFSS的本征模求解器計(jì)算出單個(gè)諧振單元的大??;
(3) 利用HFSS和雙模耦合系數(shù)提取的方法確定各諧振級(jí)間的耦合系數(shù),從而確定各個(gè)相鄰諧振級(jí)之間的耦合距離;
(4) 通過調(diào)整耦合電容精確控制零點(diǎn)位置,實(shí)現(xiàn)技術(shù)指標(biāo)的衰減要求。使用HFSS軟件優(yōu)化仿真,得到六階濾波器的三維模型;
(5) 運(yùn)用DOE(Design of Experiment)的設(shè)計(jì)方法對(duì)模型的整體結(jié)構(gòu)進(jìn)行微調(diào),得到性能優(yōu)異的六階濾波器的最終三維模型;
(6) 提取仿真數(shù)據(jù),采用LTCC技術(shù)來制造該濾波器,并將測(cè)試的頻率響應(yīng)特性曲線與設(shè)計(jì)仿真結(jié)果進(jìn)行比較,驗(yàn)證該濾波器設(shè)計(jì)方法的正確性。
2.2六級(jí)濾波器的三維結(jié)構(gòu)
圖3是六級(jí)LTCC濾波器設(shè)計(jì)的內(nèi)部三維結(jié)構(gòu)示意圖。設(shè)計(jì)該濾波器使用的陶瓷介電常數(shù)為9.2,損耗角正切為0.002。如圖3所示,三維模型包括6層金屬圖形,其中第一層和第六層為接地層。第二層和第四層為加載電容層Cr層,第三層是電感電容L,C層,從圖3中可以看出,第二、第三和第四層的金屬可以等效為6個(gè)并聯(lián)諧振單元。第五層為一個(gè)交叉耦合層,第五層的Z型交叉耦合結(jié)構(gòu)與第二和第五諧振級(jí)之間形成交叉耦合,產(chǎn)生耦合電容C14。
3仿真與測(cè)試結(jié)果
在完成整體設(shè)計(jì)之后,對(duì)模型進(jìn)行的微調(diào)以滿足指標(biāo)要求,在相應(yīng)的LTCC生產(chǎn)線完成加工,完成的濾波器樣品和測(cè)試夾具如圖4所示。圖4是采用LTCC技術(shù)來實(shí)現(xiàn)濾波器設(shè)計(jì)的樣品,該濾波器的加工c采用了相對(duì)介電常數(shù)為9.2,損耗角為0.002的陶瓷介質(zhì),共燒的金屬為銀,其共燒厚度控制在為10 μm左右。
圖3 六級(jí)基本型LTCC濾波器的內(nèi)部三維立體結(jié)構(gòu)示意圖
圖4 濾波器實(shí)物及測(cè)試夾具
圖5、圖6分別是該濾波器的三維仿真曲線與實(shí)物測(cè)試曲線。利用安捷倫的矢網(wǎng)分析儀對(duì)該濾波器的S參數(shù)曲線進(jìn)行相應(yīng)的測(cè)試,從圖5、圖6可以看出,測(cè)試出的幅頻特性曲線與三維仿真曲線的一致性比較好。從仿真結(jié)果來看,在通帶2.84~3.01 GHz內(nèi)插損均小于3.5 dB,帶內(nèi)駐波均小于1.5。低阻帶從1~2.703 GHz頻率上的衰減均優(yōu)于35 dB。高阻帶從3.147~6 GHz頻率上的衰減均優(yōu)于35 dB。測(cè)試曲線與仿真曲線基本一致。這種具有邊帶陡峭和高阻帶抑制特性的高性能LTCC微型帶通濾波器的尺寸僅為:4.5 mm×3.4 mm×1.5 mm。
4結(jié)語(yǔ)
本文基于六階抽頭式耦合諧振帶通濾波器原型,在結(jié)構(gòu)上對(duì)傳統(tǒng)的抽頭式帶通濾波器進(jìn)行改進(jìn),設(shè)計(jì)了一款具有邊帶陡峭高阻帶抑制特性的高性能LTCC微型帶通濾波器。在六階帶通原型基礎(chǔ)上,引入交叉耦合結(jié)構(gòu),使得高低端阻帶各產(chǎn)生了相應(yīng)的傳輸零點(diǎn),滿足了系統(tǒng)對(duì)特殊頻點(diǎn)高抑制的指標(biāo)要求。生產(chǎn)出的濾波器測(cè)試曲線與三維仿真曲線吻合很好。此外該濾波器還具有尺寸小、結(jié)構(gòu)簡(jiǎn)單和易于設(shè)計(jì)等優(yōu)點(diǎn),可以廣泛應(yīng)用于國(guó)防精密電子設(shè)備以及RF無線通信系統(tǒng)中,在微波通信系統(tǒng)中有著廣闊的應(yīng)用前景。
圖5 濾波器的三維仿真曲線
圖6 濾波器的測(cè)試曲線
參考文獻(xiàn)
[1] LUCERO R, QUTTENEH W, PAVIO A, et al. Design of an LTCC switch diplexer front?end module for GSM DCS PCS applications [C]// Proceedings of 2001 Radio Frequency Integrated Circuits (RFIC) Symposium. Phoenix, AZ, USA: IEEE, 2001: 213?216.
[2] DAI Yong?sheng , TANG Xiong?xin, ZHOU Wen?kan, et al. A miniaturized LTCC low ?pass filter based on the lumped circuit model [C]// International Conference on Microwave and Millimeter Wave Technology. [S.l.]: ICMMT, 2010: 1578?1580.
[3] 李殷喬,紀(jì)建華,費(fèi)元春,等.基于LTCC 的Ka波段帶通濾波器的設(shè)計(jì)[J].固體電子學(xué)研究與進(jìn)展,2010,30(3):392?395.
[4] DAI Yong?sheng, YAO Y F, LI Bao?shan, et al. Design and implementation of an LTCC filter with high stopband rejection [C]// Proceedings of IEEE Internation Symposium on Radio?Frequency Integration Technology. Singapore: IEEE, 2009: 51?54.
[5] DAI Yong?sheng, LI Bao?shan, YE Zong?hua, et al. A miniaturized LTCC bandpass filter with low insertion loss and high image rejection within 6.5 to 7.1GHz frequency range [C]// Proceedings of Asia Pacific Microwave Conference. Singapore: IEEE, 2009: 1307?1309.
[6] YEUNG L K, WU K L. A compact second?order LTCC bandpass filter with two finite transmission zeros [J]. IEEE Transactions on MTT, 2003, 51(2): 337?341.
[7] ANGC W, LIN Y C, CHANGC Y. Realization oftransmission zeros in combline filters using aninductively coupled ground plane [J]. IEEE Transactions on MTT, 2003, 51(10): 2112?2118.
[8] LEUNG W Y, CHENG K K M, WU K L. Multilayer LTCC bandpass filter design with enhanced stopbandcharacteristics [J]. IEEE Microwave and WirelessComponents Ltters, 2002, 12(7): 240?242.
[9] POZAR D M. 微波工程[M].3版.北京:電子工業(yè)出版社,2006.
[10] TANG C W, LIN Y C, CHANG C Y. Realization of transmission zeros in combline filter using an auxiliary inductively coupled ground plane [J]. IEEE Transactions on Microwave Theory Tech, 2003, 51(10): 2112?2118.
[11] JOSHI H, CHAPPELL W J. Dual?band lumped?element band?pass filter [J]. IEEE Transactions on Microwave Theory Tech, 2006, 54(12): 4169?4177.
[12] DAI Yong?sheng S, YE Zong?hua, LI Bao?shan. A miniaturized and low insertion loss LTCC Filter with two finite transmission zeros for bluetooth application [C]// IEEE MTT?S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components. Chengdu: IEEE, 2008: 132?134.
[13] SONG H S, LEE Y S. A miniaturized 2.4GHz band multi?layer band?pass filter using capacitively loaded λ/4 slow?wave resonator [C]// IEEE MTT?S Int Microwave Symposium Digest. Philadelphia, PA, USA: IEEE, 2003, 1: 515?518.
[14] RAMBABU K, BORNEMANN J. Simplified analysis technique for the initial design of LTCC filters with all?capacitive coupling [J]. IEEE Transactions on Microwave Theory Tech, 2005, 53(5): 1787?1791.
[9] POZAR D M. 微波工程[M].3版.北京:電子工業(yè)出版社,2006.
[10] TANG C W, LIN Y C, CHANG C Y. Realization of transmission zeros in combline filter using an auxiliary inductively coupled ground plane [J]. IEEE Transactions on Microwave Theory Tech, 2003, 51(10): 2112?2118.
[11] JOSHI H, CHAPPELL W J. Dual?band lumped?element band?pass filter [J]. IEEE Transactions on Microwave Theory Tech, 2006, 54(12): 4169?4177.
[12] DAI Yong?sheng S, YE Zong?hua, LI Bao?shan. A miniaturized and low insertion loss LTCC Filter with two finite transmission zeros for bluetooth application [C]// IEEE MTT?S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components. Chengdu: IEEE, 2008: 132?134.
[13] SONG H S, LEE Y S. A miniaturized 2.4GHz band multi?layer band?pass filter using capacitively loaded λ/4 slow?wave resonator [C]// IEEE MTT?S Int Microwave Symposium Digest. Philadelphia, PA, USA: IEEE, 2003, 1: 515?518.
[14] RAMBABU K, BORNEMANN J. Simplified analysis technique for the initial design of LTCC filters with all?capacitive coupling [J]. IEEE Transactions on Microwave Theory Tech, 2005, 53(5): 1787?1791.
[9] POZAR D M. 微波工程[M].3版.北京:電子工業(yè)出版社,2006.
[10] TANG C W, LIN Y C, CHANG C Y. Realization of transmission zeros in combline filter using an auxiliary inductively coupled ground plane [J]. IEEE Transactions on Microwave Theory Tech, 2003, 51(10): 2112?2118.
[11] JOSHI H, CHAPPELL W J. Dual?band lumped?element band?pass filter [J]. IEEE Transactions on Microwave Theory Tech, 2006, 54(12): 4169?4177.
[12] DAI Yong?sheng S, YE Zong?hua, LI Bao?shan. A miniaturized and low insertion loss LTCC Filter with two finite transmission zeros for bluetooth application [C]// IEEE MTT?S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components. Chengdu: IEEE, 2008: 132?134.
[13] SONG H S, LEE Y S. A miniaturized 2.4GHz band multi?layer band?pass filter using capacitively loaded λ/4 slow?wave resonator [C]// IEEE MTT?S Int Microwave Symposium Digest. Philadelphia, PA, USA: IEEE, 2003, 1: 515?518.
[14] RAMBABU K, BORNEMANN J. Simplified analysis technique for the initial design of LTCC filters with all?capacitive coupling [J]. IEEE Transactions on Microwave Theory Tech, 2005, 53(5): 1787?1791.