岳楓,賈義軍
(河南省鶴壁職業(yè)技術(shù)學(xué)院 護(hù)理學(xué)院,河南 鶴壁 458030)
可斷裂PEG與RGD共修飾脂質(zhì)體的制備及其初步評價(jià)
岳楓,賈義軍
(河南省鶴壁職業(yè)技術(shù)學(xué)院 護(hù)理學(xué)院,河南 鶴壁 458030)
目的制備氧化-還原敏感的可斷裂PEG(聚乙二醇,polyethylene glycol)與RGD(精氨酸-甘氨酸-天冬氨酸,Arg-Gly-Asp)共修飾脂質(zhì)體(C/RGD-LP),并對其體外性質(zhì)進(jìn)行評價(jià)。方法采用薄膜分散法制備可斷裂PEG與RGD共修飾脂質(zhì)體,測定脂質(zhì)體的粒徑、電位以及血清穩(wěn)定性。采用流式觀察肝癌HepG2細(xì)胞在PEG斷裂前后對脂質(zhì)體攝取效率的變化。MTT法檢測該脂質(zhì)體對細(xì)胞的毒性。結(jié)果C/RGD-LP的粒徑為(104.8±5.5)nm,電位為(-4.45±1.75)mV,在血清中有良好的穩(wěn)定性。加入還原劑半胱氨酸后,HepG2細(xì)胞對PEG斷裂后的脂質(zhì)體攝取效率為斷裂前的2.8倍,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);細(xì)胞攝取實(shí)驗(yàn)結(jié)果顯示:加入還原劑半胱氨酸后,PEG斷裂后細(xì)胞的熒光強(qiáng)度顯著強(qiáng)于未加入Cys組和無RGD修飾普通脂質(zhì)體組(P<0.01)。MTT實(shí)驗(yàn)結(jié)果表明:C/RGD-LP無明顯細(xì)胞毒性。結(jié)論可斷裂PEG與RGD共修飾脂質(zhì)體制備方法簡單,具有良好的穩(wěn)定性,PEG能夠有效屏蔽RGD肽,是一種潛在的腫瘤靶向給藥系統(tǒng)。
可斷裂PEG;脂質(zhì)體;腫瘤靶向
1.2 方法
1.2.1 DSPE-S-S-PEG5000的合成:參照文獻(xiàn)[3-4]方法合成DSPE-S-S-PEG5000。將63mg DSPE和25mg SPDP溶于4mL干燥的二氯甲烷,再加入60μL三乙胺,通氬氣于室溫避光反應(yīng)5h,TLC(展開劑二氯甲烷∶甲醇∶水=65∶25∶4)監(jiān)測至2種原料基本消失,旋轉(zhuǎn)蒸發(fā)除去溶劑,用300~400目硅膠裝柱(1.5 cm×10.0 cm),用二氯甲烷∶甲醇=4∶1洗脫,得到DSPEPDP純品。將61mg DSPE-PDP和180mg PEG5000-SH溶于6mL干燥的二氯甲烷,再加入5μL三乙胺,通氬氣于室溫避光反應(yīng)72 h,TLC(展開劑二氯甲烷∶甲醇=2∶0.3)監(jiān)測至反應(yīng)基本完全。過濾除去不溶物,旋轉(zhuǎn)蒸發(fā)濃縮至干,乙醚重結(jié)晶2次,再用300~400目硅膠裝柱分離純化,用DCM∶MeOH=50∶15洗脫,所得產(chǎn)物純度約95%,-20℃儲(chǔ)存?zhèn)溆谩?/p>
1.2.2 C/RGD-LP的制備及其表征:使用薄膜分散法制備RGD與可斷裂PEG共修飾脂質(zhì)體[5-6]。將處方量的SPC,Cho,DSPE-PEG2000-RGD,DSPE-S-S-PEG5000,DSPE-PEG5000-OMe[保證總磷脂∶膽固醇=70∶30(摩爾比)],分別溶于氯仿,置50mL茄形瓶中旋轉(zhuǎn)蒸發(fā)成膜后,再置真空干燥器中過夜。加入2.5mL PBS緩沖液(pH 7.4),置空氣浴搖床中,37℃,180 r/min,20min水化,水浴超聲5min脫膜,探頭超聲制備得到RGD與可斷裂PEG共修飾的脂質(zhì)體。用適量的FITC標(biāo)記的磷脂取代SPC制備FITC標(biāo)記的磷脂。
1.2.3 C/RGD-LP的體外血清穩(wěn)定性實(shí)驗(yàn):取LP、RGD-LP和C/RGD-LP脂質(zhì)體樣品各500μL,分別與等體積的磷酸鹽緩沖液或含有50%FBS的磷酸鹽緩沖液(pH7.4)混合,于37℃下分別孵育 1、4、8、12、24 h,測定 750 nm處的透光率[7-8]。以樣品在磷酸鹽緩沖液中的透光率值為對照,樣品在含有50%FBS的磷酸鹽緩沖液中的透光率與其在磷酸鹽緩沖液中的透光率的比值來評價(jià)脂質(zhì)體在血清中的穩(wěn)定性。
1.2.4 細(xì)胞攝取實(shí)驗(yàn):將對數(shù)生長期的HepG2細(xì)胞以5×105個(gè)/孔的密度接種于6孔板中,37℃培養(yǎng)24 h后分成4組,普通脂質(zhì)體組(LP),RGD修飾脂質(zhì)體組(RGD-LP),可斷裂PEG和RGD共修飾脂質(zhì)體(C/RGD-LP)組、可斷裂PEG和RGD共修飾脂質(zhì)體(C/RGD-LP)+半胱氨酸組。每組脂質(zhì)體均用FITC標(biāo)記,孔中脂質(zhì)體濃度為0.20μg/mL。37℃孵育4 h后除去含脂質(zhì)體培養(yǎng)基,冷PBS清洗3次,0.25%胰酶消化后離心,再用PBS清洗3次,采用流式細(xì)胞儀測定細(xì)胞熒光值。
取同樣4種脂質(zhì)體,與HepG2細(xì)胞共同孵育4 h后用PBS漂洗3次,加入2μg/mL DAPI溶液,室溫孵育20min,冰PBS漂洗3次,加4%多聚甲醛固定15min,棄去多聚甲醛,置激光共聚焦顯微鏡觀察細(xì)胞攝取情況。
1.2.5 細(xì)胞毒性實(shí)驗(yàn):培養(yǎng)HepG2細(xì)胞,并以1×105/孔密度接種于96孔板中,隨機(jī)分為 PBS組、LP組、C/RGD-LP組、RGD-LP組、半胱氨酸組。當(dāng)孔板中細(xì)胞完全貼壁且處于對數(shù)生長期時(shí)加入無菌過濾后的脂質(zhì)體或半胱氨酸。分別將孔板移入37℃5%CO2孵箱中培養(yǎng)24 h和48 h后取出,每孔加入20μL 5mg/mLMTT溶液,再放回孵箱中繼續(xù)孵育4 h。將孔板中液體倒出,每孔加入200μL DMSO,37℃避光振搖15min,酶標(biāo)儀測定490 nm處各孔的光密度值(OD)。
1.3 統(tǒng)計(jì)學(xué)方法 采用SPSS 21.0進(jìn)行數(shù)據(jù)分析,正態(tài)計(jì)量數(shù)據(jù)以“±s”表示,2組間比較用t檢驗(yàn),多組間比較用方差分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 DSPE-S-S-PEG5000的鑒定 將產(chǎn)物溶于 CDCl3,經(jīng)400MHz核磁共振儀分析,結(jié)果見圖 1。1H-NMR(CDCl3):δ=0.83(t,CH3,6H),1.2(s,CH2,52H),1.6(br,CH2CH2C=O,8H),3.4(s,3H,CH3O-),3.5-3.6(s,456H,PEG骨架),5.4(m,4H,DSPE雙鍵)。
圖1 DSPE-S-S-PEG5000的1 H-NMRFig.1 1 H-NMR of DSPE-S-S-PEG5000
2.2 可斷裂PEG和RGD共修飾脂質(zhì)體的表征 馬爾文激光粒度儀測定結(jié)果顯示:C/RGD-LP的粒徑為(104.8±5.5)nm,電位為(-4.45±1.75)mV(見表1)。
表1 不同脂質(zhì)體表征Tab.1 Characteristics of C/RGD-LP,RGD-LP and LP
2.3 可斷裂PEG和RGD共修飾脂質(zhì)體的體外血清穩(wěn)定性
各組脂質(zhì)體在含50%FBS的PBS中透光率與其在不含血清的PBS中透光率的比值均大于90%,表明3種脂質(zhì)體24h在血清中均具有較好的穩(wěn)定性(見圖2)。
圖2 不同脂質(zhì)體在50%血清中的透光率Fig.2 Transmittance variation of different liposomes in 50%FBS
2.4 腫瘤細(xì)胞對可斷裂PEG和RGD共修飾脂質(zhì)體的攝取
加入還原劑半胱氨酸后,HepG2細(xì)胞對可斷裂PEG與RGD修飾脂質(zhì)體的攝取效率顯著大于未加入半胱氨酸組,PEG斷裂后細(xì)胞攝取是未加半胱氨酸組的2.9倍,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01);可斷裂PEG+半胱氨酸組的熒光強(qiáng)度與RGD修飾脂質(zhì)體相當(dāng)。未加入半胱氨酸組脂質(zhì)體的熒強(qiáng)度與普通脂質(zhì)體相當(dāng),差異無統(tǒng)計(jì)學(xué)意義(見圖3、圖4)。
圖3 HepG2細(xì)胞對不同脂質(zhì)體攝取效率比較**P<0.01,與 LP和 C/RGD-LP比較Fig.3 Comparison of uptake efficacy of different liposomes by HepG2 cells**P<0.01,compared with LP and C/RGD-LP
圖4 激光共聚焦觀察HepG2細(xì)胞對FITC標(biāo)記脂質(zhì)體的攝取Fig.4 Uptake of FITC labeled liposomes by HepG2 cell based on confocal laser scanningmicroscopy
2.5 可斷裂PEG和RGD共修飾脂質(zhì)體的細(xì)胞毒性 與PBS比較,各組脂質(zhì)體和半胱氨酸在24 h和48 h對HepG2細(xì)胞毒性均較小,差異無統(tǒng)計(jì)學(xué)意義(見表2)。
表2 HepG2細(xì)胞不同脂質(zhì)體在不同時(shí)間下的OD值和存活率Tab.2 Cell viability and OD values of HepG2 cells at different times
整合素(Integrins)是一類細(xì)胞黏附受體分子,在有核細(xì)胞表面均廣泛表達(dá),其中整合素αvβ3在肝癌、黑色素瘤、肺癌等多種腫瘤細(xì)胞及腫瘤相關(guān)的內(nèi)皮細(xì)胞表面高度表達(dá),與腫瘤的血管發(fā)生、腫瘤轉(zhuǎn)移及腫瘤的抗放射治療密切相關(guān),因此整合素αvβ3常被用作腫瘤靶向的特異性靶點(diǎn)[9-10]。有研究表明,精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)的三肽序列能夠特異性地識(shí)別含αv亞基的整合素家族,具有高度親和力[10]。近年來,脂質(zhì)體表面的PEG化被廣泛用于延長納米載體的循環(huán)時(shí)間從而通過EPR效應(yīng)(增強(qiáng)的穿透和滯留效應(yīng))增加其在腫瘤組織的蓄積,然而PEG并非在腫瘤靶向的整個(gè)過程中都是有利的,當(dāng)脂質(zhì)體在腫瘤組織蓄積以后,PEG會(huì)防礙納米載體與腫瘤細(xì)胞的相互作用,抑制腫瘤細(xì)胞對納米載體的攝?。?1]。聚乙二醇PEG被廣泛用于修飾到脂質(zhì)體等納米載體表面,不影響脂質(zhì)體的長循環(huán)性能,而當(dāng)脂質(zhì)體蓄積在腫瘤組織以后,PEG脫離脂質(zhì)體表面,這樣既保留了PEG賦予脂質(zhì)體的長循環(huán)的優(yōu)點(diǎn),又克服了PEG妨礙脂質(zhì)體入胞的缺陷[12]。目前,基于不同原理的可斷裂PEG技術(shù)相繼被開發(fā)出來并被應(yīng)用于納米載體的修飾上,例如pH敏感型可斷裂 PEG[13],基質(zhì)金屬蛋白酶敏感型可斷裂 PEG[14],酯酶敏感型可斷裂 PEG[15],還原敏感型可斷裂 PEG[16]等,在眾多的實(shí)現(xiàn)PEG斷裂的策略中,還原敏感型可斷裂PEG以二硫鍵作為橋接分子形成的可斷裂PEG具有構(gòu)造簡單,斷裂易于通過Cys控制等特點(diǎn)顯示出了一定的優(yōu)越性。
本研究制備了可斷裂PEG和整合素受體特異性結(jié)合肽RGD共修飾的脂質(zhì)體,能夠首先通過EPR效應(yīng)被動(dòng)靶向到達(dá)腫瘤組織,加入半胱氨酸后,PEG與脂質(zhì)體間的二硫鍵斷裂,暴露出RGD后與腫瘤細(xì)胞表面的整合素受體結(jié)合,介導(dǎo)脂質(zhì)體入胞。通過比較加入半胱氨酸前后腫瘤細(xì)胞對脂質(zhì)體攝取效率的變化,發(fā)現(xiàn)加入半胱氨酸后,腫瘤細(xì)胞對脂質(zhì)體的攝取效率顯著增強(qiáng)(P<0.01)。肝癌細(xì)胞對未加入半胱氨酸組的攝取效率與普通脂質(zhì)體相當(dāng),這說明脂質(zhì)體表面大量PEG的存在能夠有效屏蔽RGD,使脂質(zhì)體在體內(nèi)與血清蛋白隔絕,保持脂質(zhì)體的穩(wěn)定性。體外血清穩(wěn)定性實(shí)驗(yàn)結(jié)果顯示,可斷裂PEG修飾后的脂質(zhì)體在血清中能夠保持良好的穩(wěn)定性。體外細(xì)胞毒性實(shí)驗(yàn)結(jié)果顯示,可斷裂PEG和RGD共修飾的脂質(zhì)體對腫瘤細(xì)胞幾乎沒有毒性。
綜上所述,本研究制備的可斷裂PEG修飾的脂質(zhì)體能夠有效保護(hù)脂質(zhì)體,是一種潛在的腫瘤靶向給藥系統(tǒng)。下一步將對可斷裂PEG和RGD共修飾脂質(zhì)體的載藥性能進(jìn)行研究。
[1] Jiang XY.Solid tumor penetration by integrin-mediated pegylatedpoly(trimethylene-carbonate)nanoparticles loaded with paclitaxel[J].Biomaterials,2013,34(6):1739-1746.
[2] Yao Q.Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery[J].International Journal of Pharmaceutics,2011,419(1):85-95.
[3] Kuai R.Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG Co-Modified liposomes[J].Mol.Pharmaceutics,2010,7(5):1816-1826.
[4] Kuai R.Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable Poly(ethylene glycol)comodified liposomal delivery system via systemic administration [J].Mol.Pharmaceutics,2011,8(6):2151-2161.
[5] Ryo S,Tomoko T,Yasuhiro K,et al.Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome[J].International Journal of Pharmaceutics,2008,346(1-2):143-150.
[6] Yao Q.Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals[J].International Journal of Pharmaceutics,2011,420(2):304-312.
[7] Ikramy A.Octaarginine-modified liposomes:Enhanced cellular uptake and controlled intracellular trafficking[J].International Journal of Pharmaceutics,2008,354(1-2):39-48.
[8] Kale A.Enhanced transfection of tumor cells in vivo using“Smart”pH-sensitive TAT-modified pegylated liposomes[J].J.Drug Targeting,2007,15(7-8):538-545.
[9] Hegi ME.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl JMed,2005,352(10):997-1003.
[10]Ying X.Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals[J].Journal of Controlled Release,2010,141(2):183-192.
[11]Li J.Targeting the brain with PEGPLGA nanoparticles modified with phage-displayed peptides[J].Biomaterials,2011,32(21):4943-4950.
[12]Zhan C.Cyclic RGD conjugated poly(ethyleneglycol)-co-poly(lactic acid)micelle enhances paclitaxel anti-glioblastoma effect[J].JControl Release,2010,143(1):136-142.
[13]Terada T.Novel PEG-matrixmetalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinomaselective targeting[J].J.Controlled Release,2006,111(3):333-342.
[14]Chang SF.Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells[J].Ultrasonics Sonochemistry,2013,20(1):171-179.
[15]Al SorajM.siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine(R8)and HIV-Tat[J].Journal of Controlled Release,2012,161(1):132-141.
[16]Xu H.Esterase-catalyzed dePEGylation of pH-sensitive vesiclesmodified with cleavable PEG-lipid derivatives[J].J.Controlled Release,2008,130(3),238-245.
(編校:吳茜)
Preparation of cleavable PEG and RGD co-modified liposomes in vitro and evaluate its properties
YUE FengΔ,JIA Yi-jun
(Hebi City Occupational Technological College,Hebi458030,China)
ObjectiveTo prepare the cleavable PEG and RGD co-modified liposome for tumor targeting.MethodsLiposomes were prepared by film-ultrasonic method.The particle size,Zeta potentialand stability in FBSwere evaluated.Cellular uptake by HepG2 cellwas explored.MTT assaywas used to evaluate the cytotoxicity of blank liposomes.ResultsThe particle diameter of C/RGD-LP was(104.8±5.5)nm with the Zeta potential of(-4.45±1.75)mV.The cellular uptake of C/RGD-LP increased 2.8 times after Cys was added.The C/RGD-LP showed little cytotoxicity to HepG2 cell.ConclusionCleavable PEG and RGD co-modified liposomeswere easy to prepare and has a special application value for targeting tumor.
cleavable PEG;liposomes;tumor targeting
R945
A
1005-1678(2014)04-0056-04
隨著現(xiàn)代生物研究的發(fā)展,對腫瘤疾病的治療手段也日益豐富。其中靶向治療成為了腫瘤研究和治療的熱點(diǎn)[1]。理想的腫瘤靶向藥物傳遞系統(tǒng)不僅需要在全身給藥后將藥物濃集在腫瘤組織,而且還需要將藥物高效地傳遞到腫瘤細(xì)胞內(nèi),從而將治療作用最大化并減少抗腫瘤藥物的副作用[2]。本研究旨在構(gòu)建可斷裂PEG與RGD共修飾的脂質(zhì)體,使其能通過EPR效應(yīng)到達(dá)腫瘤組織,在加入半胱氨酸后,二硫鍵斷裂,暴露出RGD,再通過RGD與整合素受體介導(dǎo)入胞實(shí)現(xiàn)靶向治療?,F(xiàn)對其體外特征進(jìn)行評價(jià)。
1 材料與方法
1.1 材料與儀器 人源肝癌細(xì)胞(HepG2,ATCC)。Sizer Nano ZS90型激光粒度儀及ZETA電位分析儀(英國 Malvern instruments Ltd)。大豆磷脂(SPC,上海太偉藥業(yè)有限公司);SPDP[N-succinimidyl3-(2-pyridyldithio)propionate,美國 sigma公司];膽固醇(Chol,成都科龍化工);DSPE-PEG2000和 DSPEPEG5000(美國Avanti polar lipids);FITC標(biāo)記的磷脂(美國sigma公司);DMEM高糖培養(yǎng)基和胎牛血清(美國GIBCO公司);其余試劑為國產(chǎn)分析純。
岳楓,女,碩士,講師,研究方向:藥物新劑型,E-mail:yuefeng197@126.com。