• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fermentative coproduction of hydrogen and ethanol with mixed anaerobic culture environment

    2014-09-14 04:29:50WANGZhichaoLIYuwen
    關(guān)鍵詞:參考文獻(xiàn)

    WANG Zhi-chao, LI Yu-wen

    (School of Forestry, Northeast Forestry University, Harbin 150040, China)

    Introduction

    With the current inevitable global issues such as petroleum depletion and global warming, hydrogen has been considered an ideal and clean energy carrier for the future since it has high energy content and non-polluting nature[1]. Dark fermentation was widely studied for hydrogen generation[2-4]and showed the great potential for development as a practical energy system. An effective fermentation hydrogen system and efficient hydrogen generating cultures can be obtained from various sludge sources. In dark fermentation, toxic chemical addition[5], acid/base pretreatment and heat pretreatment[6]were commonly used to enhance hydrogen production by activating clostridia spores and inhibiting hydrogen-consuming non-spore-forming bacteria. During fermentative hydrogen production process, a significant amount of ethanol can also produced from the following metabolic pathway (Eq. (1)). As an attractive alternative fuel, ethanol was already used for road vehicles and for other applications due to the possibility of domestic production which can secure energy supplies[7]. HRT is related to the amount of organics that can be handled per unit time[8], and therefore HRT can determine the substrate uptake efficiency, microbial population, and metabolic pathway[9]. Despite a great deal of attention on dark fermentation, most studies have only emphasized on the effect of individual factors on either hydrogen[10,11]or ethanol production[12]. To our best knowledge, information about the fermentative coproduction of hydrogen and ethanol from sugary wastewater with mixed anaerobic culture microenvironment is scarcely found. Therefore, the objective of this study was to identity the performance of fermentative coproduction of hydrogen and ethanol from sugary wastewater with mixed anaerobic culture microenvironment using anaerobic continuous stirred tank reactor (ACSTR) with aerobic pretreatment sludge addition.

    1 Materials and methods

    1.1 Substrate

    In this study, the sugar wastewater used as experimental substrate for sequential hydrogen and ethanol coproduction was collected from local sugar refining industry (Harbin, China). As shown in Table 1, the sugary wastewater contained a high concentration of carbohydrates which correspond to readily fermentative sugars. In addition, it contained enough nitrogen and phosphorus sources which are essential for cultivation of microorganisms.

    Table1Thecharacteristicsofsugarwastewaterusedinthispaper.

    ParametersValuesa/(g·L-1)ParametersValuesa/(g·L-1)Total suspend solid (SS) Volatile suspended solid (VSS)Total chemical oxygendemand (TCOD)Chemical oxygen demand (COD)Total organic carbon (TOC)3.3 g1.5 g27.326.711.6CarbohydratesAlkalinityTotal nitrogen (TN)SO42-PO43-pH9.81.12.21.30.416.5

    a-Values were averaged of 5 determinations

    1.2 Sludge

    The seed sludge used in this paper was the anaerobic sludge obtained from a local municipal wastewater treatment plant (Harbin, China). The sludge was first sieved through mesh with a diameter of 0.5 mm in order to eliminate large particulate materials that could cause pump failure. Then the seed sludge was aerated for 30 days using synthetic wastewater as substrate to inactivate hydrogen-consuming bacteria, especially methanogens. During the aerobic cultivation process, biological activity of hydrogen-producing bacteria was examined by analyses of glucose consumed. After enough cultivation, the hydrogen-producing sludge with suspended solids (SS) of 11.17 g/L and volatile suspended solids (VSS) of 9.45 g/L was inoculated into the ACSTR system.

    1.3 Experimental procedures

    ACSTR with a working volume of 6 L was employed in this study. The reactor, operated in a continuous flow mode, was completely mixed by a variable speed stirred with a gear shift. Temperature was maintained automatically at the level of (35±1) ℃ using an electric jacket. A gas-liquid-solid three-phase separator was installed inside the ACSTR to promote retention of sludge. The reactor was sealed to assure anaerobic condition. The generated biogas was collected by a water displacement method through an outlet provide at the top of the reactor and measured by a wet gas meter.

    After the seed sludge was inoculated into the ACSTR, a rest of the volume in the reactor was filled with synthetic wastewater under complete anaerobic condition with the aid of peristaltic pump (Model No. 7523-30, Masterflex, USA). Then the ACSTR was operated in a continuous mode by supplying synthetic wastewater continuously in two stages. In stage I (120 days), substrate concentration was increased from 2 to 8 g COD/L in 3 steps to establish its effect on hydrogen and ethanol production. In stage II (150 days), HRT was decreased from 10 to 4 h in 4 steps while substrate concentration was held constant at 6 g COD/L to establish its effect on hydrogen and ethanol production. The steady-state condition in this study was defined as the condition that the biogas varied within 5% for 10 days.

    1.4 Analytical methods

    COD and pH were monitored and measured daily according to Standard methods[13]. The oxidation-reduction potential (ORP) was measured by a pHS-25 acidity voltmeter. Biogas generated from the ACSTR was collected using a wet gas meter (Model LML-1, Changchun Filter Co. Ltd., Changchun, China) calibrated to a temperature of 25 ℃ and pressure of 1 atm condition. Effluent samples from the reactor were also collected for metabolites analyses over the entire period of reactor operation.

    Hydrogen was analyzed using a gas chromatography (SC-7, Shandong Lunan Instrument Factory). The gas chromatography was equipped with a thermal conductivity detector (TCD) and a stainless steel column (2 m × 5mm) filled with Porapak Q (50~80 meshes). Nitrogen was used as the carrier gas at a flow rate of 40 mL/min. Detection of VFAs in the fermentation solution was analyzed by another gas chromatograph (GC 112, shanghai Anal. Inst. Co.) with a flame ionization detector (FID). A 2-m stainless steel column was packed with the supporter GDX-103 (60~80 meshes). The temperatures of the injection port, oven, and detector were 220 ℃, 190 ℃, and 220℃, respectively. Nitrogen was used as the carrier gas at a flow rate of 30 mL/min.

    Substrate utilization reflecting the conversion rate of substrate into hydrogen/ethanol during fermentation process can be calculated using equation (a).

    (A)

    WhereRrepresents the conversion rate of substrate into hydrogen and ethanol in ACSTR.Wrepresents the feed rate in ACSTR (L/d), respectively. 2.09 represent the COD equivalent of ethanol. 0.71 represent the COD (kg O2) of 1 m3H2.Mpresents the ethanol concentration in the effluent (g/L).VHrepresents the hydrogen production (L).CODrepresents the COD concentration of synthetic wastewater (g/L).

    2 Results

    2.1 Hydrogen and ethanol production at various substrate concentrations and HRTs

    The performance of hydrogen and ethanol production in ACSTR is depicted in Fig.1 and Fig. 2. Experimental data from profile documented the feasibility of fermentative hydrogen and ethanol production during operation. The biogas was composed of hydrogen and carbon dioxide, and free of methane. It should be noticed that the hydrogen content stabilized in the range of (28.8±2.0) ~(30.6±1.0) % and (53.1±1.71)~(59.7±0.70) % for the whole stage I and II process. When the substrate concentration was increased from 2 g COD/L to 6 g COD/L, hydrogen and ethanol production rate rose slightly from (6.49±0.14) to (7.25±0.08) mmol/L·h)and from (1.42±0.01) to (1.62±0.04) mmol/(L·h)respectively. Higher substrate concentration (8 g COD/L) resulted in VFAs and hydrogen accumulation, and therefore caused the inhibition of hydrogen and ethanol production. An abrupt decrease in production rate of hydrogen and ethanol was observed. During the second stage operation, with constant substrate concentration the stepwise decreased HRT led to the obvious fluctuation of hydrogen and ethanol production. The HRT 6 h tested gave the highest hydrogen production rate of (8.73±0.07) mmol/(L·h). The highest ethanol production rate also reached (2.97±0.12) mmol·(L/h) for HRT 6 h. Drastic decrease in hydrogen and ethanol production rate was observed which attributed to the shorter HRT 4 h caused insufficient time for hydrolysis of substrate. As we known, hydrogen is produced as a by-product in the hydrolysis of various, e.g., carbohydrate[9]and the parameter HRT can negatively affect the hydrolysis process would decrease the hydrogen production rate. According to Figure 1 and Figure 2 it can be emphasized that the low HRT (from 8 h to 6 h) is more suitable for hydrogen and ethanol production fermentation when the indigenous sludge microbial populations were used as hydrogen producer. The obtained results are also sustained by the reported literature in which[14]observed the washout of propionate bacteria, which consume hydrogen during their metabolism, upon transition of the HRT from 8 to 6 h.

    Figure 1 Profile of hydrogen productionand content during operation

    2.2 Process performance of ACSTR system

    Figure 2 Profile of ethanol production rate during operation

    Table 2 showsed the process performance of ACSTR system at different substrate concentrations and HRTs. System ORP ranged between -392 and -440 mV in anaerobic microenvironment. With inlet pH of feed being adjusted to 7.0 prior to feeding, outlet pH varied between 4.16 and 4.40 during the whole operation which might be attributed to the production of volatile fatty acid. This pH range for hydrogen and ethanol coproduction differed from other reports[15-16]. The pH range of 5.5~6 was considered to be ideal to avoid both methanogenesis and solventogenesis in addition hydrogen generation[17-18]. In this study, no detected methane in biogas indicated that low operational pH would effectively block the bioactivities of methanogenic bacteria which has considerable influence on the substrate removal. This might be the reason for relatively low substrate removal observed in ACSTR system, ranging between 31.2 and 39.3% accounting for substrate concentration of 0.71~2.90 g COD/L (Table 2).

    Formation of hydrogen was accompanied with VFAs production and the distribution of metabolites was often considered as a crucial signal in assessing the metabolic pathway of fermentation process[19]. According to Table 2, the total VFAs concentration varied in the range of 1.49~2.75 g COD/L at substrate concentration condition and 2.75~3.44 g COD/L at HRT condition. The fluctuation in total VFAs production indicated the variations of bacterial metabolism and structure. Experimental data revealed the production of higher fraction of ethanol (37.2~63.7%) along with relatively lower fraction of acetate (13.6~21.4%), butyrate (13.9~30.8%) and propionate (7.5~10.3%). Ethanol was observed to be the major metabolite and suggested the persistence of ethanol-forming pathway, which is considered to be favorable microenvironment for effective hydrogen production[20]. Compared with the value obtained at substrate concentration condition, the increase by 83.3% in ethanol production rate indicated that the bacterial metabolism activities were forwarded to the direction of ethanol production at HRT condition. The substrate utilization in ACSTR indicated the ratio of substrate converted into hydrogen and ethanol in fermentation process. Based on experimental data (Figure 1 and 2), the obtained substrate utilization can be seen in Table 2. In this paper, expect for high substrate concentration (8 g COD/L) and short HRT (4 h) condition, about 45.8%~61.0% of substrate was converted into hydrogen and ethanol. Even though the conversion rate was lower than the theoretical conversion rate (66.7%), the obtained values are reasonably good.

    Table2ProfileaboutprocessperformanceofACSTRsystemduringoperation

    VariablesStage I: substrate concentration/(g COD·L-1)Stage II: HRT/h246810864ORP/mV(-417 ±6.2)(-413 ±11.4)(-422 ±9.8)(-416 ±10.9)(-437 ±7.6)(-420 ±11.4)(-440 ±12.5)(-392 ±6.3)pH(4.17 ±0.03)(4.16 ±0.07)(4.23 ±0.05)(4.27 ±0.05)(4.36 ±0.08)(4.25 ±0.07)(4.37 ±0.09)(4.40 ±0.05)TVFAs/(g COD·L-1)(1.49 ±0.15)(2.95 ±0.16)(3.34 ±0.11)(2.75 ±0.07)(2.76 ±0.17)(3.16 ±0.15)(3.44 ±0.14)(2.75 ±0.08)EtOH/TVFAs/%(38.7±2.5)(38.1 ±1.8)(41.2 ±1.9)(37.2 ±1.2)(57.8 ±2.4)(62.6 ±0.8)(63.7 ±1.4)(55.0 ±1.1)HAc/TVFAs/%(20.6 ±1.2)(20.7 ±0.7)(19.8 ±0.8)(21.4 ±0.5)(15.3 ±1.1)(13.6 ±0.8)(13.6 ±1.3)(14.8 ±0.9)HPr/TVFAs/%(8.9 ±1.3)(9.0 ±0.5)(8.1 ±0.4)(9.8 ±0.5)(9.1 ±0.4)(8.2 ±0.5)(7.5 ±1.1)(10.3 ±0.5)HBu/TVFAs/%(30.0 ±1.3)(30.8 ±1.5)(29.6 ±1.3)(30.3 ±0.9)(16.5 ±1.0)(14.2 ±0.5)(13.9 ±0.6)(18.3 ±0.9)Substrate removal/%(35.3 ±1.9)(35.3 ±3.1)(39.3 ±0.5)(36.4 ±1.4)(39.0 ±0.6)(38.9 ±0.9)(39.3 ±0.8)(31.2 ±2.3)Substrate utilization/%(60.1 ±7.6)(61.0 ±2.3)(45.8 ±7.9)(27.4 ±1.3)(46.0 ±2.9)(50.2 ±1.0)(50.5 ±1.9)(32.5 ±1.5)

    HAc: acetate acid; HBu: butyrate acid; HPr: propionate acid; EtOH: ethanol; TVFAs (total volatile fatty acid) = HAc+HBu+HPr+EtOH.COD equivalent of VFAs: EtOH 2.09, HAc 1.07, HBu 1.51, HPr 1.82.

    3 Discussion

    In this paper, experimental data revealed the feasibility of sequential hydrogen and ethanol coproduction with mixed anaerobic culture microenvironment. At optimal condition (Substrate concentration: 6 g COD/L; HRT: 6 h), the ACSTR system obtained the highest hydrogen and ethanol production rate[21], and also obtained the maximum hydrogen production rate from molasses using ACSTR at substrate concentration 6 g COD/L and observed the serious inhibition of hydrogen production with higher substrate concentration. The hydrogen production rate of (8.73±0.07) mmol/(L·h) obtained is comparable with the production rate from other studies using anaerobic mixed culture microenvironment[22-23]. From Figure 2, it seemed that ethanol/hydrogen production has a similar variation tendency in the relationships between substrate concentrations, HRTs, hydrogen production and ethanol production. Both peak hydrogen and ethanol production rate occurred at substrate concentration 6 g COD/L of stage I and HRT 6 h of stage II. This result differ from some reports showing that in dark fermentation there is a possible competition of hydrogen and ethanol production, that is, high ethanol production can accompany low hydrogen production[24]. Some methods such as iron mineral limitation[25]have been taken to increase the production of ethanol without the reduction of hydrogen production. However, although formation of ethanol that would consume free electrons from NADH oxidation is usually unfavorable for hydrogen production[26], more hydrogen can generate from the change of metabolic pathway leading to the synthesis of more reduced fermentation metabolites such as acetate or butyrate[25]. Thereby, high hydrogen production can company high ethanol production[26].

    Figure 3 showed a good description of linear correlation between ethanol production rate (y) and hydrogen production rate (x) for different substrate concentration and HRT condition, respectively. The linear regression results in each stage allowed the linear correlation to be expressed asy=0.156 6x+0.448 7 (r2=0.877 8) andy=0.148 8x+1.671 4 (r2=0.983 8), respectively. Regression coefficientr2indicated that there existed a stronger linear correlation between ethanol production rate and hydrogen production rate at HRT condition. As hydrogen and ethanol are coproducts in dark fermentation, it seemed that the optimization of one product was at the expense of another. Although few studies have so far looked on the coproduction of hydrogen and ethanol, most researchers recognized the competition relation between hydrogen and ethanol production. However, our study concurrently directed to the high hydrogen and ethanol production rate by controlling substrate concentration and HRT condition. The similar variation tendency (Figure 1 and Figure 2) for hydrogen and ethanol production rate also could correspond to equal optimization of both biofuels. This possibility may have energy advantages where alteration of flexible and variable energy carrier might satisfy different market demands. Moreover, separation of hydrogen and ethanol would be relatively easy since the two biofuels are present in different phases[16], enhancing the feasibility of coproduction of hydrogen and ethanol with mixed anaerobic culture microenvironment in dark fermentation.

    Figure 3 The correlation between ethanol production rate and hydrogen production rate

    Acknowledgments

    Financial support was from public welfare research program (the early warning technology of environmental risk about the influence of pharmaceutical wastewater on environmental microbiology), Ministry of Environmental Protection, China (Grant No.200909043).

    參考文獻(xiàn):

    [1] HAWKES F R, DINSDALE R, HAWKES D L,etal. Sustainable fermentation hydrogen production: challenges for process optimization[J]. Int J hydrogen Energy,2002, 27: 1339-1347.

    [2] DAS D, VEZIROGLU N T. Hydrogen production by biological processes: a survey of literature[J]. Int J hydrogen Energy,2001, 26: 12-28.

    [3] NIELSEN A T, AMANDUSSON H, BJORKLUD R,etal. Hydrogen production from organic waste[J]. Int J hydrogen Energy,2001, 26: 547-550.

    [4] HAWKES F R, HUSSY I, KYAZZE G,etal. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress[J]. Int J hydrogen Energy,2007, 32: 172-184.

    [5] Liang TM, Cheng S S, Wu K L. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane[J]. Int J hydrogen Energy,2002,27: 1157-1165.

    [6] MOHAN S V, BHASKAR Y V, KRISHNA P M,etal. Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: Influence of fermentation pH and substrate composition[J]. Int J hydrogen Energy,2007, 32: 2286-2295.

    [7] BALAT M, BALAT H, OZ C. Process in bioethanol processing[J]. Prog Energy Combust Sci,2008, 34: 551-573.

    [8] JUNG K W, KIM D H, KIM S H,etal.Bioreactor design for continuous dark fermentative hydrogen production[J].Bioresour Technol.,2011, 102: 8612-8620.

    [9] Wang X, Zhao YC. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process[J].Int J hydrogen Energy,2009, 34: 245-254.

    [10] HWANG M H, JANG N J, HYUN S H,etal. Anaerobic biohydrogen production from ethanol fermentation: the role of pH[J].J Biotechnol,2004, 111: 297-309.

    [11]VAN G S, LOGAN B E. Increased biological hydrogen production with reduced organic loading[J].Water Res.,2005, 39: 3819-3826.

    [12] LYND L R. Production of ethanol from lignocelluloses materials using thermophilic bacteria: critical evaluation of potential and review[J]. Adv Biochem Eng Biotechnol.,1989, 28: 1-52.

    [13]APHA. Standard Methods for the Examination of Water and Wastewater[S].19th ed. American Public Health Association, Washington, DC.1995.

    [14] ZHANG Z P, SHOW KY, TAY J H,etal. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community[J].Process Biochem.,2006, 41: 2118-2123.

    [15]LIN CY, HUNG W C. Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures[J]. Int J hydrogen Energy,2008, 33: 3660-3667.

    [16] ZHAO C X, O-THONG S, KARAKASHEV D,etal. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 ℃) mixed culture environment[J].Int J hydrogen Energy,2009, 34: 5657-5665.

    [17]Fang HP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture[J].Bioresour Technol.,2002, 82: 87-93.

    [18] KHANAL S K, CHEN W H, LI L,etal. Biological hydrogen production: effects of pH and intermediate products[J].Int J hydrogen Energy,2004, 29: 1123-1131.

    [19]VENKATA M, MOHANAKRISHNA G, SARMA P N. Integration of acidogenic and methanogenic process for simultaneous production of biohydrogen and methane from wastewater treatment[J].Int J hydrogen Energy,2008, 33: 2156-2166.

    [20] REN N, WANG B, HUANG J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor[J]. Biotechnol Bioeng.,1997, 54: 428-433.

    [21]HAN W, CHEN H, JIAO A Y,etal. Biological fermentative hydrogen and ethanol production using continuous stirred tank reactor[J]. Int J hydrogen Energy,2012, 37: 843-847.

    [22] KIM S H, HAN S K, SHIN H S.Optimization of continuous hydrogen fermentation of food wastes as a function of solids retention time independent of hydraulic retention time[J].Process Biochem.,2008, 43: 213-218.

    [23]VENETSANEAS N, ANTONOPOULOU G, STAMATELATOU K,etal. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches[J].Bioresour Technol.,2009, 100: 3713-3717.

    [24] LI C, FANG H H. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures[J].Crit Rev Environ Sci Technol.,2007, 37: 1-39.

    [25]KENGEN S W, STAMA A J M, DE V WM. Sugar metabolism of hyperthermophiles[J]. FEMS Microbial Rev.,1996, 18: 119-137.

    [26] WU K J, CHANG C F, CHANG J S. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge[J].Process Biochem.,2007, 42: 1165-1171.

    猜你喜歡
    參考文獻(xiàn)
    Eurydice’s Face:the Paradox of Mallarmé’s Musical Poetics*
    Kidney health for everyone everywhere—from prevention to detection and equitable access to care
    Effect of low high-density lipoprotein levels on mortality of septic patients: A systematic review and meta-analysis of cohort studies
    SINO-EUROPE SYMPOSIUM ON TRADITIONAL CHINESE MEDICINE & HERBAL MEDICINE-MARKET OVERVIEW ®ULATION POLICY
    A prediction method for the performance of a low-recoil gun with front nozzle
    The Muted Lover and the Singing Poet:Ekphrasis and Gender in the Canzoniere*
    Where Does Poetry Take Place? On Tensions in the Concept of a National Art* #
    Chinese Cultural Influence on Hannah Jelkes in The Night of the Iguana*
    The serum and breath Raman fingerprinting methodfor early lung cancer and breast cancer screening
    Study on the physiological function and application of γ—aminobutyric acid and its receptors
    東方教育(2016年4期)2016-12-14 13:52:48
    99视频精品全部免费 在线 | 婷婷亚洲欧美| 色吧在线观看| 1024手机看黄色片| 国产蜜桃级精品一区二区三区| 小蜜桃在线观看免费完整版高清| 国产欧美日韩一区二区精品| 欧美性猛交黑人性爽| 日本黄大片高清| 波多野结衣巨乳人妻| 久久这里只有精品19| 这个男人来自地球电影免费观看| www.www免费av| 国产精品美女特级片免费视频播放器 | 九九热线精品视视频播放| 19禁男女啪啪无遮挡网站| 老熟妇仑乱视频hdxx| 又紧又爽又黄一区二区| av在线蜜桃| 国产高潮美女av| 一级黄色大片毛片| 一个人看视频在线观看www免费 | 桃红色精品国产亚洲av| 丝袜人妻中文字幕| 18美女黄网站色大片免费观看| 性色avwww在线观看| 最近在线观看免费完整版| 俺也久久电影网| 后天国语完整版免费观看| 天天躁日日操中文字幕| 青草久久国产| 亚洲五月婷婷丁香| x7x7x7水蜜桃| 精品99又大又爽又粗少妇毛片 | 黑人欧美特级aaaaaa片| 国产综合懂色| 99精品在免费线老司机午夜| 老司机深夜福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 伦理电影免费视频| 欧美另类亚洲清纯唯美| 国内精品久久久久精免费| 在线观看舔阴道视频| 国产精品1区2区在线观看.| 熟女电影av网| 我的老师免费观看完整版| 午夜视频精品福利| 国产精品久久久久久亚洲av鲁大| 美女大奶头视频| 午夜视频精品福利| 亚洲专区中文字幕在线| 国产乱人视频| 日本免费一区二区三区高清不卡| 日本黄大片高清| 欧美一区二区精品小视频在线| 免费在线观看影片大全网站| 免费在线观看影片大全网站| 午夜视频精品福利| 欧美+亚洲+日韩+国产| 最新中文字幕久久久久 | 国产1区2区3区精品| 99久久久亚洲精品蜜臀av| 18禁国产床啪视频网站| 男人的好看免费观看在线视频| 国产综合懂色| 日韩精品青青久久久久久| 亚洲av日韩精品久久久久久密| 99久久国产精品久久久| 免费看光身美女| 精华霜和精华液先用哪个| 搡老妇女老女人老熟妇| 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 香蕉av资源在线| 免费看十八禁软件| 国产欧美日韩精品一区二区| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 中文字幕最新亚洲高清| ponron亚洲| 久久久久久久午夜电影| www国产在线视频色| 日韩国内少妇激情av| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 国产v大片淫在线免费观看| www日本在线高清视频| avwww免费| 亚洲精华国产精华精| 伦理电影免费视频| 亚洲 欧美 日韩 在线 免费| 欧美日韩中文字幕国产精品一区二区三区| 日韩高清综合在线| 黄片大片在线免费观看| 欧美av亚洲av综合av国产av| 亚洲自拍偷在线| 巨乳人妻的诱惑在线观看| 91av网一区二区| av欧美777| 午夜福利免费观看在线| 麻豆国产97在线/欧美| 床上黄色一级片| 久久久久久大精品| 亚洲精华国产精华精| 他把我摸到了高潮在线观看| 亚洲国产精品999在线| 欧美性猛交黑人性爽| 午夜亚洲福利在线播放| 真实男女啪啪啪动态图| 国产精品久久久久久亚洲av鲁大| 老鸭窝网址在线观看| 国产av一区在线观看免费| 999久久久精品免费观看国产| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 在线观看午夜福利视频| 人人妻人人看人人澡| 精品久久久久久,| 欧美zozozo另类| 黄色丝袜av网址大全| 精品国产亚洲在线| 国内毛片毛片毛片毛片毛片| 亚洲av电影不卡..在线观看| 日本黄色视频三级网站网址| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 999精品在线视频| 久久久精品欧美日韩精品| 久久久久国产一级毛片高清牌| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 国产美女午夜福利| av天堂中文字幕网| 床上黄色一级片| 性欧美人与动物交配| 国产乱人伦免费视频| 日韩欧美三级三区| 性欧美人与动物交配| av天堂中文字幕网| 最近视频中文字幕2019在线8| 色av中文字幕| 91字幕亚洲| 制服丝袜大香蕉在线| 国产精品久久电影中文字幕| 91字幕亚洲| 最近最新中文字幕大全免费视频| 国产精品电影一区二区三区| 久久精品aⅴ一区二区三区四区| 免费观看的影片在线观看| 精品国产乱子伦一区二区三区| 久久久久亚洲av毛片大全| av视频在线观看入口| 国产综合懂色| 91av网一区二区| 久久久久九九精品影院| 特级一级黄色大片| 久久精品影院6| 国产亚洲欧美98| 国产精品1区2区在线观看.| 国产欧美日韩精品亚洲av| 国产日本99.免费观看| 国产乱人伦免费视频| АⅤ资源中文在线天堂| 亚洲国产中文字幕在线视频| 人妻夜夜爽99麻豆av| 国产精品av久久久久免费| 蜜桃久久精品国产亚洲av| 1000部很黄的大片| 天天躁日日操中文字幕| 欧美最黄视频在线播放免费| 国产野战对白在线观看| 亚洲欧美日韩高清专用| 老司机在亚洲福利影院| 国产精品精品国产色婷婷| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区高清视频在线| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 夜夜看夜夜爽夜夜摸| 欧美性猛交黑人性爽| 蜜桃久久精品国产亚洲av| 国产爱豆传媒在线观看| 高清毛片免费观看视频网站| 久久久久免费精品人妻一区二区| 久久精品影院6| 婷婷丁香在线五月| 国产三级中文精品| 国产亚洲精品久久久com| 亚洲成av人片在线播放无| 九九久久精品国产亚洲av麻豆 | 夜夜看夜夜爽夜夜摸| 国产一区二区激情短视频| 精品一区二区三区视频在线 | 亚洲专区字幕在线| 国产精品一区二区精品视频观看| 亚洲激情在线av| 日本 欧美在线| 国内久久婷婷六月综合欲色啪| 真实男女啪啪啪动态图| 国产黄片美女视频| 99精品欧美一区二区三区四区| 国产成人av教育| 久久精品国产综合久久久| 成人特级黄色片久久久久久久| 久久亚洲精品不卡| 国产精华一区二区三区| 啦啦啦韩国在线观看视频| 99国产极品粉嫩在线观看| 日本免费a在线| 欧美中文综合在线视频| 亚洲色图av天堂| 午夜免费成人在线视频| 九色成人免费人妻av| 久久九九热精品免费| 蜜桃久久精品国产亚洲av| 超碰成人久久| 国产野战对白在线观看| 色综合站精品国产| 操出白浆在线播放| 观看免费一级毛片| 亚洲成人免费电影在线观看| 婷婷六月久久综合丁香| 高清毛片免费观看视频网站| 亚洲国产精品久久男人天堂| 成年版毛片免费区| 国产高清激情床上av| 国产成人精品久久二区二区91| 特大巨黑吊av在线直播| 亚洲欧美精品综合一区二区三区| 男女做爰动态图高潮gif福利片| 精品国产三级普通话版| 精华霜和精华液先用哪个| 九九热线精品视视频播放| 色精品久久人妻99蜜桃| 精品久久久久久久久久久久久| 亚洲欧美精品综合一区二区三区| 久久久成人免费电影| 99riav亚洲国产免费| 国产免费av片在线观看野外av| 欧美zozozo另类| 成人三级做爰电影| 成人国产综合亚洲| 日本 av在线| 国产成人影院久久av| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 亚洲国产欧美一区二区综合| 超碰成人久久| 久久中文字幕一级| 少妇的逼水好多| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 午夜视频精品福利| 好男人在线观看高清免费视频| 老司机在亚洲福利影院| 成人午夜高清在线视频| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 国产1区2区3区精品| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 日本与韩国留学比较| 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 国产精品av久久久久免费| 亚洲成人中文字幕在线播放| 亚洲无线在线观看| 国模一区二区三区四区视频 | 757午夜福利合集在线观看| 亚洲片人在线观看| 女生性感内裤真人,穿戴方法视频| 一进一出抽搐动态| 国产精品一区二区三区四区免费观看 | 国产精品久久视频播放| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 美女大奶头视频| 亚洲国产精品成人综合色| 制服人妻中文乱码| 国产高清视频在线播放一区| 亚洲av电影在线进入| 美女高潮的动态| 成年版毛片免费区| 天堂√8在线中文| 欧美一级毛片孕妇| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 成人av一区二区三区在线看| 欧美色视频一区免费| 国产视频一区二区在线看| av视频在线观看入口| 好看av亚洲va欧美ⅴa在| 国产精品九九99| 日韩欧美国产在线观看| 在线永久观看黄色视频| 午夜成年电影在线免费观看| 少妇丰满av| 首页视频小说图片口味搜索| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 午夜两性在线视频| 亚洲五月婷婷丁香| 日本黄色视频三级网站网址| 国产亚洲精品久久久com| 在线观看66精品国产| 欧美激情在线99| 老司机深夜福利视频在线观看| 欧美一区二区国产精品久久精品| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 制服人妻中文乱码| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 午夜视频精品福利| 亚洲人与动物交配视频| 此物有八面人人有两片| aaaaa片日本免费| 欧美一区二区精品小视频在线| 成年人黄色毛片网站| 国产亚洲av高清不卡| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产成人精品无人区| 99国产精品一区二区三区| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 黄色丝袜av网址大全| 久久这里只有精品中国| 亚洲av电影不卡..在线观看| 国产精品av视频在线免费观看| 欧美极品一区二区三区四区| 在线观看一区二区三区| 国产精品永久免费网站| 午夜免费观看网址| 国内久久婷婷六月综合欲色啪| 国内揄拍国产精品人妻在线| 色尼玛亚洲综合影院| 中文字幕人成人乱码亚洲影| 色av中文字幕| 久久久成人免费电影| svipshipincom国产片| 日本 av在线| 99热这里只有精品一区 | xxxwww97欧美| 亚洲成人精品中文字幕电影| 亚洲欧美精品综合久久99| 在线视频色国产色| 成年女人毛片免费观看观看9| 久久人人精品亚洲av| 国产97色在线日韩免费| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 国产精品久久久av美女十八| 成熟少妇高潮喷水视频| 久久精品国产亚洲av香蕉五月| 熟女少妇亚洲综合色aaa.| 18禁黄网站禁片免费观看直播| 欧美黄色淫秽网站| 一a级毛片在线观看| 成人亚洲精品av一区二区| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 日本三级黄在线观看| 国产伦精品一区二区三区视频9 | 午夜日韩欧美国产| 国产精品女同一区二区软件 | 99riav亚洲国产免费| 九九在线视频观看精品| 后天国语完整版免费观看| 黄色 视频免费看| 在线观看日韩欧美| 国内少妇人妻偷人精品xxx网站 | 精品国产美女av久久久久小说| 在线播放国产精品三级| 国产伦精品一区二区三区视频9 | 无遮挡黄片免费观看| 亚洲熟妇熟女久久| 久久草成人影院| 日韩中文字幕欧美一区二区| 香蕉丝袜av| 国产探花在线观看一区二区| 色噜噜av男人的天堂激情| 99久久国产精品久久久| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 成人欧美大片| 丰满的人妻完整版| 又爽又黄无遮挡网站| 午夜视频精品福利| 亚洲精品久久国产高清桃花| 国产精品99久久久久久久久| 国产av不卡久久| 午夜成年电影在线免费观看| 免费看a级黄色片| 国产美女午夜福利| 12—13女人毛片做爰片一| 国产亚洲精品综合一区在线观看| 脱女人内裤的视频| 色综合站精品国产| 高潮久久久久久久久久久不卡| 国产午夜精品久久久久久| 99久久精品一区二区三区| 精品久久久久久久毛片微露脸| 亚洲无线观看免费| 69av精品久久久久久| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看 | 观看美女的网站| 99久久精品一区二区三区| 99热只有精品国产| svipshipincom国产片| 99re在线观看精品视频| 美女高潮的动态| 欧美又色又爽又黄视频| 一本一本综合久久| 亚洲精品在线美女| 最近最新中文字幕大全免费视频| 欧美乱色亚洲激情| 国产精品爽爽va在线观看网站| 美女被艹到高潮喷水动态| 国产精品免费一区二区三区在线| 蜜桃久久精品国产亚洲av| av中文乱码字幕在线| www.999成人在线观看| svipshipincom国产片| av欧美777| 亚洲avbb在线观看| 日韩欧美精品v在线| 国产亚洲精品久久久com| www日本在线高清视频| 亚洲精品美女久久av网站| 最近最新中文字幕大全电影3| 日韩 欧美 亚洲 中文字幕| 久久久国产成人精品二区| 久久久久亚洲av毛片大全| 99精品久久久久人妻精品| 99视频精品全部免费 在线 | 99久久精品一区二区三区| 国产三级在线视频| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 中国美女看黄片| 九九久久精品国产亚洲av麻豆 | av黄色大香蕉| 草草在线视频免费看| 法律面前人人平等表现在哪些方面| 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 国产成年人精品一区二区| 看黄色毛片网站| 日日干狠狠操夜夜爽| 国产视频一区二区在线看| 在线观看免费午夜福利视频| 一级a爱片免费观看的视频| 亚洲欧美激情综合另类| 又粗又爽又猛毛片免费看| 香蕉av资源在线| 免费搜索国产男女视频| 老司机在亚洲福利影院| a级毛片在线看网站| 久久久久久久久中文| 18禁国产床啪视频网站| 黄色丝袜av网址大全| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 国产亚洲av嫩草精品影院| 不卡一级毛片| 在线观看免费午夜福利视频| 麻豆成人av在线观看| 成人无遮挡网站| 亚洲成人免费电影在线观看| 亚洲成av人片免费观看| 老熟妇仑乱视频hdxx| 中文字幕精品亚洲无线码一区| 国产av在哪里看| 亚洲色图 男人天堂 中文字幕| 我的老师免费观看完整版| bbb黄色大片| 999久久久国产精品视频| 热99re8久久精品国产| 亚洲美女黄片视频| 色av中文字幕| 一区福利在线观看| 制服人妻中文乱码| 波多野结衣高清作品| 91老司机精品| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 岛国视频午夜一区免费看| 日本一本二区三区精品| АⅤ资源中文在线天堂| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 免费大片18禁| 国产伦在线观看视频一区| 欧美成人性av电影在线观看| 亚洲欧美精品综合一区二区三区| 高清毛片免费观看视频网站| 99久久久亚洲精品蜜臀av| 久久久国产成人免费| 国产乱人视频| 首页视频小说图片口味搜索| 少妇丰满av| 真实男女啪啪啪动态图| 99在线人妻在线中文字幕| 久久久久久久久中文| 日本免费a在线| 成人国产综合亚洲| 国产精品久久视频播放| 欧美三级亚洲精品| 国产真实乱freesex| av天堂在线播放| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 久久精品国产99精品国产亚洲性色| 美女免费视频网站| 蜜桃久久精品国产亚洲av| 97超视频在线观看视频| 看片在线看免费视频| 亚洲狠狠婷婷综合久久图片| 日韩国内少妇激情av| 日本 欧美在线| 午夜两性在线视频| 国产亚洲精品久久久com| 大型黄色视频在线免费观看| 日本黄色片子视频| 国产野战对白在线观看| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 国产成人av激情在线播放| 久久久水蜜桃国产精品网| 国产亚洲精品av在线| 制服丝袜大香蕉在线| 国产亚洲精品av在线| 日韩av在线大香蕉| 99视频精品全部免费 在线 | 亚洲成av人片在线播放无| 国产黄色小视频在线观看| 亚洲专区国产一区二区| 毛片女人毛片| 国产高潮美女av| 两人在一起打扑克的视频| 亚洲精品在线观看二区| 精品日产1卡2卡| 美女高潮喷水抽搐中文字幕| 中文字幕av在线有码专区| 国产高清有码在线观看视频| 亚洲人成网站在线播放欧美日韩| 欧美乱妇无乱码| 国产男靠女视频免费网站| 欧美极品一区二区三区四区| 久久久久久久久久黄片| 国产1区2区3区精品| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 99riav亚洲国产免费| 三级国产精品欧美在线观看 | 国产精品98久久久久久宅男小说| 中国美女看黄片| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 一a级毛片在线观看| 久久午夜综合久久蜜桃| 视频区欧美日本亚洲| 搡老熟女国产l中国老女人| 亚洲国产精品成人综合色| 国产午夜福利久久久久久| 成人av在线播放网站| 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 在线免费观看的www视频| 99国产精品99久久久久| 91av网站免费观看| 一个人看的www免费观看视频| 国产淫片久久久久久久久 | 久久久国产成人免费| 日韩免费av在线播放| 97超级碰碰碰精品色视频在线观看| 亚洲乱码一区二区免费版| 成人三级做爰电影| 久久久成人免费电影| 成人一区二区视频在线观看| 叶爱在线成人免费视频播放| av福利片在线观看| 亚洲国产色片| 久久久国产欧美日韩av| 久久热在线av| 国内毛片毛片毛片毛片毛片| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 国产野战对白在线观看| 国产久久久一区二区三区| 免费高清视频大片| 熟妇人妻久久中文字幕3abv| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 精品无人区乱码1区二区| 啦啦啦免费观看视频1| 国产高清三级在线| 国产精品九九99| 亚洲最大成人中文|