• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of process parameters on solvent-free toluene oxidation over Au/γ-MnO2 catalyst

    2014-09-06 10:49:44JiangFengXiaoGuomin
    關(guān)鍵詞:無溶劑苯甲酸甲苯

    Jiang Feng Xiao Guomin

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Influences of process parameters on solvent-free toluene oxidation over Au/γ-MnO2catalyst

    Jiang Feng Xiao Guomin

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    γ-MnO2nanorobs and Au/γ-MnO2catalysts were synthesized and characterized by theX-ray powder diffraction (XRD), the scanning electron microscope (SEM), and transmission electron microscope (TEM). The characterizations show that Au particles are well dispersed on the surface of γ-MnO2nanorobs with a particle size of about 10 nm. The catalytic performance is evaluated in solvent-free toluene oxidation with oxygen. The influences of several process parameters such as reaction time, reaction temperature, initial oxygen pressure and catalyst amounts on the catalytic performance are studied. Catalytic results reveal that Au/γ-MnO2catalyst has a unique selectivity to benzaldehyde and all these factors greatly influence the conversion of toluene and selectivity of bezaldehyde, benzoic acid and benzyl benzoate. However, these factors have slight influence on the selectivity of benzyl alcohol.

    nano-gold; manganese dioxide; toluene oxidation; solvent-free

    Toluene oxidation has received more and more attention, since all the oxidation products, such as benzyl alcohol, benzaldehyde, benzoic acid, and benzyl benzoate, are commercially significant versatile intermediates in the manufacture of pharmaceuticals, dyes, solvents, perfumes, plasticizers and preservatives[1]. Industrially, a homogeneous catalyst and a halogenic or acidic solvent are applied to toluene oxidation for high conversion, but the use of such solvents and homogeneous catalyst cause pollution and waste[2]. Thus, a solvent-free method for toluene oxidation catalyzed by a heterogeneous catalyst has attracted attention and been studied in recent years. Mn3O4, MnO2and Au-Pd/C catalysts have shown to be effective in the solvent-free oxidation of toluene to benzoic acid, benzaldehyde and benzyl benzoate reaction[3]. These findings suggest that noble metals and manganese oxides are good candidates for solvent-free toluene oxidation.

    Manganese oxides are well known as materials for clean energy storage due to their low material cost, acceptable environmental characteristics, and chemical stability. Many studies have focused on the modification of their crystal forms, morphology and particle size. In particular, three crystal forms, i.e., α (2×2 tunnel structure), γ (1×1 and 1×2 tunnel structure), and δ (layer structure), that are called manganese oxide octahedral molecular sieves (OMS)[4]. The basic unit of OMS is MnO6octahedra which can share their edges and vertices to generate a wide range of periodic structures.

    The Au nanoparticle has been widely used as catalyst in three kinds of reactions: CO oxidation, alkene epoxidation, and selective oxidation of alkanes. Many factors are known to affect Au activity, such as particle size and geometric structure, the type of support, methods of preparation, calcination, and the presence of trace compounds. Supported gold catalyst demonstrates excellent catalytic performance, and the supports reported include zirconia[5], cerium oxide[6], iron oxide[7], magnesium oxide[8], and titanium oxide[9]. Therefore, it is a good choice to synthesize a catalyst using nanosized Au particles as active centers and manganese (IV) oxide as support.

    In our previous study[10], we synthesized three kinds of MnO2nanostructures (α-, γ-, δ-MnO2) by the redox method. Among them, γ-MnO2has a suitable morphology and surface area for the use of support, which also shows high activity in toluene oxidation. To continue our study, in this work, Au/γ-MnO2catalyst is prepared by a technique of in situ reduction. Then, process parameters such as reaction time, temperature, initial oxygen pressure and catalyst amount are studied in solvent-free toluene oxidation over Au/γ-MnO2catalyst.

    1 Experimental

    The γ-MnO2nanostructure was prepared according to the procedure of our previous work by the redox reaction of Mn2+and Mn7+[10]. Au/γ-MnO2catalyst was prepared by an in situ reduction method. Chloroauric acid and ascorbic acid were used as precursors and reductants, respectively. At 80℃, the required amount of aqueous chloroauric acid was added to the PVP aqueous solution (0.7‰ g/mL, 300 mL) by dripping. After stirring, 0.9 g of dispersed MnO2powder was added into the solution. Six hours later, 30 mL aqueous ascorbic acid (0.01 mol/L) was dropped into the mixture and stirred for another 1 h. Finally, the product was obtained by filtration and washed several times with deionized water until the filtrate did not react with AgNO3solution. Then absolute alcohol was used to remove any residual reactants. Finally, the product was dried at 60℃ for 16 h. The mole percentage of Au loading was 1.0%.

    The XRD characterization of MnO2and Au/MnO2samples was carried out on a Bruker D8 FocusX-ray diffractometer using CuKαradiation and a nickel filter (λ=0.15406 nm) with a voltage and current of 40 kV and 40 mA, respectively.

    Selective oxidation of toluene was performed in an autoclave (50 mL) with mechanical stirring. After the vessel was charged with 30 mL of toluene and the required amount of catalyst, it was filled with pure oxygen to a desired initial pressure. Then the reaction was time was measured as soon as the temperature reached the set value. When the reaction was finished, we analyzed the liquid phase by GC and the results were compared to known commercially pure standard samples. Finally, conversion and product selectivity were calculated based on the carbon balance with the calibration curves.

    2 Results and Discussion

    2.1 Characterization results

    The XRD patterns of the prepared samples are shown in Fig.1. Some broad peaks and some sharp peaks are observed, as well as shifting in the positions of the peaks. Broadening of diffraction peaks occurs when certain types of random intergrowth of pyrolusite (1×2 tunnel structure) and ramsdellite (1×2 tunnel structure) manganese dioxide are present according to the de Wolff model[11]. After comparison with the reference data for the IBA-11 XRD patterns[12], the sample was confirmed to be a crystal form of γ-MnO2. The other sample shows a similar XRD pattern with γ-MnO2except that it has the peaks at 2θof 38.5° (111), 44.8° (200) due to the Au particles (JCPDS Card No.1-1172). This indicates that the loading of Au particles do not change the crystal structure of MnO2and the size of Au particles is larger than 4 nm. In

    Fig.1 XRD patterns of prepared samples

    fact, TEM and SEM images show that Au particles are well dispersed on γ-MnO2nanorods and the size of which was about 10 nm, the same as in our previous research[10].

    2.2 Catalytic results

    The effect of initial oxygen pressure on toluene oxidation reaction is shown in Fig.2. Higher oxygen pressure obviously improves the conversion of toluene, and a drastic improvement appears between 2.5 and 3.0 MPa. Meanwhile, benzoic acid selectivity presents the same variation trend, even though there is no big change between the pressure of 1.5 and 2.0 MPa. By contrast, the selectivity of benzaldehyde reduces significantly. At the pressure of 3.0 MPa, the main products are benzaldehyde and benzoic acid, which share almost the same selectivity with each other. In this single-factor reaction, the selectivities of benzyl alcohol and benzyl benzoate have not changed much, and only show a slight decreasing trend between 0.5 and 3.0 MPa. In general, the increasing initial pressure of oxygen improves the conversion of toluene precisely. This may be caused by the increasing oxygen content in the unit volume, which enhances the reaction. As a result, benzyl alcohol and benzaldehyde are further oxidized to benzoic acid and benzyl benzoate. Therefore, even though benzaldehyde has the highest selectivity, it presents a decreasing trend, while the selectivity of benzoic acid increases. Moreover, because of the limited benzyl alcohol, benzyl benzoate selectivity is not changed significantly.

    Fig.2 Influence of initial oxygen pressure on catalytic performance over Au/γ-MnO2 catalyst with the reaction temperatures of 160℃, the reaction time of 8 h, the catalyst amount of 1 % in mass fraction, and the stirring rate of 600 r/min

    In Fig.3, toluene conversion increases with the increase of temperature. At the temperature of 140℃ or lower, the conversion of toluene remains below 5%. However, when the reaction temperature increases, the reaction becomes more severe. Toluene conversion is improved by a clear increase rate progressively, and at the temperature of 220℃, it reaches the value of 34.1%. Another improvement appears on the selectivity of benzyl benzoate. When the temperature is low, little benzyl benzoate can be obtained. However, a reaction at 220℃ provides the greatest production of benzyl benzoate and the value of selectivity changes to 47.1%. On the contrary, the other three products show decreasing trends in Fig.3. Benzyl benzoate selectivity shows a sharp increase between the temperature of 180 and 220℃, while the selectivity of benzaldehyde decreases by 37.4%. Meanwhile, benzoic acid and benzyl alcohol do not change much. This single-factor experiment shows a result that the increasing temperature provides more energy for greater reactions. Some toluene may be directly oxidized to benzyl benzoate. This is proved to be the most effective method to improve toluene conversion in this reaction system. This enhancement in catalytic activity may be caused by the increase in the intrinsic activity of the existing active sites and also by the creation of more active sites with the increase in reaction temperature[13].

    Fig.3 Influence of reaction temperature on catalytic performance over Au/γ-MnO2 catalyst with the initial pressure of 1 MPa, the catalyst amount of 1% in mass friction, the reaction time of 8 h, and the stirring rate of 600 r/min

    It is clear to see from Fig.4 that a long reaction time can clearly improve toluene conversion. However, in the first 12 h, oxidation reaction proceeds slowly. On the other hand, both benzyl alcohol and benzaldehyde decrease as time goes by. The change in benzyl alcohol selectivity is not obvious, while a sharp decrease appears

    Fig.4 Influence of reaction time on catalytic performance over Au/γ-MnO2 catalyst with the reaction temperature of 160℃, the initial pressure of 1 MPa, the catalyst amount of 1% in mass friction, and the stirring rate of 600 r/min

    in the first 20 h of benzaldehyde selectivity. On the contrary, benzyl benzoate production increases more over time and exceeds benzaldehyde after a reaction for 42 h. Unlike the three products, benzoic acid selectivity first increases to 31.4% at 20 h and then decreases to 20.6% at 60 h. This phenomenon is attributed to more benzaldehyde turning into benzyl acid with oxygen at the beginning of the reaction. As time passes, the benzyl acid and benzyl alcohol begin further reacting to form benzyl benzoate. This observation can also be confirmed by the increasing trend of benzyl benzoate selectivity. A similar result was also discovered by Fu et al[14]. In this way, we can obtain the most benzoic acid product by controlling reaction time.

    The influence of catalyst amount in this system is described in Fig.5. Similar to the influence of the above discussed parameters of reaction temperatures and initial oxygen pressure, the toluene conversion increases dramatically with the increase in catalyst amount, which can be raised from the initial 8.6% to above 30%. However, the conversion maintains constant when the catalyst amount is above 7%. This phenomenon may be ascribed to two reasons. One is the limitation of the oxygen amount in the liquid phase of this reaction system. The other possible reason is the findings that metal complexes of transition metals, particularly in the media of low polarity such as neat hydrocarbons, often act as catalysts at low loadings but inhibitors at high loadings[15]. The selectivity of benzoic acid and benzyl benzoate first increases then decreases, while the selectivity of benzyl alcohol does not change too much. The increase of catalyst amount may drive the reaction into a further stage and results in the increase of selectivity of the more reactive oxidation products. However, due to the limitations of reaction conditions, this selectivity declines when the amount of catalyst reaches a certain value. Another product is benzaldehyde, the selectivity of which reaches a maxmum value when the amount is 7%. It is known that benzoic acid and benzyl benzoate are the further oxidation products

    Fig.5 Influence of catalyst amount on catalytic performance over Au/γ-MnO2 catalyst with the reaction temperature of 160℃, the initial pressure of 1 MPa, the reaction time of 8 h and the stirring rate of 600 r/min

    of benzaldehyde, so it is easy to understand that the behavior of benzaldehyde selectivity can be contrasted with that of benzoic acid and benzyl benzoate. Moreover, the selectivity of benzaldehyde is always the highest during the increase of catalyst amount from 1% to 10%, indicating that the Au/γ-MnO2catalyst has a unique selectivity to benzaldehyde in this reaction condition.

    3 Conclusion

    In this paper, the well dispersed Au/γ-MnO2catalyst is synthesized. The sample shows effective catalytic performance in solvent-free toluene oxidation. Several process parameters can enhance the conversion of toluene, which are reaction temperature, initial oxygen pressure, catalyst amount, and reaction time. All these factors influence the selectivity of benzaldehyde, benzoic acid and benzyl benzoate significantly, but affect that of benzyl alcohol only slightly. Under the conditions of a reaction time within 20 h, a reaction temperature below 200℃ and the initial oxygen pressure within 3 MPa, this Au/γ-MnO2catalyst has a unique selectivity to benzaldehyde.

    [1]Suresh A K, Sharma M M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons [J].Industrial&EngineeringChemistryResearch, 2000, 39(11): 3958-3997.

    [2]Kantam M L, Sreekanth P, Rao K K, et al. An improved process for selective liquid-phase air oxidation of toluene [J].CatalysisLetters, 2002, 81(3/4): 223-232.

    [3]Kesavan L, Tiruvalam R, Ab Rahim M H, et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles [J].Science, 2011, 331(6014): 195-199.

    [4]Qiu G H, Huang H, Dharmarathna S, et al. Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties [J].ChemistryofMaterials, 2011, 23(17): 3892-3901.

    [5]Zhang Y B, Shen Y N, Yang X Z, et al. Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde [J].JournalofMolecularCatalysisA:General, 2010, 316(1/2): 100-105.

    [6]Wang H, Zhu H Q, Qin Z F, et al. Deactivation of a Au/CeO2-Co3O4catalyst during CO preferential oxidation in H2-rich stream [J].JournalofCatalysis, 2009, 264(2): 154-162.

    [7]Li C Y, Shen Y N, Jia M L, et al. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts [J].CatalysisCommunications, 2008, 9(3): 355-361.

    [8]Blick K, Mitrelias T D, Hargreaves J S J, et al. Methane oxidation using Au/MgO catalysts [J].CatalysisLetters, 1998, 50(3/4): 211-218.

    [9]Campbell C T. The active site in nanoparticle gold catalysis [J].Science, 2004, 306(5694): 234-235.

    [10]Jiang F, Zhu X W, Fu B S, et al. Au/γ-MnO2catalyst for solvent-free toluene oxidation with oxygen [J].ChineseJournalofCatalysis, 2013, 34(9): 1683-1689.

    [11]de Wolff P M. Interpretation of some γ-MnO2diffraction patterns [J].ActaCryst, 1959, 12: 341-345.

    [12]Malpas D G, Tye F L.Handbookofmanganesedioxidesbatterygrade[M]. Brunswick: IBA Inc & JEC Press, 1989.

    [13]Kalevaru V N, Raju B D, Rao V V, et al. Preparation, characterisation and catalytic evaluation of MgF2supported V2O5catalysts for ammoxidation of 3-picoline [J].AppliedCatalysisA:General, 2009, 352(1/2): 223-233.

    [14]Fu B S, Zhu X W, Xiao G M. Solvent-free selective aerobic oxidation of toluene by ultra fine nano-palladium catalyst [J].AppliedCatalysisA:Gernal, 2012, 415-416: 47-52.

    [15]Sheldon R A.Metal-catalyzedoxidationoforganiccompounds[M]. New York:Academic Press, 1981.

    反應(yīng)條件對Au/γ-MnO2催化甲苯氧化反應(yīng)的影響

    姜 楓 肖國民

    (東南大學化學化工學院, 南京 211189)

    制備了γ-MnO2納米棒以及Au/γ-MnO2催化劑,并用X射線衍射(XRD)、掃描電鏡(SEM)和透射電鏡(TEM)等手段對其進行表征.結(jié)果表明:Au顆粒均勻分散在載體γ-MnO2的表面,顆粒大小約為10 nm.在無溶劑存在下甲苯和氧氣的氧化反應(yīng)中測試了樣品的催化活性.研究了反應(yīng)時間、反應(yīng)溫度、初始氧氣壓力及催化劑加入量對催化活性的影響.活性測試結(jié)果表明:Au/γ-MnO2催化劑對苯甲醛有特殊的選擇性;反應(yīng)時間、溫度、初始壓力及催化劑加入量等條件對甲苯轉(zhuǎn)化率及苯甲醛、苯甲酸、苯甲酸芐酯的選擇性都有很大影響,但對苯甲醇的選擇性影響不大.

    納米金;二氧化錳;甲苯氧化;無溶劑

    TQ139.2

    s:The National Natural Science Foundation of China (No.21276050), the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1341).

    :Jiang Feng, Xiao Guomin.Influences of process parameters on solvent-free toluene oxidation over Au/γ-MnO2catalyst[J].Journal of Southeast University (English Edition),2014,30(3):387-390.

    10.3969/j.issn.1003-7985.2014.03.024

    10.3969/j.issn.1003-7985.2014.03.024

    Received 2014-01-20.

    Biographies:Jiang Feng (1987—), femal,graduate; Xiao guomin (corresponding author), male, doctor, professor, xiaogm@seu.edu.cn.

    猜你喜歡
    無溶劑苯甲酸甲苯
    高效液相色譜法測定降糖藥甲苯磺丁脲片中甲苯磺丁脲的含量
    離子交換樹脂催化合成苯甲酸甲酯
    云南化工(2020年11期)2021-01-14 00:50:52
    1-(對甲苯基)-2-(三對甲苯基-5-亞磷酰基)乙醛的汞(Ⅱ)配合物的X射線晶體學、光譜表征和理論計算研究
    含有苯甲酸的紅棗不能吃?
    百科知識(2016年22期)2016-12-24 21:07:25
    SO42-/TiO2-SnO2固體超強酸無溶劑催化合成季戊四醇硬脂酸酯
    3,5-二氨基對氯苯甲酸異丁酯的合成研究
    淡水艙無溶劑環(huán)氧施工工藝研究
    2015中國國際合成革展覽會刮起“無溶劑合成革”風暴
    西部皮革(2015年15期)2015-02-28 18:14:36
    甲苯-4-磺酸催化高效合成尼泊金正丁酯防腐劑
    萃取精餾分離甲苯-正庚烷混合物的模擬研究
    少妇人妻久久综合中文| 老司机靠b影院| 亚洲国产看品久久| 国产伦人伦偷精品视频| 三级毛片av免费| 青春草亚洲视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 久久久久久久久久久久大奶| 成人三级做爰电影| 欧美性长视频在线观看| 国产成人系列免费观看| 国产精品一区二区在线观看99| 日本av免费视频播放| 欧美少妇被猛烈插入视频| 国产成人精品久久二区二区免费| 婷婷色av中文字幕| 午夜福利一区二区在线看| 性色av乱码一区二区三区2| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 伦理电影免费视频| 欧美精品啪啪一区二区三区 | 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频 | 国产精品二区激情视频| 欧美精品一区二区免费开放| 人人妻人人添人人爽欧美一区卜| 亚洲中文字幕日韩| 黄片小视频在线播放| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| 国产成+人综合+亚洲专区| 自线自在国产av| 欧美日本中文国产一区发布| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 老熟女久久久| 亚洲性夜色夜夜综合| 国产一区二区在线观看av| 啦啦啦在线免费观看视频4| 另类精品久久| 亚洲精品粉嫩美女一区| 操出白浆在线播放| 亚洲国产欧美网| 老熟妇仑乱视频hdxx| 精品少妇黑人巨大在线播放| 69精品国产乱码久久久| av国产精品久久久久影院| 在线观看www视频免费| 91麻豆精品激情在线观看国产 | 久久久久久人人人人人| 国产精品.久久久| 欧美日韩一级在线毛片| 少妇猛男粗大的猛烈进出视频| 亚洲国产欧美日韩在线播放| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 亚洲精品一卡2卡三卡4卡5卡 | 日韩大片免费观看网站| 色老头精品视频在线观看| 国产又爽黄色视频| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 久久久久久人人人人人| 免费高清在线观看日韩| 大码成人一级视频| 一边摸一边做爽爽视频免费| 捣出白浆h1v1| 国产97色在线日韩免费| 热99国产精品久久久久久7| 国产成人系列免费观看| a级毛片在线看网站| 午夜久久久在线观看| 欧美日韩av久久| 国产精品香港三级国产av潘金莲| 汤姆久久久久久久影院中文字幕| 免费在线观看日本一区| 99国产极品粉嫩在线观看| 一个人免费在线观看的高清视频 | 妹子高潮喷水视频| 久久精品国产亚洲av香蕉五月 | 国内毛片毛片毛片毛片毛片| 熟女少妇亚洲综合色aaa.| 久久久久网色| 亚洲第一青青草原| 亚洲美女黄色视频免费看| 久久人人爽av亚洲精品天堂| 国产精品影院久久| 国产亚洲欧美在线一区二区| 中国美女看黄片| 2018国产大陆天天弄谢| 国产免费一区二区三区四区乱码| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 操出白浆在线播放| 老司机亚洲免费影院| 精品视频人人做人人爽| 男人操女人黄网站| 少妇猛男粗大的猛烈进出视频| 悠悠久久av| 啦啦啦 在线观看视频| 久久精品久久久久久噜噜老黄| 精品国产国语对白av| 亚洲少妇的诱惑av| 伊人亚洲综合成人网| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的| 亚洲av美国av| 国产97色在线日韩免费| 国产精品1区2区在线观看. | 久久人人97超碰香蕉20202| 午夜福利免费观看在线| av网站在线播放免费| 777久久人妻少妇嫩草av网站| av视频免费观看在线观看| 亚洲av国产av综合av卡| 一级毛片女人18水好多| 午夜免费成人在线视频| 51午夜福利影视在线观看| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 国产精品自产拍在线观看55亚洲 | 精品一区二区三区四区五区乱码| 成年人午夜在线观看视频| 人妻 亚洲 视频| 汤姆久久久久久久影院中文字幕| xxxhd国产人妻xxx| 啦啦啦免费观看视频1| 免费看十八禁软件| 美女福利国产在线| 80岁老熟妇乱子伦牲交| bbb黄色大片| 99九九在线精品视频| 天天影视国产精品| 国产黄色免费在线视频| 国产免费视频播放在线视频| 日韩 欧美 亚洲 中文字幕| 日韩大码丰满熟妇| 亚洲av成人一区二区三| 考比视频在线观看| 免费在线观看黄色视频的| 亚洲精品国产av成人精品| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 成人国产一区最新在线观看| 精品福利永久在线观看| 一区二区三区四区激情视频| 精品国产一区二区三区四区第35| 免费观看a级毛片全部| 日日夜夜操网爽| 欧美成人午夜精品| 伊人久久大香线蕉亚洲五| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区激情| 亚洲精品粉嫩美女一区| 两性夫妻黄色片| 一级毛片电影观看| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 日韩三级视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久久国产一区二区| 欧美乱码精品一区二区三区| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| 国产精品成人在线| 正在播放国产对白刺激| a 毛片基地| 久久国产精品男人的天堂亚洲| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜添小说| 亚洲成人免费av在线播放| 国产精品 国内视频| 国产成人av激情在线播放| 嫩草影视91久久| 男女免费视频国产| 中文字幕高清在线视频| 免费在线观看完整版高清| 三级毛片av免费| 老熟妇乱子伦视频在线观看 | 免费人妻精品一区二区三区视频| 黄色毛片三级朝国网站| av在线老鸭窝| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 国产av一区二区精品久久| 午夜精品久久久久久毛片777| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 黄色视频在线播放观看不卡| 欧美日韩中文字幕国产精品一区二区三区 | 交换朋友夫妻互换小说| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 性少妇av在线| 超碰97精品在线观看| 成在线人永久免费视频| svipshipincom国产片| 999久久久国产精品视频| 交换朋友夫妻互换小说| av电影中文网址| 在线永久观看黄色视频| 一进一出抽搐动态| 国产精品久久久久久精品电影小说| 日本精品一区二区三区蜜桃| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 少妇裸体淫交视频免费看高清 | 国产不卡av网站在线观看| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 国产精品麻豆人妻色哟哟久久| 桃红色精品国产亚洲av| 岛国在线观看网站| 成年人免费黄色播放视频| 91麻豆av在线| 日韩欧美国产一区二区入口| 中文欧美无线码| 精品国产国语对白av| 国产一卡二卡三卡精品| 久久久久国产一级毛片高清牌| 国产日韩欧美视频二区| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 国产淫语在线视频| 免费不卡黄色视频| 免费在线观看影片大全网站| 免费高清在线观看视频在线观看| 女性被躁到高潮视频| 捣出白浆h1v1| √禁漫天堂资源中文www| 日韩制服丝袜自拍偷拍| 欧美精品一区二区免费开放| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 久久狼人影院| 操出白浆在线播放| 国产亚洲av高清不卡| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图| 极品少妇高潮喷水抽搐| 最黄视频免费看| 97人妻天天添夜夜摸| 亚洲av日韩精品久久久久久密| 亚洲精品国产色婷婷电影| 97在线人人人人妻| 99香蕉大伊视频| 97人妻天天添夜夜摸| 叶爱在线成人免费视频播放| 国精品久久久久久国模美| 在线观看免费视频网站a站| 久久这里只有精品19| 黑人巨大精品欧美一区二区mp4| 99国产综合亚洲精品| 欧美久久黑人一区二区| 久热这里只有精品99| 亚洲国产av新网站| 亚洲全国av大片| 1024视频免费在线观看| 老司机影院成人| 91成年电影在线观看| 国产高清国产精品国产三级| av欧美777| 精品一区二区三区四区五区乱码| 亚洲精品国产av蜜桃| 国产成人影院久久av| 夜夜骑夜夜射夜夜干| 国产一区二区三区综合在线观看| 中国国产av一级| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 国产日韩欧美亚洲二区| 国产成人av教育| 麻豆乱淫一区二区| 电影成人av| 国产亚洲精品一区二区www | www.999成人在线观看| 亚洲精品国产一区二区精华液| 97在线人人人人妻| 精品久久久久久电影网| 久久久久久人人人人人| 久久久国产成人免费| 久久人人爽人人片av| 成年美女黄网站色视频大全免费| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 亚洲精品国产一区二区精华液| 在线观看人妻少妇| 国产麻豆69| 超碰97精品在线观看| 亚洲精华国产精华精| 咕卡用的链子| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 91成人精品电影| 国产亚洲精品久久久久5区| 国产成人欧美在线观看 | 少妇裸体淫交视频免费看高清 | 亚洲国产欧美一区二区综合| 丰满迷人的少妇在线观看| 99久久人妻综合| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 亚洲精品中文字幕一二三四区 | 99久久综合免费| 精品一区二区三卡| 中文字幕色久视频| 在线观看人妻少妇| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| av福利片在线| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 黄色 视频免费看| 最新的欧美精品一区二区| 老司机影院成人| 国产亚洲精品久久久久5区| 精品国产国语对白av| 国产精品九九99| 9色porny在线观看| 亚洲第一青青草原| 人人澡人人妻人| 另类亚洲欧美激情| av一本久久久久| 欧美97在线视频| 久久久久国产一级毛片高清牌| 精品人妻一区二区三区麻豆| 久久久久久亚洲精品国产蜜桃av| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 欧美 日韩 精品 国产| 一区二区三区精品91| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 男女边摸边吃奶| 美女国产高潮福利片在线看| 男女下面插进去视频免费观看| 久热爱精品视频在线9| 最近中文字幕2019免费版| 免费在线观看日本一区| 国产三级黄色录像| 大片免费播放器 马上看| 19禁男女啪啪无遮挡网站| xxxhd国产人妻xxx| av有码第一页| 91精品伊人久久大香线蕉| 日韩三级视频一区二区三区| 99国产精品99久久久久| 久久国产精品大桥未久av| 免费一级毛片在线播放高清视频 | 国产极品粉嫩免费观看在线| 亚洲全国av大片| 国产极品粉嫩免费观看在线| 人人妻,人人澡人人爽秒播| 国产欧美日韩综合在线一区二区| 亚洲专区中文字幕在线| 少妇人妻久久综合中文| 国产成人系列免费观看| 色综合欧美亚洲国产小说| 久久国产精品男人的天堂亚洲| 大码成人一级视频| 国产主播在线观看一区二区| 男女高潮啪啪啪动态图| 久久天堂一区二区三区四区| 精品一区二区三区av网在线观看 | 黑丝袜美女国产一区| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 亚洲av成人一区二区三| 狠狠婷婷综合久久久久久88av| 国产亚洲精品一区二区www | 叶爱在线成人免费视频播放| 色婷婷久久久亚洲欧美| 中亚洲国语对白在线视频| 一级黄色大片毛片| 欧美精品一区二区免费开放| 老熟妇仑乱视频hdxx| 免费在线观看黄色视频的| 91字幕亚洲| 一进一出抽搐动态| 涩涩av久久男人的天堂| 777米奇影视久久| 亚洲第一av免费看| 国产区一区二久久| 国产成人欧美| 又大又爽又粗| 热re99久久精品国产66热6| 国产精品久久久久久人妻精品电影 | 真人做人爱边吃奶动态| 亚洲九九香蕉| 手机成人av网站| 男女边摸边吃奶| 欧美成人午夜精品| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区蜜桃| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 伦理电影免费视频| 日本黄色日本黄色录像| 王馨瑶露胸无遮挡在线观看| 少妇裸体淫交视频免费看高清 | 男女之事视频高清在线观看| 一边摸一边抽搐一进一出视频| a级毛片在线看网站| 欧美成人午夜精品| 欧美日韩一级在线毛片| 91成人精品电影| 777米奇影视久久| 久热这里只有精品99| 青春草亚洲视频在线观看| 亚洲精品美女久久久久99蜜臀| 久久 成人 亚洲| 国产精品自产拍在线观看55亚洲 | 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清 | 久久人妻熟女aⅴ| 老熟妇乱子伦视频在线观看 | 曰老女人黄片| 久久性视频一级片| 国产欧美日韩一区二区三区在线| 成人国产av品久久久| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 亚洲av电影在线进入| 正在播放国产对白刺激| 国产精品二区激情视频| 在线观看免费高清a一片| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 男女边摸边吃奶| 国产精品久久久久久精品古装| 久久久国产成人免费| 亚洲伊人色综图| 国产成人欧美在线观看 | 免费黄频网站在线观看国产| 免费av中文字幕在线| 美女高潮喷水抽搐中文字幕| 国产成人免费无遮挡视频| 日韩视频一区二区在线观看| www日本在线高清视频| 电影成人av| 啦啦啦啦在线视频资源| 三级毛片av免费| 国产在线观看jvid| 男女高潮啪啪啪动态图| 人妻一区二区av| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 99久久国产精品久久久| 亚洲欧美日韩另类电影网站| 久久久水蜜桃国产精品网| 王馨瑶露胸无遮挡在线观看| 啪啪无遮挡十八禁网站| 亚洲精品国产区一区二| 国产97色在线日韩免费| 在线永久观看黄色视频| 久久国产亚洲av麻豆专区| 免费观看av网站的网址| 亚洲欧美激情在线| 日本wwww免费看| 青春草视频在线免费观看| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 99九九在线精品视频| 欧美精品一区二区大全| 热re99久久精品国产66热6| 日本wwww免费看| 精品国产一区二区三区四区第35| 黄色a级毛片大全视频| 天天添夜夜摸| 欧美日韩av久久| 后天国语完整版免费观看| 日韩欧美国产一区二区入口| www.精华液| 99国产精品免费福利视频| 大片免费播放器 马上看| cao死你这个sao货| 丝袜在线中文字幕| 老司机午夜福利在线观看视频 | 女性生殖器流出的白浆| 男人爽女人下面视频在线观看| 青草久久国产| av天堂在线播放| 2018国产大陆天天弄谢| 欧美日本中文国产一区发布| 久久精品亚洲熟妇少妇任你| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| 夫妻午夜视频| 啦啦啦 在线观看视频| 不卡av一区二区三区| 久久精品成人免费网站| 亚洲全国av大片| 亚洲精品国产一区二区精华液| 十八禁网站网址无遮挡| 日韩免费高清中文字幕av| 国产黄色免费在线视频| 99国产极品粉嫩在线观看| 黑人猛操日本美女一级片| 美女高潮到喷水免费观看| 色老头精品视频在线观看| 亚洲熟女精品中文字幕| 搡老岳熟女国产| 黄色a级毛片大全视频| 91av网站免费观看| 动漫黄色视频在线观看| av片东京热男人的天堂| 国产91精品成人一区二区三区 | 女人高潮潮喷娇喘18禁视频| 久久ye,这里只有精品| 国产一区二区激情短视频 | 一区在线观看完整版| 国产在线观看jvid| xxxhd国产人妻xxx| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 视频区图区小说| 日韩电影二区| 久久 成人 亚洲| 精品福利永久在线观看| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性xxxx| 欧美激情 高清一区二区三区| 咕卡用的链子| 91国产中文字幕| 精品亚洲乱码少妇综合久久| av天堂久久9| 一个人免费在线观看的高清视频 | 亚洲七黄色美女视频| 999精品在线视频| 精品欧美一区二区三区在线| 日韩,欧美,国产一区二区三区| 色播在线永久视频| 亚洲激情五月婷婷啪啪| 十八禁高潮呻吟视频| 欧美大码av| 老司机影院毛片| 又紧又爽又黄一区二区| 桃花免费在线播放| 亚洲成人国产一区在线观看| 久久人人爽av亚洲精品天堂| 亚洲av电影在线进入| 久久人人爽人人片av| 亚洲天堂av无毛| 97在线人人人人妻| bbb黄色大片| 亚洲免费av在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 国产有黄有色有爽视频| www日本在线高清视频| 免费黄频网站在线观看国产| 伦理电影免费视频| 中文字幕人妻丝袜一区二区| 午夜日韩欧美国产| 国产福利在线免费观看视频| 精品一区二区三区av网在线观看 | 日韩欧美免费精品| 欧美激情久久久久久爽电影 | 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区| av天堂久久9| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 在线 av 中文字幕| 国产精品自产拍在线观看55亚洲 | 欧美97在线视频| 满18在线观看网站| 亚洲精品av麻豆狂野| 亚洲视频免费观看视频| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 在线看a的网站| 亚洲va日本ⅴa欧美va伊人久久 | 久久久精品国产亚洲av高清涩受| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| 久久免费观看电影| 精品福利观看| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区 | 久久 成人 亚洲| 伊人亚洲综合成人网| 亚洲精品国产区一区二| 老司机福利观看| 久久精品aⅴ一区二区三区四区| 欧美精品av麻豆av| 老汉色av国产亚洲站长工具| 久久久久网色| 国产极品粉嫩免费观看在线| 久久久精品免费免费高清| 亚洲欧美一区二区三区久久| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区蜜桃| 伦理电影免费视频| 成年美女黄网站色视频大全免费| 悠悠久久av| 欧美中文综合在线视频| 国产精品一区二区在线观看99| 欧美成人午夜精品| 各种免费的搞黄视频| 欧美日本中文国产一区发布| 欧美日韩精品网址|