• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of biodiesel industrial production via solid base catalystin a fixed-bed reactor

    2014-09-06 10:49:44LiHaoyangPanXiaomeiXiaoYangXiaoGuominHuangJinjin
    關(guān)鍵詞:酯交換固定床能量消耗

    Li Haoyang Pan Xiaomei Xiao Yang Xiao Guomin Huang Jinjin

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Simulation of biodiesel industrial production via solid base catalystin a fixed-bed reactor

    Li Haoyang Pan Xiaomei Xiao Yang Xiao Guomin Huang Jinjin

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    Biodiesel industrial production based on a solid base catalyst in a fixed-bed was simulated. The lab and bench scale experiments were carried out effectively, in which the kinetic model is established and it can describe the transesterification reaction well. The Antoine equation of biodiesel is regressed with the vapor-liquid data cited of literature. The non-random two liquid (NRTL) model is applied to describe the system of fatty acid methyl ester (FAME), methanol and glycerol and parameters are obtained. The Ternary phase map is obtained from Aspen Plus via the liquid-liquid equilibrium (LLE) data. In order to describe the production in a fixed-bed performs in industrial scale after being magnified 1000 times, the Aspen Plus simulation is employed, where two flowsheets are simulated to predict material and energy consumption. The simulation results prove that at least 350.42 kW energy consumption can be reduced per hour to produce per ton biodiesel compared with data reported in previous references.

    solid base catalyst; fixed-bed reactor; Aspen Plus simulation; biodiesel industrial production

    With the rapid decrease in fossil fuels and the increasing consumption of resources, searching for alternative energy sources has become even more urgent. Much attentions has been paid to research in renewable, economical and environment friendly fuels by both developed and developing nations. Biodiesel (fatty acid methyl ester, FAME), a kind of “green fuel”, is environment-friendly, safe and renewable, making it fundamentally useful in improving the utilization of this green power[1]. As a result, it is being widely favored and investigated by companies and institutes. The exploitation of industrialization of FAME production is required urgently[2].

    One method of biodiesel production is the transesterification of triglycerides with low alcohol, such as methanol or ethanol, and glycerol obtained as a by-product. Traditionally, homogeneous catalysts including H2SO4, NaOH, KOH and NaOCH3solutions[3-6]were used to power biodiesel production, in which mass transfer is insignificant due to a low diffusion resistance. Therefore, reactions powered by homogeneous catalysts are fast and have high conversions. But some shortcomings[7]of homogeneous catalyst are obvious as well. Homogeneous acids and bases erode equipment and they are with difficulty separated from products, not only increasing the production cost but also generating plenty of waste water, which is strictly contrary to the notion of sustainable development. Non-catalytic supercritical reaction is of short reaction time with a conversion of 95% or more. It is not necessary to wash products at all. But the molar ratio of alcohol to oil is quite high and the reaction temperature and pressure should exceed the critical values of methanol. Heterogeneous catalysts, however, are able to overcome the former’s disadvantages. Transesterification catalyzed by a solid base has remarkably advantages. These kinds of processes are easily operated and conveniently disposed of and output no waste water. Heterogeneous transesterification is considered to be a green process[8], requiring neither catalyst recovery nor aqueous treatment steps. A high biodiesel conversion can also be achieved. Heterogeneous catalysts in biodiesel production have been extensively investigated in the last few years. Several metal oxides have been studied for the transesterification process including alkali earth metal oxides, transition metal oxides, mixed metal oxides and supported metal oxides[9].

    In addition, the process of transesterification is another factor which should be paid attention to, because it impacts remarkably on material and energy consumption. Presently, batch reactors are employed in FAME production and have become a set of mature processes. However, there are several disadvantages concerning costs in that process: a long reaction time, large energy consumption, poor mass transfer, low conversion, difficulty in control and a lack of continuous production[10]. In order to promote operation efficiency, continuous technique reforms and innovations are required. The main directions may be as follows: 1) Developing new heterogeneous catalysts, extending the life of catalysts, finding new catalyst reactivation methods, decreasing costs and preventing environment pollution simultaneously; 2) Applying new techniques such as catalysis coupled with separation, decreasing the alcohol to oil ratio to reduce energy consumption in alcohol’s recycling; 3) Investigating transesterification reactions in super critical conditions or other new FAME producing processes with independent intellectual property rights[11]. Various new high-efficiency reactors are applied in the FAME production. The lab scale and bench scale[12-14]experiments were conducted well in our previous work. Kinetic and mass transfer models have been established and they can describe the transesterification reaction well. In order to predict how the catalyst, fixed-bed and the models perform on an industrial scale after being magnified 1 000 times, the industrial scale production of biodiesel was simulated. In this system, solid base KF/Ca-Mg-Al hydrotalcite[13]is prepared and used as catalyst. Soybean oil and methanol are employed as feedstock of transesterification to calculate energy and material consumption in industrial scale of biodiesel producing. Based on lab and bench scale, this simulation provides model data for industrial design, such as separating procedure selections and the further references for equipment sizes calculation.

    1 Methodology

    1.1 Kinetic model

    1.1.1 Intrinsic-kinetic model

    An intrinsic-kinetic model was developed by Gao et al[13]. Based on the proposed assumptions, the reaction can be written as

    (1)

    This equation describes the overall reaction of triglyceride (A) and methanol (B) to form three FAME (C) and glycerol (D). Since the series of assumptions, our work conducted with soybean oil agrees with the kinetic based on palm oil as a reactant. The kinetic equation, therefore, can be written as

    rA=k1CACB-k2CCCD=

    (2)

    whererAis the reaction rate of A considering no diffusion effects, kmol/(kg·s)-1;k1is the rate constant of positive reaction, m6/(kmol·kg·s)-1;k2is the rate constant of inverse reaction, m6/(kmol·kg·s)-1;Ci0is the initial concentration in the bulk fluid of componenti, kmol/m3;Ciis the concentration in the bulk fluid of componenti, kmol/m3;mis the molar ratio of alcohol to oil andxis the conversion of transesterification.

    Pre-exponential factors of the reversible reaction and activation energy were calculated and regressed by the Arrhenius equation. Rate constants at different temperatures of both positive and inverse reactions were computed by this data consequently.

    1.1.2 Macro-kinetic model

    While internal and external diffusion are included[12], the kinetic model should be modified as

    (3)

    wherereiis the reaction rate including both external and internal diffusion effects, kmol/(kg·s)-1;kis the rate constant of transesterification reaction, m6/(kmol·kg·s)-1;Csiis the concentration at the external surface of catalyst of componenti, kmol/m3;Kis the reaction equilibrium constant andKiis the adsorption equilibrium constant of componenti, m3/kmol.

    In previous work, this model agreed well with transesterification via a solid base catalyst in a fixed-bed, with which 95% conversion can be achieved at the temperature 65 ℃, the recommended condition in the literature. Our work was carried out on the basis of these kinetic models for lab and bench scales.

    1.2 Reactor model of fixed-bed

    Besides the kinetic models, the reactor model also contributes to the veracity of this simulation. Xiao et al.[12]put a one-dimensional heterogeneous model of a fixed-bed as

    (4)

    wherexis the conversion of transesterification;Lis the height of catalyst packed in the fixed bed reactor, m;reis the reaction rate including external diffusion effects, kmol/(kg·s)-1;u1is the liquid mixture velocity, m/s;ηis the internal diffusion effectiveness factor;ρbis the packed density of fixed bed reactor, kg/m.

    Impacts such as liquid hourly space velocity(LHSV), h-1, temperature, and the molar ratio of methanol-to-oil on transesterification conversion are illustrated. The computed result of this model suggests that the conversion reaches 95% under the conditions LHSV of 0.76 to 0.25 h-1, the molar ratio of methanol-to-oil of 9.16 to 13.7, and the temperature of 338 to 347 K, which agrees with experimental data.

    1.3 Pure components parameters

    Soybean oil can be defined as C57H104O6. It performs appropriately in presenting most properties of soybean oil. The molecule format of FAME is presented as C19H36O2, a product via transesterification of soybean oil and methanol. Parameters of pure components come from the chemical simulation software Aspen Plus and can represent most properties of reactants and products, except for FAME[15].

    (5)

    wherePis the pressure, Pa; andTis the absolute temperature,K.

    The Antoine equation (5) is used to present boiling points of FAME under different pressures. Parameters of the Antoine equation are regressed from the equation and the fraction data of 14 compositions in soybean oil. With this equation, conditions and results of separation in the following processes are determined and obtained exactly.

    1.4 Parameters of Ternary mixture

    Aspen Plus has almost all the property parameters of common chemicals, but still lacks some data from certain chemicals. The products in this process are FAME and glycerol, mixed with excess methanol. Thus regressing the liquid-liquid equilibrium (LLE) is needed. The LLE data of FAME, methanol and glycerol are from Ref.[16] and regressed by the NRTL (non-random-two-liquid) model with Aspen Plus. It is essential to obtain information of the phase equilibrium of the reactive mixture to explore possible operation conditions for the reactor and the downstream separation processes.

    1.5 Flowsheet simulation

    According to section 1.1 and 1.2, the preheaters were set at 65 ℃, and the following reaction conducted at such a temperature that can guarantee the conversion of 95%. Glycerol, the by-product, dissolves partially in methanol while biodiesel exists[17]. Biodiesel would be miscible with glycerol while with methanol, vaporized to some degree. Therefore, this work investigates two procedures on the measures of dealing with methanol and products. Two flowsheets, depicted in Fig.1, are drawn to compare energy and material consumption with the other processes. In the first several steps, the two flowsheets are the same: soybean oil and methanol are pumped into two pre-heaters, respectively. The reactants were heated by the preheaters and then pumped into the fixed-bed, in which the solid base KF/Ca-Mg-Al hydrotalcite catalyst was packed to power the transesterification. After the reaction, FAME, the by-product glycerol and unreacted methanol, were dealt with differently in the two flow sheets.

    Flowsheet 1 (FS1) separated FAME and glycerol in a 25 ℃ temperature decanter V-101, in which, two liquid phases were formed: a glycerol-rich phase on the lower layer and a FAME-rich phase on the upper layer. The two phases were delivered to column T-101 and T-103 to recover methanol, respectively. Methanol mass fraction of each distillated vapor was near 100% while the stages and reflux ratio were 4 and 1. Out of column T-101, the FAME-rich phase was sent to T-102 for further purification, of which 20 stages and reflux ratio of 4 were set to obtain 99.8% mass fraction of FAME. The raw glycerol obtained in column T-103 was sent to T-104 for further purification.

    (a)

    (b)

    On the contrary, flowsheet 2 (FS2) recovered methanol from the crude FAME mixed with glycerol in the column T-101 first and then separated the glycerol and FAME in the decanter V-102. Little stages (five theoretical stages) and low reflux ratio (reflux ratio=1) were enough to achieve the separation purpose since the boiling point of methanol is much lower than those of the other components. Similar to FS1, the phase separation was conducted at 25 ℃[18]to satisfy the requirement of the maximum triglyceride content in biodiesel (≤0.2 %, mass fraction) specified in EN 14214. The by-product glycerol was purified in column T-102.

    Traditionally, increasing stage numbers can elevate the purification of FAME and glycerol. 20 stages were set in column T-102 of FS1 to purify FAME. Pressure was as low as 2 kPa to avoid methyl ester thermal decomposition. Stage number and reflux ratio were crucial factors affecting energy and mass consumption. T-104 of FS1 and T-102 of FS2 were employed to purify glycerol with 18 and 14 stages respectively and the reflux ratio of 4 for both. Under such conditions, the mass fraction of FAME reached 0.998 in biodiesel purification and glycerol reached 0.9996 in both glycerol purification columns.

    2 Results and Discussion

    2.1 Parameters of pure components

    Some FAME regressed parameters are listed in Tab.1, and compared with the data regressed by parameters cited in Ref.[15]. The absolute errors of the temperature between the two classes were below 5 ℃ except in the situation of the pressure of 13.332 kPa. Therefore, the Antoine equation with the regressed parameters was appropriate to present the real boiling points, and thus data obtained in the processes of separating methanol, FAME and glycerol is credible.

    Tab.1 Comparison of boiling points at different pressures

    P/kPaTemperature/℃Ref.[15]ThisworkAbsoluteerrorsRelativeerror101.325355.919355.4480.4710.001393.326351.563351.4160.1470.000486.660347.703347.839-0.1360.000479.993343.602344.035-0.4340.001373.327339.221339.968-0.7470.002266.661334.513335.593-1.0790.003259.995329.417330.850-1.4330.004353.329323.849325.661-1.8120.005646.663317.698319.919-2.2220.007039.997310.800313.469-2.6690.008633.331302.911306.075-3.1650.010426.664293.634297.356-3.7230.012719.998282.250286.619-4.3690.015513.332267.223272.370-5.1460.0193

    2.2 Phase equilibrium data

    The NRTL model is suitable for characterizing the LLE data as it shows an ideal performance in predicting regressed parameters at all global temperatures[17]. This model not only can compute the VLE system but also suits LLE binary activity coefficient calculation. Based on these considerations, this model is applied to the partial miscible system.[19].

    As illustrated in Tab.2,cij’s are 0.3, between 0.2 and 0.47, suitable for describing the non-associated liquid such as the FAME-methanol-glycerol system[20]. The Ternary phase map at 25 ℃ regressed by the NRTL model with Aspen Plus is shown in Fig.2.

    Tab.2 The regressed binary parameters of NRTL model

    ComponentijaijajibijbjicijCH4OGlycerol00225.161-1370.2700.3C19H36O2C57H104O600-510.591756.9750.3C19H36O2CH4O00-1012.1301754.0920.3C19H36O2Glycerol001725.2531330.3900.3C57H104O6CH4O00-415.8911143.5880.3C57H104O6Glycerol001587.7876449.4790.3

    Notes:aij,aji,bij,bjiandcijare the parameters of NRTL equation.

    Fig.2 Ternary phase map of FAME-methanol-glycerol

    It is obvious that FAME, methanol, and glycerol are not completely miscible and the fraction of FAME dissolved in glycerol decreases with the increasing mole fraction of methanol while the solution of glycerol in FAME almost holds invariantly. It makes the separation processes after reaction simplified and thus energy and mass are saved. By tie lines, the phase separation can be determined at any component fraction, which is the basis of LLE in this simulation.

    2.3 Energy and mass consumption

    Two series of data of material and energy consumed in producing 1 t FAME by the two flowsheets are listed in Tab.3. FS1 consumed more material of the 11.33 kg, including 9.31 kg soybean oil and 2.02 kg methanol, and energy of 165.05 kW but produced less glycerol of 11.66 kg than FS2. In FS1, methanol was recovered in column T-101 while the biodiesel was purified in T-102 and glycerol purified in T-103 and T-104. For FS2, such processes were conducted in T-101, V-101 and T-102, respectively. Compared with FS2, two more columns were employed in FS1. The biggest gap of energy consumed was formed at columns T-102 and T-103, the processes of biodiesel and glycerol recovery.

    Tab.3 Comparison of material and energy consumption and output of products in two flowsheets

    ItemsFS1FS2DifferencemResource/kgOil1007.41998.1069.30762MeOH218.735216.7142.02091Total1226.151214.8211.3285mBy-product/kgGlycerol90.0006101.658-11.657Energy/kWP-1010.104280.103310.00096P-1020.025920.025680.00024H-10115.338915.19720.14172H-1027.123227.057410.06581T-101129.713178.229-48.516T-10298.503118.853379.6498T-103130.6050130.605T-1043.1027503.10275Total384.516219.466165.05

    Stream conditions of the two flow sheets are listed in Tab.4 and Tab.5 to compare the purities of products and the consumption of feedstock. In order to compare the impact of different processes on material and energy consumption, similar mass fractions were specified. The mass fractions of FAME, methanol and glycerol are 99.83%, 100%, 99.97% in streams PL114, PL111 and PL118, respectively in Tab.4; and they are 99.86%, 100% and 100% in streams PL211, PL208 and PL214, respectively, as shown in Tab.5.

    Note that material and energy consumptions are less even though the products’ purity and material recovery are slightly higher in FS2. The reason for these phenomena may be explained by that the methanol in FS1 was distributed in the two phases of FAME and glycerol, and thus more columns were used to separate methanol to purify product and recover methanol. As a result, more material was wasted in these devices, while after being decanted in FS2, the purity of FAME is 99.86 % and this process consumes a little energy that can be ignored.

    Ref.[18] reported energy consumption based on three production processes in simulation of producing 40000 t FAME per year. The first process, named Alkali-FVO, was an alkali-catalyzed process using fresh canola oil as the feedstock. The second process, named Alkali-WVO, was an alkali-catalyzed process with an acid-catalyzed pre-treatment step of waste canola oil. The last process, named SC-WVO, was a supercritical process using waste canola oil. All of those included pressuring and heating of raw material, reaction, methanol recovery and biodiesel purification. The Alkali-WVO procedure needs pre-treatment for WVO consisting of many free fat acids (FFAs) which cannot be catalyzed by alkali. However, in super-critical and FVO processes, this treatment is not needed. Catalyst was also needed to treat alkali catalyzed processes after the reaction. As revealed in Tab.6, Alkali-WVO consumes more energy than Alkali-FVO due to the high energy consumption of the methanol distillation columns. In comparison with the alkali-catalyzed processes, the super-critical processes have a large requirement for pumping and heating raw material to achieve the harsh reaction conditions. Alkali-FVO is the most energy-consuming among the three processes, but it consumes more energy, about 350.42 kW, compared with FS2.

    Tab.4 Stream data of FS1

    StreamnamePL101PL104PL107PL111PL114PL116PL118Totalflow/(kg·h-1)1000217.1251217.1257.42994.60399.60289.602Temperature/℃25256520.6338194.314280.21286.941Pressure/MPa0.10.10.20.10.020.10.02Massfraction/(kg·kg-1)C19H36O2000.8245200.998330.038120.00294C57H104O6100.0008200.00100CH3OH010.08928100.001930Glycerol000.0853700.000970.959890.99966

    Tab.5 Stream data of FS2

    StreamnamePL201PL204PL207PL208PL211PL212PL214Totalflow/(kg·h-1)1000217.1251217.12108.51003.27105.351101.851Temperature/℃25256520.63382525181.582Pressure/MPa0.10.10.20.10.10.10.02Massfraction/(kg·kg-1)C19H36O2000.8245200.998630.015680C57H104O6100.0008200.0009900CH3OH010.08928100.0010Glycerol000.0853700.000320.983241

    Tab.6 Comparison of energy consumption per hour of five processes

    kW

    ItemAlkali-FVOAlkali-WVOSC-WVOFS1FS2Pumps0.20860.337617.5460.130190.12899Heaters16.696.81285.822.462122.2546Distillationcolumn(reboiler)Methanolrecovery132.8630.56158.54129.713178.229Biodieselpurification413.8406.6323.698.50310Glycerolpurification6.3847.356133.70818.8533Total569.8831051.6785.4384.516219.466

    3 Conclusion

    Intrinsic and macro kinetic models of transesterification catalyzed by the hydrotalcite catalyst were reviewed. The Antoine Equation and NRTL parameters along with LLE data of FAME, methanol and glycerol are accurately regressed by Aspen Plus to simulate our processes in this work. Two flowsheets were established to simulate the procedure of biodiesel. Energy and material consumption are 384.516 kW and 1226.15 kg in FS1 and 219.466 kW and 1214.82 kg in FS2 per hour. The result suggests that decanting product following vaporize methanol can save much more energy and materials. FS2 saves the energy of 350.42 kW in producing 1 t biodiesel per hour compared with process Alkali-FVO. Consequently, the two flowsheets are energy saving compared with the other three processes and FS2 are more appropriate. So much energy and material are reduced due to our catalyst KF/Ca-Mg-Al hydrotalcite’s high catalytic conversion, heterogeneous property and recovering methanol followed by separating FAME and the glycerol process strategy. Therefore, the process catalyzed by solid base in a fixed-bed is proved to be feasible while being magnified 1 000 times to industrial scale successfully.

    [1]Nie X, Chang X, Zhang T, et al. Energy-saving and economic assessment for continuous pipeline production of biodiesel [J].ChemindForestProd, 2011, 31(4): 8-11. (in Chinese)

    [2]Kiss A A. Separative reactors for integrated production of bioethanol and biodiesel [J].ComputChemEng, 2010, 34(5): 812-820.

    [3]Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey [J].EnergConversManage, 2003, 44(13): 2093-2109.

    [4]Zhang Y, Dube M A, McLean D D, et al. Biodiesel production from waste cooking oil: 1. process design and technological assessment [J].BioresourTechnol, 2003, 89(1): 1-16.

    [5]Ma F, Hanna M A. Biodiesel production: a review [J].BioresourTechnol, 1999, 70(1): 1-15.

    [6]Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems [J].BioresourTechnol, 2004, 92(3): 297-305.

    [7]Li W M, Zheng X L, Xu C M, et al. Preparation and its properties of biodiesel by using solid base catalyst [J].JournalofChemicalandIndustryEngineering(China), 2005, 56(4): 711-716. (in Chinese)

    [8]Chouhan A P S, Sarma A K. Modern heterogeneous catalysts for biodiesel production: a comprehensive review [J].RenewSustEnergRev, 2011, 15(9): 4378-4399.

    [9]Refaat A A. Biodiesel production using solid metal oxide catalysts [J].IntJEnvironSciTechnol, 2011, 8(1): 203-221.

    [10]Han X L, Huang X M. Present status of biodiesel production technology [J].ModChemInd, 2007, 27(S1): 129-133. (in Chinese)

    [11]Guo W J, Min E Z. An investigation on developing China’s biodiesel industry [J].ACTAPetrolSin, 2003, 19(2): 1-6. (in Chinese)

    [12]Xiao Y, Gao L J, Xiao G M, et al. Experimental and modeling study of continuous catalytic transesterification to biodiesel in a bench-scale fixed-bed reactor [J].ChemEngResDes, 2012, 51(37): 11860-11865.

    [13]Gao L J, Xiao G M, Xiao Y. The intrinsic kinetics of transesterification of palm oil for biodiesel production in fixed-bed [C]//Proceedingsofthe6thChineseNationalChemicalandBiochemicalEngineeringAnnualMeeting. Changsha, China, 2010. (in Chinese)

    [14]Xiao Y, Gao L J, Xiao G M, et al. Kinetics of the transesterification reaction catalyzed by solid base in a fixed-bed reactor [J].EnergFuels, 2010, 24(11): 5829-5833.

    [15]Yuan W, Hansen A C, Zhang Q. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels [J].Fuel, 2005, 84(7/8): 943-950.

    [16]Andreatta A E, Casa’s L M, Hegel P, et al. Phase equilibria in ternary mixtures of methyl oleate, glycerol, and methanol [J].IndEngChemRes, 2008, 47(15): 5157-5164.

    [17]Chen Y C. Research on vapor-vapor phase equilibrium in biodiesel system [D]. Hangzhou: Department of Chemical and Biological Engineering, Zhejiang University, 2010. (in Chinese)

    [18]Lee S, Posarac D, Ellis N. Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol [J].ChemEngResDes, 2011, 89(12): 2626-2642.

    [19]Tang Y T, Huang H P, Chien I L. Design of a complete ethyl acetate reactive distillation system [J].JChemEngJpn, 2003, 36(11): 1352-1363.

    [20]Jiang X W, Wang Y, Guan C X. Calculation for vapor-liquid phase equilibrium of nonideal system with NRTL and SRK equation [J].ChemEngDes, 2007, 17(5): 11-15. (in Chinese)

    固體堿催化固定床法生產(chǎn)生物柴油的工藝研究

    李浩揚(yáng) 潘曉梅 肖 洋 肖國(guó)民 黃金金

    (東南大學(xué)化學(xué)化工學(xué)院, 南京 211189)

    對(duì)固體堿催化劑催化固定床法工業(yè)化生產(chǎn)生物柴油進(jìn)行了模擬.順利進(jìn)行了小試實(shí)驗(yàn),并建立了生物柴油合成的酯交換反應(yīng)的動(dòng)力學(xué)模型,該模型能較為準(zhǔn)確地描述酯交換反應(yīng).通過(guò)對(duì)文獻(xiàn)中的氣液平衡數(shù)據(jù)的回歸得到了生物柴油的安托因方程.選擇NRTL模型對(duì)脂肪酸甲酯(FAME)-甲醇-甘油體系進(jìn)行描述,得到了體系NRTL的二組分參數(shù),利用Aspen Plus對(duì)該體系液液平衡數(shù)據(jù)(LLE)的回歸得到了三組分相圖.為了預(yù)測(cè)固定床工藝生產(chǎn)在工業(yè)規(guī)模放大1000倍后的效果,Aspen Plus對(duì)2個(gè)流程進(jìn)行了仿真模擬,預(yù)測(cè)物料和能量消耗.模擬結(jié)果表明,與先前文獻(xiàn)報(bào)道的數(shù)據(jù)相比,每小時(shí)生產(chǎn)每噸生物柴油至少可以減少350.42 kW的能量消耗.

    固體堿催化劑;固定床反應(yīng)器;Aspen Plus模擬;生物柴油生產(chǎn)

    TQ028.4

    s:The National Basic Research Program of China (973 Program)(No.2010CB732206), the National Natural Science Foundation of China (No.21076044, 21276050).

    :Li Haoyang, Pan Xiaomei, Xiao Yang, et al.Simulation of biodiesel industrial production via solid base catalyst in a fixed-bed reactor[J].Journal of Southeast University (English Edition),2014,30(3):380-386.

    10.3969/j.issn.1003-7985.2014.03.023

    10.3969/j.issn.1003-7985.2014.03.023

    Received 2013-12-24.

    Biographies:Li Haoyang (1988—), male, graduate; Pan Xiaomei(corresponding author), female, doctor, associate professor, pan xiaomei@seu.edu.cn.

    猜你喜歡
    酯交換固定床能量消耗
    太極拳連續(xù)“云手”運(yùn)動(dòng)強(qiáng)度及其能量消耗探究
    中年女性間歇習(xí)練太極拳的強(qiáng)度、能量消耗與間歇恢復(fù)探究分析
    沒別的可吃
    工業(yè)酶法和化學(xué)法酯交換在油脂改性應(yīng)用中的比較
    煤焦油固定床催化加氫工藝實(shí)驗(yàn)
    山東冶金(2018年6期)2019-01-28 08:14:50
    油茶果殼固定床低氧烘焙及產(chǎn)物理化性質(zhì)研究
    固定床反應(yīng)器吊蓋設(shè)計(jì)及相關(guān)計(jì)算
    國(guó)內(nèi)首套固定床甲醇制丙烯裝置中試成功
    杭州化工(2014年1期)2014-08-15 00:42:48
    鋁誘導(dǎo)大豆根系有機(jī)酸分泌的能量消耗定量研究
    無(wú)溶劑體系下表面活性劑修飾的豬胰脂酶催化酯交換反應(yīng)的研究
    99国产极品粉嫩在线观看| 18禁观看日本| 亚洲成a人片在线一区二区| 村上凉子中文字幕在线| 国产精品久久电影中文字幕| 在线观看一区二区三区| 亚洲精品国产一区二区精华液| 超碰成人久久| 国产欧美日韩一区二区三| 麻豆一二三区av精品| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www| 精品久久久久久久毛片微露脸| 色综合婷婷激情| 国产精品av久久久久免费| 激情在线观看视频在线高清| 黄片小视频在线播放| 国产精品野战在线观看 | 新久久久久国产一级毛片| 日日干狠狠操夜夜爽| 12—13女人毛片做爰片一| www.熟女人妻精品国产| 精品久久久久久久毛片微露脸| 久热爱精品视频在线9| 久久久精品国产亚洲av高清涩受| 久久中文看片网| 女人爽到高潮嗷嗷叫在线视频| 又大又爽又粗| 成人国产一区最新在线观看| 日韩欧美在线二视频| 国产黄a三级三级三级人| 欧美乱色亚洲激情| 久久久久九九精品影院| 女同久久另类99精品国产91| 久久这里只有精品19| 亚洲熟妇熟女久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区高清亚洲精品| 亚洲第一欧美日韩一区二区三区| 亚洲欧洲精品一区二区精品久久久| 色播在线永久视频| 国产无遮挡羞羞视频在线观看| av中文乱码字幕在线| 国产av一区二区精品久久| 一个人免费在线观看的高清视频| 久9热在线精品视频| 中文字幕人妻熟女乱码| 精品久久久久久久久久免费视频 | 午夜成年电影在线免费观看| 搡老熟女国产l中国老女人| 激情视频va一区二区三区| 中文亚洲av片在线观看爽| 国产区一区二久久| 日韩三级视频一区二区三区| 丰满饥渴人妻一区二区三| 大码成人一级视频| 精品免费久久久久久久清纯| 一级黄色大片毛片| 免费一级毛片在线播放高清视频 | 这个男人来自地球电影免费观看| 国产精品免费一区二区三区在线| 国产精品影院久久| 水蜜桃什么品种好| 一区二区三区国产精品乱码| 国产成人欧美在线观看| 桃红色精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 午夜亚洲福利在线播放| 亚洲免费av在线视频| 欧美另类亚洲清纯唯美| 欧美精品亚洲一区二区| 一区福利在线观看| 国产成人精品久久二区二区91| 免费在线观看黄色视频的| 欧美大码av| 欧美不卡视频在线免费观看 | 日本vs欧美在线观看视频| 国产99久久九九免费精品| 亚洲av五月六月丁香网| 久久精品aⅴ一区二区三区四区| 日本免费a在线| 一进一出抽搐动态| 在线观看免费高清a一片| 欧美日韩黄片免| 久久亚洲精品不卡| 又大又爽又粗| 人人澡人人妻人| 激情在线观看视频在线高清| avwww免费| 中文字幕人妻丝袜制服| 精品国产乱码久久久久久男人| 男人的好看免费观看在线视频 | 国产高清激情床上av| 91av网站免费观看| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| 香蕉丝袜av| 在线观看免费午夜福利视频| 国产1区2区3区精品| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 国产成人影院久久av| 自拍欧美九色日韩亚洲蝌蚪91| 色综合婷婷激情| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 99riav亚洲国产免费| 首页视频小说图片口味搜索| 久久精品亚洲熟妇少妇任你| 一级a爱片免费观看的视频| 亚洲九九香蕉| 精品欧美一区二区三区在线| 不卡av一区二区三区| 最好的美女福利视频网| videosex国产| 操美女的视频在线观看| 精品久久久精品久久久| 亚洲欧美日韩无卡精品| 国产成人精品无人区| 97超级碰碰碰精品色视频在线观看| 人人妻人人添人人爽欧美一区卜| 欧美一区二区精品小视频在线| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址 | 一级毛片高清免费大全| 97碰自拍视频| 国产精品一区二区精品视频观看| 国产激情欧美一区二区| 99国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 少妇粗大呻吟视频| 久久国产精品男人的天堂亚洲| 在线观看一区二区三区激情| 国产xxxxx性猛交| 黄色女人牲交| 大型av网站在线播放| 中文字幕人妻熟女乱码| 久久精品国产99精品国产亚洲性色 | www国产在线视频色| 亚洲在线自拍视频| 高清欧美精品videossex| 超碰97精品在线观看| 91成人精品电影| 欧美老熟妇乱子伦牲交| 国产精品自产拍在线观看55亚洲| 一级,二级,三级黄色视频| 欧美日韩福利视频一区二区| 婷婷丁香在线五月| 在线播放国产精品三级| 一级毛片精品| 亚洲色图av天堂| 老汉色∧v一级毛片| www.自偷自拍.com| 日日干狠狠操夜夜爽| 夫妻午夜视频| 少妇粗大呻吟视频| 亚洲国产精品一区二区三区在线| 国产在线精品亚洲第一网站| 日韩精品中文字幕看吧| 身体一侧抽搐| 丰满饥渴人妻一区二区三| 激情视频va一区二区三区| 国产深夜福利视频在线观看| 精品国产亚洲在线| 在线观看www视频免费| 亚洲国产精品999在线| 亚洲av美国av| 亚洲av熟女| av福利片在线| 在线播放国产精品三级| 搡老熟女国产l中国老女人| 成人特级黄色片久久久久久久| 午夜a级毛片| 免费高清在线观看日韩| 亚洲人成电影观看| 久久精品国产99精品国产亚洲性色 | 欧美日韩av久久| 国产成人精品久久二区二区免费| 一本综合久久免费| 精品久久久精品久久久| 岛国在线观看网站| 午夜免费鲁丝| 老司机亚洲免费影院| 老司机深夜福利视频在线观看| 纯流量卡能插随身wifi吗| 久久精品aⅴ一区二区三区四区| 久久久精品欧美日韩精品| 久久久久国内视频| 首页视频小说图片口味搜索| 免费观看精品视频网站| 激情在线观看视频在线高清| 日本五十路高清| 欧美日本中文国产一区发布| 精品福利永久在线观看| 欧美久久黑人一区二区| 婷婷精品国产亚洲av在线| 一级a爱片免费观看的视频| 日韩人妻精品一区2区三区| 久久人妻av系列| 纯流量卡能插随身wifi吗| 日本免费a在线| 亚洲精品国产色婷婷电影| 午夜视频精品福利| 一级,二级,三级黄色视频| 久久人妻av系列| 少妇粗大呻吟视频| 电影成人av| 亚洲 欧美一区二区三区| 久久欧美精品欧美久久欧美| a级毛片在线看网站| 脱女人内裤的视频| 日本免费一区二区三区高清不卡 | 热99re8久久精品国产| www日本在线高清视频| 99热只有精品国产| 欧美中文日本在线观看视频| 999精品在线视频| 啦啦啦 在线观看视频| 91国产中文字幕| 欧美中文日本在线观看视频| 中文字幕av电影在线播放| 中文亚洲av片在线观看爽| 亚洲成人免费av在线播放| 亚洲男人天堂网一区| 亚洲黑人精品在线| 性少妇av在线| 免费在线观看日本一区| 麻豆成人av在线观看| 亚洲第一av免费看| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品免费视频内射| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| 一级作爱视频免费观看| 亚洲欧美日韩高清在线视频| 国产一区二区三区视频了| 亚洲九九香蕉| 日日夜夜操网爽| 午夜福利欧美成人| 一级作爱视频免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲av日韩精品久久久久久密| 亚洲avbb在线观看| 亚洲少妇的诱惑av| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 国产午夜精品久久久久久| 老司机福利观看| 妹子高潮喷水视频| 日韩人妻精品一区2区三区| 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 精品一区二区三区四区五区乱码| 热re99久久精品国产66热6| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 男女床上黄色一级片免费看| 久久伊人香网站| 亚洲专区中文字幕在线| 久久九九热精品免费| 好看av亚洲va欧美ⅴa在| 亚洲,欧美精品.| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 亚洲五月天丁香| 麻豆一二三区av精品| 一区福利在线观看| 国产成人欧美在线观看| 国产深夜福利视频在线观看| 麻豆国产av国片精品| 热99国产精品久久久久久7| 深夜精品福利| 久久久久精品国产欧美久久久| 精品人妻1区二区| 午夜免费激情av| 欧美人与性动交α欧美软件| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 一进一出抽搐动态| 色哟哟哟哟哟哟| 亚洲欧美一区二区三区黑人| 欧美日韩国产mv在线观看视频| 岛国视频午夜一区免费看| 精品欧美一区二区三区在线| 精品人妻1区二区| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| 日韩视频一区二区在线观看| 亚洲精品久久午夜乱码| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 久久久国产欧美日韩av| av福利片在线| 亚洲精品国产区一区二| 桃红色精品国产亚洲av| av免费在线观看网站| 久久人妻福利社区极品人妻图片| 日日摸夜夜添夜夜添小说| 日本 av在线| 国产麻豆69| 成人特级黄色片久久久久久久| 日本a在线网址| 日日爽夜夜爽网站| 十八禁网站免费在线| svipshipincom国产片| 999久久久国产精品视频| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 国产成年人精品一区二区 | 美女大奶头视频| 如日韩欧美国产精品一区二区三区| 欧美日韩瑟瑟在线播放| 黄频高清免费视频| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区蜜桃| 精品熟女少妇八av免费久了| 身体一侧抽搐| 两性夫妻黄色片| 九色亚洲精品在线播放| 国产成人精品久久二区二区91| 在线国产一区二区在线| 国产一区二区在线av高清观看| 多毛熟女@视频| 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 99久久人妻综合| 亚洲人成电影观看| 女同久久另类99精品国产91| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 久久人妻av系列| 久久精品aⅴ一区二区三区四区| 亚洲成国产人片在线观看| 三上悠亚av全集在线观看| a在线观看视频网站| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 成在线人永久免费视频| 韩国av一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 正在播放国产对白刺激| avwww免费| 久久草成人影院| 黑人巨大精品欧美一区二区蜜桃| 国产成人av教育| 妹子高潮喷水视频| 国产av又大| 中文亚洲av片在线观看爽| 亚洲国产欧美一区二区综合| 日韩精品中文字幕看吧| 亚洲黑人精品在线| 欧美精品亚洲一区二区| 国产精品国产av在线观看| 精品日产1卡2卡| 国产野战对白在线观看| 性欧美人与动物交配| 新久久久久国产一级毛片| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 午夜老司机福利片| 亚洲精品在线观看二区| 在线观看免费午夜福利视频| 91字幕亚洲| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费 | 亚洲一区高清亚洲精品| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美中文日本在线观看视频| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 久久国产精品男人的天堂亚洲| 精品国产一区二区久久| 国产亚洲av高清不卡| 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 日本一区二区免费在线视频| 国产乱人伦免费视频| 大陆偷拍与自拍| 黑人巨大精品欧美一区二区mp4| 成在线人永久免费视频| 最近最新中文字幕大全电影3 | 色综合站精品国产| 正在播放国产对白刺激| 欧美日本亚洲视频在线播放| 在线观看免费午夜福利视频| 变态另类成人亚洲欧美熟女 | 俄罗斯特黄特色一大片| 久久性视频一级片| 国产熟女xx| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 免费看a级黄色片| 国产精品偷伦视频观看了| 美女福利国产在线| 搡老岳熟女国产| 久久九九热精品免费| 欧美国产精品va在线观看不卡| 亚洲成人国产一区在线观看| 国产精品亚洲av一区麻豆| 不卡一级毛片| 男女下面插进去视频免费观看| 一级毛片精品| 国产精品国产av在线观看| 亚洲一区高清亚洲精品| 丰满饥渴人妻一区二区三| а√天堂www在线а√下载| 日日夜夜操网爽| 日韩精品免费视频一区二区三区| 视频区图区小说| 亚洲五月色婷婷综合| 国产亚洲精品久久久久5区| 亚洲精品久久午夜乱码| 黄色女人牲交| 操美女的视频在线观看| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 黄片小视频在线播放| 黄色a级毛片大全视频| 啦啦啦 在线观看视频| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 日韩免费高清中文字幕av| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 亚洲五月婷婷丁香| 激情视频va一区二区三区| 99在线视频只有这里精品首页| 久久久久久人人人人人| x7x7x7水蜜桃| 国产真人三级小视频在线观看| www.精华液| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 丰满人妻熟妇乱又伦精品不卡| 曰老女人黄片| 人成视频在线观看免费观看| 亚洲欧美激情在线| 麻豆国产av国片精品| 天天躁夜夜躁狠狠躁躁| 欧美中文日本在线观看视频| 久热这里只有精品99| 精品第一国产精品| 国产午夜精品久久久久久| 99久久99久久久精品蜜桃| 亚洲九九香蕉| 午夜激情av网站| 在线观看午夜福利视频| 久久久久久人人人人人| 性欧美人与动物交配| 精品一品国产午夜福利视频| 久久影院123| 99国产精品免费福利视频| 我的亚洲天堂| 淫秽高清视频在线观看| 欧美激情久久久久久爽电影 | 大码成人一级视频| 18禁国产床啪视频网站| 欧美最黄视频在线播放免费 | 欧美大码av| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 满18在线观看网站| 激情视频va一区二区三区| 视频区图区小说| 日韩成人在线观看一区二区三区| 国产成人啪精品午夜网站| 亚洲男人天堂网一区| 热re99久久国产66热| 欧美日韩乱码在线| 国产亚洲av高清不卡| 在线观看免费午夜福利视频| 国产在线观看jvid| 最新美女视频免费是黄的| av有码第一页| 色老头精品视频在线观看| 在线观看午夜福利视频| 亚洲 国产 在线| 91麻豆av在线| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 男女下面插进去视频免费观看| 成人特级黄色片久久久久久久| 国产国语露脸激情在线看| 免费少妇av软件| 黄色丝袜av网址大全| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 久久精品成人免费网站| 午夜视频精品福利| 99久久综合精品五月天人人| 美女高潮喷水抽搐中文字幕| 欧美乱码精品一区二区三区| 中国美女看黄片| 日本免费一区二区三区高清不卡 | 好看av亚洲va欧美ⅴa在| av超薄肉色丝袜交足视频| 成人av一区二区三区在线看| 欧美丝袜亚洲另类 | 每晚都被弄得嗷嗷叫到高潮| 亚洲成国产人片在线观看| 亚洲视频免费观看视频| 国产精品野战在线观看 | 又紧又爽又黄一区二区| 精品熟女少妇八av免费久了| 国产一区在线观看成人免费| 丰满迷人的少妇在线观看| 99在线人妻在线中文字幕| 国产精品久久久久成人av| 桃红色精品国产亚洲av| av天堂在线播放| 多毛熟女@视频| 男女床上黄色一级片免费看| 欧美日韩国产mv在线观看视频| 国产精品 国内视频| 欧美日韩亚洲高清精品| 人妻久久中文字幕网| 免费在线观看完整版高清| 丝袜美足系列| 久久久久久久久久久久大奶| 亚洲专区中文字幕在线| 法律面前人人平等表现在哪些方面| 亚洲,欧美精品.| 9191精品国产免费久久| 国产精品 国内视频| 国产亚洲精品久久久久久毛片| 国产欧美日韩综合在线一区二区| 国产不卡一卡二| 50天的宝宝边吃奶边哭怎么回事| 日本免费a在线| 动漫黄色视频在线观看| e午夜精品久久久久久久| 80岁老熟妇乱子伦牲交| 色综合婷婷激情| 久久精品91无色码中文字幕| 亚洲av成人不卡在线观看播放网| 成人18禁在线播放| 国产成人精品在线电影| 侵犯人妻中文字幕一二三四区| 精品国产一区二区久久| 丰满的人妻完整版| 黑人操中国人逼视频| 18禁裸乳无遮挡免费网站照片 | 我的亚洲天堂| 亚洲欧美一区二区三区黑人| 热re99久久精品国产66热6| 亚洲成a人片在线一区二区| 宅男免费午夜| 国产亚洲精品综合一区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品 欧美亚洲| 久久久久久久午夜电影 | 男人的好看免费观看在线视频 | 国产精品 欧美亚洲| 久久久国产精品麻豆| 在线观看66精品国产| 日本wwww免费看| 午夜福利一区二区在线看| 亚洲午夜理论影院| 久久久久国内视频| 成人av一区二区三区在线看| 一进一出抽搐动态| 女人高潮潮喷娇喘18禁视频| 亚洲狠狠婷婷综合久久图片| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 最近最新中文字幕大全免费视频| 久久国产亚洲av麻豆专区| 长腿黑丝高跟| 欧美大码av| 国产亚洲欧美在线一区二区| 热re99久久国产66热| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 麻豆国产av国片精品| 涩涩av久久男人的天堂| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 丝袜美足系列| 国产成人精品无人区| 久久精品91蜜桃| 精品久久久久久电影网| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 黑人操中国人逼视频| 久久亚洲真实| 老司机靠b影院| 欧美中文日本在线观看视频| 免费av毛片视频| 亚洲 欧美一区二区三区| 欧美激情高清一区二区三区| 老熟妇乱子伦视频在线观看| 久9热在线精品视频| 麻豆久久精品国产亚洲av | 亚洲午夜理论影院| 亚洲一码二码三码区别大吗| 777久久人妻少妇嫩草av网站| 男人的好看免费观看在线视频 | 他把我摸到了高潮在线观看| 免费观看精品视频网站| av在线天堂中文字幕 |