• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and numerical study on flexural behaviorsof steel reinforced engineered cementitious composite beams

    2014-09-06 10:49:44CaiJingmingPanJinlongYuanFang
    關(guān)鍵詞:延性承載力有限元

    Cai Jingming Pan Jinlong Yuan Fang

    (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)

    ?

    Experimental and numerical study on flexural behaviorsof steel reinforced engineered cementitious composite beams

    Cai Jingming Pan Jinlong Yuan Fang

    (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)

    To investigate the flexural behaviors of steel reinforced engineered cementitious composite (ECC) beams, the behaviors of the steel reinforced ECC beam and the conventional steel reinforced concrete beam subjected to flexural load are experimentally compared. The experimental results show that the flexural strength and ductility of the steel reinforced ECC beam are 24.8% and 187.67% times larger than those of the steel reinforced concrete beam, and the substitution of concrete with ECC can significantly delay the propagation of cracks. Additionally, a simplified constitutive model of the ECC material is used to simulate the flexural behaviors of beams by the finite element analysis (FEA). The results show a good agreement between the simulation and test results. The crack width of the steel reinforced ECC beam can be limited to 0.4 mm under the service load conditions. The application of ductile ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility of the beams.

    engineered cementitious composites (ECC); ductility; flexural behavior; finite element

    Concrete is a type of composite material with a high compressive strength and good bond strength with steel reinforcement, which makes it one of the most widely used materials in construction engineering[1]. However, concrete has low tensile strength and can become brittle, which results in low ductility and poor durability[2]. In recent years, a class of high performance fiber reinforced cementitious composites (called engineered cementitious composites, ECC) with ultra-ductility has been developed for applications in the construction industry[3-4]. ECC and concrete have similar ranges of tensile strength (4 to 6 MPa) and compressive strength (30 to 80 MPa)[5], but they behave differently in tension. For conventional concrete, it becomes brittle once the first localized crack is formed. However, for an ECC member under uniaxial tension, after the first cracking, the tensile load capacity continues to increase. The strain hardening behavior is accompanied by the formation of multiple cracks and the crack width of the ECC member can be limited to a considerable low value.

    Up to now, many experimental studies have been conducted on the mechanical performance of steel reinforced ECC members, including coupling beams[6], columns[7], column-beam connections[8], infill panels[9], frames[10], precast bridge column[11], etc. However, limited effective numerical simulations have been conducted to study the structural behaviors of steel reinforced ECC members.

    In this paper, a pair of steel reinforced beams are tested to verify the contribution of the ECC material to the flexural properties of the beams. The influence of matrix types on the ultimate strength, deformation capacity and ductility are evaluated. The flexural behaviors of the beams are numerically modeled with the finite element software ATENA. The comparisons of strain distribution, crack patterns, and crack width development between reinforced concrete (RC) beams and reinforced ECC (R/ECC) beams are also studied.

    1 Experimental Program

    1.1 Material properties

    In order to enhance the environmental sustainability of the ECC, a high volume fraction (80%) of fly ash was employed in the cementitious binder in this study. Tab.1 shows the mixture proportions of the ECC material and concrete. According to the uniaxial tension tests, the tensile strength of the ECC materials exceeds 5 MPa and the ultimate tensile strain approaches 4%. A number of cylinder specimens, 100 mm in diameter and 200 mm in height, were also prepared with concrete and the ECC, and tested in compression. The compressive strength of the ECC and concrete were 38.3 and 47.2 MPa, respectively; while the elastic modulus of the ECC and concrete were 15.50 and 34.49 GPa, respectively. For each beam specimen, the steel bar with the diameter of 20 mm was used as the tensile reinforcement. The steel reinforcement with the diameter of 8 mm was employed as the compression reinforcement and supports for the hanging of the stirrups along the beam. Tab.2 shows the mechanical properties of steel bars.

    Tab.1 Mixture proportions of cementing material %

    Tab.2 Material properties of steel reinforcement

    1.2 Specimen details and loading configuration

    Two beam specimens with the dimension of 200 mm (width)×300 mm (height)×2 350 mm (length) are tested to investigate the flexural behaviors. One is steel reinforced ECC (R/ECC) beam, and the other is steel reinforced concrete (RC) beam for comparison. Dense stirrups with the diameter of 8 mm and the spacing of 100 mm are arranged in a shear span to avoid brittle shear failure of beams. Each beam is loaded under four-point bending with a span of 2 050 mm between supports, and loading is applied symmetrically at 850 mm from the supports. The loading configuration is shown in Fig.1.

    Fig.1 Schematic illustration of test setup and specimen details (unit: mm)

    A linear variable differential transformer (LVDT) was employed to monitor the mid-span deflection of the beam. To measure the strain variations of the steel reinforcement, a number of strain gauges were attached to the longitudinal tensile bars at a spacing of 50 mm and on two stirrups at a spacing of 75 mm. For the two stirrups, one is 375 mm from the middle span, and the other is 675 mm from the middle span. The distribution of strain gauges is shown in Fig.1. The beams are loaded up to failure (corresponding to 80% of its peak load), followed by an unloading process to obtain the elastic energy. The data from strain gauges, LVDTs and load cell are automatically collected by a data logger.

    2 Experimental Results and Discussion

    2.1 Load-deflection responses and failure modes

    According to the test results, the ultimate load capacity of the RC beam is 168.5 kN with a mid-span deflection of 19.2 mm. After that, the loading keeps constant with further increasing deflections at the two loading points. Finally, the RC beam is failed by the crushing of concrete in compression zone. For the R/ECC beam, the flexural load capacity reaches an applied load of 210.4 kN, which is 24.8% larger than that of the RC beam (see Fig.2). In the ultimate stage, hundreds of tiny cracks are observed with a crack spacing of about 6 to 8 mm for the R/ECC beam, while only about 8 evident flexural or shear cracks are observed along the beam span for the RC beam. The final crack pattern is shown in Fig.3(a). The results indicate that the substitution of concrete with the ECC for the steel reinforced beam can significantly decrease crack width and improve the flexural stiffness of the beam, resulting in high post-peak strength and energy absorption of the beam. The final crack pattern of the R/ECC beam is shown in Fig.3(b). Compared with the RC beam, it has the superior compressive deformation capacity of the ECC that avoids premature failure of the R/ECC beam and improves ductility consequently.

    Fig.2 Load-deflection curves of beam specimens

    (a)

    (b)

    2.2 Strain analysis

    Fig.4 shows the strain distributions along the longitudinal reinforcement of specimens at different load levels. For the RC beam, the premature flexural cracks occurred along the RC beam, leading to strain fluctuations along the longitudinal reinforcement. In contrast, for the R/ECC beam, the strains distribute uniformly along the longitudinal reinforcement due to the formation of multiple fine cracks along the beam. For each load value, the strains along the longitudinal reinforcement in the RC beams are much larger than those in R/ECC beams. This is due to the superior tensile ductility of ECC and the good deformation compatibility between steel reinforcement and ECC when inelastic deformation occurs. Fig.5 shows the comparison of average stirrup strains at two different locations for specimens. Since both beams fail in the flexural mode, the strain values for all stirrups do not exceed the steel yield strain. However, the strain development is distinctly different for the two beams. It can be observed from Fig.5 that the strain values of the RC beam fluctuates around zero before the applied load reaches around 70 kN (when the first crack occurs in this section). For the ECC beam, the strain values fluctuates around zero before the applied load reaches about 110 kN, indicating that the substitution of concrete with the ECC can significantly delay the propagation and opening of cracks in the beam. With further loading, the strain values along the stirrups increase quickly but the strain values for the ECC beam are much lower than those of the concrete beam under the same load. Once cracks are formed in the concrete beam, the shear resistance is significantly reduced. However, for the ECC beam, the formation of multiple fine cracks (rather than discrete cracks with large opening) enables the shear resistance to be maintained under further loading. As a result, the substitution of concrete with ECC in a flexural member can significantly improve its load and deformation capacity under shear.

    (a)

    (b)

    (a)

    (b)

    Fig.5 Strain variations in stirrups for beam specimens. (a) Top gauge; (b) Middle gauge

    3 Finite Element Simulation and Discussions

    3.1 Stress-strain relationships

    The finite element software ATENA is adopted to conduct numerical simulation of the beams. For the ECC, typical stress-strain curves obtained from uniaxial tension and compression tests are shown as dotted lines in Fig.6[12-13]. To simplify numerical modelling, the stress-stain relationships of ECC, steel bars and concrete are described in Figs.6, 7 and 8, respectively.

    (a)

    (b)

    Fig.7 Stress-strain relationship of steel bars

    3.2 Finite element model

    According to the symmetry of the beam about its vertical axis, half of the beam model is set up for numerical

    Fig.8 Stress-strain relationship of concrete

    analysis. The mid-span section is fixed at the longitudinal direction. The longitudinal reinforcement is modelled with truss elements. In this analysis, the beams were loaded by displacement control during the loading process. The Newton-Raphson iterative procedure is selected as the solution method. Both displacement and residual convergence criteria are adopted in the computation and the error tolerance is set to be 0.01. Tab.3 and Tab.4 show the material parameters of concrete and ECC, which are obtained from the uniaxial test results.

    Tab.3 Material properties of concrete

    Tab.4 Material properties of ECC

    3.3 Simulation results and discussion

    The comparison of load-deflection curves between the experimental and simulation results are shown in Fig.9. For the RC beam, the predicted curve can be divided into two stages. The predicted load first increases linearly with the corresponding deflection before the yield strength reaches 168.6 kN. After that, the curve suddenly changes and keeps almost horizontal until the ultimate moment is reached. The maximum deflection of 65.9 mm is reached with the crushing of concrete in the compression zone.

    (a)

    For the ECC beam, the applied load drops abruptly after the maximum load carrying capacity is obtained. According to the simulation results, this softening stage corresponds to the compressive softening period of the ECC after the peak stress is reached. After that, a large deflection occurs with the load increasing slightly. In general, the predicted results show reasonable agreement with the measured results.

    Fig.10 shows the maximum crack width vs. mid-span deflection curves of specimens at the first 15 load steps. For the RC beam, the crack width increases almost linearly with deflection. For the R/ECC beam, the increase of crack width slows down with the increasing deflection of the beam, and finally the maximum crack width keeps constant of about 0.4 mm. The significant difference in crack width development is derived from the different cracking processes of concrete and the ECC. For conventional concrete, tension-softening process occurs once its tensile strength is obtained. However, for ECC materials, after the first cracking, tensile load continues to increase with strain hardening behaviour accompanied by multiple cracks. For each individual crack, the crack

    Fig.10 Maximum crack width vs. deflection curves at the first 15 load steps (1 mm/step)

    tends to open steadily up to a certain crack width, and the increasing deformation will result in a formation of an additional crack. With the same cracking mechanism, cracking of the ECC member can reach a saturated state with small crack spacing until the localization of a random single crack occurs.

    Fig.11 shows the strain distributions along the tensile steel bars at different stages. Both the beams are at the elastic stage with the deflection of 1 mm, and the strain distributions of the two beams distribute uniformly along the longitudinal bar. Cracks occur in the pure moment region with the deflection of 5.3 mm, and the stresses carried by the concrete transfer to the reinforcing bars, resulting in a sudden increase in the strains of steel reinforcement at the cracked sections. However, for the ECC beam, the stresses can be undertaken by the ECC due to the fiber bridging effect after cracking, and multiple tiny cracking of the ECC has little effect on its tensile strength. Hence, the strains along the longitudinal reinforcement distribute uniformly on the R/ECC beam. Large cracks occur in the RC beam with the deflection of 7.5 mm, and the maximum strain of the steel reinforcement is 5.838×10-3, which is about 0.57 times larger than those of the R/ECC beam (3.720×10-3).

    Fig.11 Strain distributions along the tensile steel bars at different stages

    4 Conclusion

    In this paper, a pair of steel reinforced beams with different matrix types are tested in flexure. The flexural strength and ductility of the R/ECC beam are 24.8% and 187.67% times greater than those of the RC beam. According to the strain analysis, it can be concluded that the strains of the R/ECC beam are distributed more uniformly along the longitudinal reinforcement than those of the RC beam, and the average stirrup strain for the R/ECC beam is much smaller than that of the RC beam at the same load value.

    A simplified constitutive model of ECC material is applied to simulate the flexural behaviours of beams by the finite element method. The simulation results show a good agreement with the test results. Based on the simulation results, the strains along the longitudinal reinforcement distribute smoothly for the R/ECC beam due to the compatible deformation between steel reinforcement and the ECC. The cracking patterns of the two beams are also clearly different. Instead of a few large opening cracks observed on the RC beam, numerous small cracks are observed on the R/ECC beam. The crack width of the R/ECC beam is limited to 0.4 mm under service load conditions. In summary, for flexural members, the substitution of concrete with ECC can significantly increase the flexural performance in terms of flexural strength, deformation capacity and ductility.

    [1]Li Z J.Advancedconcretetechnology[M]. Jersey, USA: John Wiley & Sons Inc., 2011.

    [2]Li V C. On engineering cementitious composites (ECC) [J].JournalofAdvancedConcreteTechnology, 2003, 1(3): 215-229.

    [3]Kim Y Y, Fischer G, Li V C. Performance of bridge deck link slabs designed with ductile ECC [J].ACIStructuralJournal, 2004, 101(6): 792-801.

    [4]Lepech M D, Li V C. Application of ECC for bridge deck link slabs [J].MaterialsandStructures, 2009, 42(9): 1185-1195.

    [5]Yang E H, Li V C. Tailoring engineered cementitious composites for impact resistance[J].CementandConcreteResearch, 2012, 42(8): 1066-1071.

    [6]Canbolat B A, Parra-montesinos G J, Wight J K. Experimental study on the seismic behavior of high-performance fiber reinforced cement composite coupling beams [J].ACIStructuralJournal, 2005, 102(1): 159-166.

    [7]Fischer G, Li V C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading condition [J].ACIStructuralJournal, 2002, 99(6): 781-790.

    [8]Parra-montesinos G J, Wight J K. Seismic response of exterior RC column-to-steel beam connections [J].JournalofStructuralEngineering, 2000, 126(10): 1113-1121.

    [9]Kesner K E, Billington S L. Investigation of infill panels made from engineered cementitious composites for seismic strengthening and retrofit [J].JournalofStructuralEngineering, 2005, 131(11): 1712-1720.

    [10]Fisher G, Li V C. Intrinsic response control of moment-resisting frames utilizing advanced composite materials and structural elements [J].ACIStructuralJournal, 2003, 100(2): 166-176.

    [11]Billington S L, Yoon J K. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete [J].JournalofBridgeEngineering, 2004, 9(4): 353-363.

    [12]Leung C K Y, Cao Q. Development of pseudo-ductile permanent formwork for durable concrete structures [J].MaterialsandStructures, 2010, 43(7): 993-1007.

    [13]Cai X R, Xu S L. Uniaxial compressive properties of ultra high toughness cementitious composite [J].JournalofWuhanUniversityofTechnology:MaterialScience, 2011, 26(4): 1-11.

    鋼筋增強(qiáng)ECC梁受彎性能的試驗(yàn)及數(shù)值研究

    蔡景明 潘金龍 袁 方

    (東南大學(xué)混凝土及預(yù)應(yīng)力混凝土教育部重點(diǎn)實(shí)驗(yàn)室,南京210096)

    為了研究鋼筋增強(qiáng)ECC梁受彎性能,進(jìn)行了鋼筋增強(qiáng)ECC梁和普通鋼筋混凝土梁受彎的對(duì)比研究.結(jié)果表明,相比普通鋼筋混凝土梁,鋼筋增強(qiáng)ECC梁的受彎承載力和延性分別提高了24.8%和187.76%,并且在梁中用ECC代替混凝土可有效延緩裂縫的發(fā)展.此外,采用簡(jiǎn)化的ECC本構(gòu)模型對(duì)鋼筋增強(qiáng)ECC及混凝土梁的受彎性能進(jìn)行了非線性有限元分析,模擬結(jié)果與試驗(yàn)結(jié)果吻合較好,在服役期間鋼筋增強(qiáng)ECC梁的裂縫可以控制在0.4 mm以下.ECC材料的使用可明顯提高梁的抗彎承載力、變形能力、延性等受彎性能.

    高延性纖維增強(qiáng)水泥基復(fù)合材料;延性;受彎性能;有限元

    TU375

    s:The National Natural Science Foundation of China (No.51278118), the National Basic Research Program of China (973 Program) (No.2009CB623200), the Natural Science Foundation of Jiangsu Province (No.BK2012756).

    :Cai Jingming, Pan Jinlong, Yuan Fang. Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams[J].Journal of Southeast University (English Edition),2014,30(3):330-335.

    10.3969/j.issn.1003-7985.2014.03.014

    10.3969/j.issn.1003-7985.2014.03.014

    Received 2014-02-26.

    Biographies:Cai Jingming (1989—), male, graduate; Pan Jinlong (corresponding author), male, doctor, professor, jinlongp@gmail.com.

    猜你喜歡
    延性承載力有限元
    遠(yuǎn)場(chǎng)地震作用下累積延性比譜的建立
    CFRP-PCP板加固混凝土梁的抗彎承載力研究
    矩形鋼管截面延性等級(jí)和板件寬厚比相關(guān)關(guān)系
    B和Ti對(duì)TWIP鋼熱延性的影響
    汽車文摘(2015年8期)2015-12-15 03:54:08
    耐火鋼圓鋼管混凝土柱耐火極限和承載力
    磨削淬硬殘余應(yīng)力的有限元分析
    潛艇極限承載力計(jì)算與分析
    基于SolidWorks的吸嘴支撐臂有限元分析
    對(duì)受壓加勁板極限承載力計(jì)算方法的評(píng)述
    箱形孔軋制的有限元模擬
    上海金屬(2013年4期)2013-12-20 07:57:18
    久久久成人免费电影| 精品久久久久久,| avwww免费| 99在线人妻在线中文字幕| 99国产精品一区二区蜜桃av| 如何舔出高潮| 免费无遮挡裸体视频| 又粗又爽又猛毛片免费看| 我的女老师完整版在线观看| 成人午夜高清在线视频| 国产v大片淫在线免费观看| 窝窝影院91人妻| 精品一区二区三区视频在线观看免费| 亚洲av美国av| 色精品久久人妻99蜜桃| 国产综合懂色| .国产精品久久| 色噜噜av男人的天堂激情| 国产一区二区亚洲精品在线观看| 国产成人aa在线观看| 精品久久久久久久久久免费视频| 亚洲av五月六月丁香网| 国产精品久久久久久精品电影| 两个人视频免费观看高清| xxxwww97欧美| 一个人看视频在线观看www免费| 午夜福利在线在线| 我要搜黄色片| 久久精品国产99精品国产亚洲性色| 99国产精品一区二区蜜桃av| or卡值多少钱| 精品免费久久久久久久清纯| 18禁在线播放成人免费| 精品免费久久久久久久清纯| 亚洲av一区综合| 最近最新免费中文字幕在线| 久久久久九九精品影院| 欧美xxxx性猛交bbbb| 夜夜夜夜夜久久久久| 特大巨黑吊av在线直播| 亚洲天堂国产精品一区在线| 少妇的逼水好多| 国产成人aa在线观看| 中文在线观看免费www的网站| 国产精品98久久久久久宅男小说| 久久精品国产清高在天天线| 色精品久久人妻99蜜桃| 午夜精品一区二区三区免费看| 99视频精品全部免费 在线| 久久99热这里只有精品18| 色播亚洲综合网| 精品日产1卡2卡| 搞女人的毛片| 日本色播在线视频| 日韩av在线大香蕉| 女的被弄到高潮叫床怎么办 | 久久久久久久久久黄片| 日韩亚洲欧美综合| 精品久久久久久久人妻蜜臀av| 在线观看av片永久免费下载| 乱人视频在线观看| 国产成人av教育| 精品一区二区三区av网在线观看| 1000部很黄的大片| 久久久精品欧美日韩精品| 亚洲欧美激情综合另类| 亚洲精华国产精华液的使用体验 | 国产精品亚洲美女久久久| 午夜影院日韩av| 日韩欧美免费精品| 九九爱精品视频在线观看| 一个人看的www免费观看视频| 最新中文字幕久久久久| 日韩高清综合在线| 免费在线观看日本一区| 亚洲精品在线观看二区| 欧美激情在线99| 校园春色视频在线观看| 免费观看在线日韩| 亚洲18禁久久av| 久久久国产成人免费| av专区在线播放| 中文字幕av成人在线电影| 亚洲国产欧美人成| 国产成人av教育| netflix在线观看网站| 日日啪夜夜撸| 最近中文字幕高清免费大全6 | 亚洲av中文av极速乱 | 婷婷精品国产亚洲av| 国产主播在线观看一区二区| 高清毛片免费观看视频网站| 成人欧美大片| 国产乱人视频| 一个人免费在线观看电影| 日本黄色片子视频| 成年版毛片免费区| 国产国拍精品亚洲av在线观看| 99精品久久久久人妻精品| 午夜视频国产福利| 精品久久久久久久久亚洲 | 身体一侧抽搐| 亚洲av日韩精品久久久久久密| 美女 人体艺术 gogo| 欧美日本视频| avwww免费| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 午夜福利在线在线| 嫩草影院入口| 免费在线观看日本一区| 美女免费视频网站| 亚洲精品影视一区二区三区av| 级片在线观看| 亚洲精品亚洲一区二区| 岛国在线免费视频观看| 亚洲av成人精品一区久久| 1000部很黄的大片| 91在线精品国自产拍蜜月| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| a级毛片免费高清观看在线播放| 久久久久性生活片| 黄色日韩在线| 亚洲av成人av| 久久久国产成人精品二区| 黄色配什么色好看| 日本精品一区二区三区蜜桃| 久久久国产成人精品二区| h日本视频在线播放| 美女黄网站色视频| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 女生性感内裤真人,穿戴方法视频| 三级毛片av免费| 搞女人的毛片| 久久久久久久久久黄片| 非洲黑人性xxxx精品又粗又长| 国产成人一区二区在线| 国产蜜桃级精品一区二区三区| 日本欧美国产在线视频| 内射极品少妇av片p| 草草在线视频免费看| 一本一本综合久久| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 色综合亚洲欧美另类图片| 99久久精品国产国产毛片| 赤兔流量卡办理| 久久国产乱子免费精品| 亚洲av免费高清在线观看| 看黄色毛片网站| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 又黄又爽又免费观看的视频| 国产精品人妻久久久影院| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 日韩在线高清观看一区二区三区 | 国产真实伦视频高清在线观看 | 日日撸夜夜添| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 男人狂女人下面高潮的视频| 国产在线男女| 成人av一区二区三区在线看| 久久精品国产清高在天天线| 亚洲精品影视一区二区三区av| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 国产精品无大码| 观看美女的网站| 成人二区视频| 波野结衣二区三区在线| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 国产色爽女视频免费观看| 波多野结衣高清无吗| 免费搜索国产男女视频| 国产探花在线观看一区二区| 久久人人精品亚洲av| 欧美成人a在线观看| 美女被艹到高潮喷水动态| 91av网一区二区| 成年人黄色毛片网站| 日日摸夜夜添夜夜添av毛片 | 免费在线观看日本一区| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 国产精品国产高清国产av| 长腿黑丝高跟| 内地一区二区视频在线| 嫩草影视91久久| 嫩草影院入口| 欧美人与善性xxx| 国产精品,欧美在线| 两人在一起打扑克的视频| av福利片在线观看| 午夜亚洲福利在线播放| 老师上课跳d突然被开到最大视频| 神马国产精品三级电影在线观看| 禁无遮挡网站| 成年版毛片免费区| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 日本与韩国留学比较| 亚洲欧美清纯卡通| 黄色一级大片看看| 亚洲最大成人av| 精品人妻一区二区三区麻豆 | 国产精品av视频在线免费观看| 麻豆国产av国片精品| 亚洲国产精品合色在线| 综合色av麻豆| 亚洲av成人精品一区久久| 91av网一区二区| 麻豆成人午夜福利视频| 九九在线视频观看精品| 观看美女的网站| 免费观看精品视频网站| 久久久成人免费电影| 久久久久性生活片| 国产免费男女视频| 男人舔女人下体高潮全视频| 免费av毛片视频| 亚洲欧美日韩无卡精品| 亚洲av一区综合| 男女之事视频高清在线观看| 可以在线观看的亚洲视频| 国产私拍福利视频在线观看| 性色avwww在线观看| a级一级毛片免费在线观看| 亚洲成人精品中文字幕电影| 久久亚洲真实| 欧美国产日韩亚洲一区| 亚洲人成网站在线播放欧美日韩| 香蕉av资源在线| 亚洲va在线va天堂va国产| 亚洲成av人片在线播放无| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 在线观看av片永久免费下载| 在现免费观看毛片| 国产高清不卡午夜福利| 日韩av在线大香蕉| 欧美日本视频| 国产精品日韩av在线免费观看| 国内久久婷婷六月综合欲色啪| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 欧美激情久久久久久爽电影| 日本免费a在线| 淫妇啪啪啪对白视频| 黄片wwwwww| 欧美xxxx性猛交bbbb| 又紧又爽又黄一区二区| 男女视频在线观看网站免费| 老司机深夜福利视频在线观看| 有码 亚洲区| 中文在线观看免费www的网站| 国产真实伦视频高清在线观看 | 国产熟女欧美一区二区| 国国产精品蜜臀av免费| 久久国产精品人妻蜜桃| 99久久精品热视频| 亚洲久久久久久中文字幕| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 成人高潮视频无遮挡免费网站| 九九热线精品视视频播放| 乱码一卡2卡4卡精品| 精品人妻视频免费看| 亚洲精品久久国产高清桃花| 一个人看的www免费观看视频| av在线天堂中文字幕| 中文字幕久久专区| 国产精品,欧美在线| 欧美日韩亚洲国产一区二区在线观看| 美女大奶头视频| 国产成人aa在线观看| 亚洲电影在线观看av| 夜夜爽天天搞| 国产精品一区二区三区四区免费观看 | 亚洲成人精品中文字幕电影| 亚洲欧美激情综合另类| 神马国产精品三级电影在线观看| 51国产日韩欧美| 亚洲第一区二区三区不卡| 嫩草影院入口| 亚洲色图av天堂| 天美传媒精品一区二区| 韩国av一区二区三区四区| 亚洲内射少妇av| 精品人妻一区二区三区麻豆 | 亚洲av成人av| 成人综合一区亚洲| 国产高清视频在线观看网站| 亚洲人成网站高清观看| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频| 日本与韩国留学比较| av视频在线观看入口| 成人性生交大片免费视频hd| 毛片一级片免费看久久久久 | 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清| 亚洲久久久久久中文字幕| 最近中文字幕高清免费大全6 | 久久久色成人| 日本一本二区三区精品| 久久香蕉精品热| 深夜a级毛片| 午夜福利视频1000在线观看| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄 | 最近最新中文字幕大全电影3| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 久久午夜福利片| 国产亚洲精品综合一区在线观看| 热99在线观看视频| 热99re8久久精品国产| 一个人看的www免费观看视频| 国产精品三级大全| 精品午夜福利视频在线观看一区| 悠悠久久av| 亚洲四区av| 在线天堂最新版资源| 97热精品久久久久久| 国产精品99久久久久久久久| 日本爱情动作片www.在线观看 | 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区 | 成人综合一区亚洲| 精品久久久久久久久av| 波多野结衣巨乳人妻| 色哟哟·www| 联通29元200g的流量卡| 我的女老师完整版在线观看| 真实男女啪啪啪动态图| 国产精品免费一区二区三区在线| 九色国产91popny在线| 国产蜜桃级精品一区二区三区| 精品日产1卡2卡| 精品久久久久久,| 欧美丝袜亚洲另类 | 国内精品久久久久久久电影| 日日啪夜夜撸| 热99re8久久精品国产| 中文字幕av成人在线电影| 国产真实乱freesex| 12—13女人毛片做爰片一| 日本欧美国产在线视频| 一进一出抽搐gif免费好疼| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 欧美日韩黄片免| 在现免费观看毛片| 久久热精品热| 很黄的视频免费| 久久久午夜欧美精品| 欧美xxxx性猛交bbbb| 亚洲 国产 在线| 简卡轻食公司| 欧美又色又爽又黄视频| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 男人舔奶头视频| 国产精品美女特级片免费视频播放器| 午夜福利高清视频| 少妇人妻精品综合一区二区 | 国产成人一区二区在线| 成人午夜高清在线视频| 变态另类成人亚洲欧美熟女| 国产亚洲av嫩草精品影院| 亚洲中文字幕一区二区三区有码在线看| 美女cb高潮喷水在线观看| 一区二区三区激情视频| 简卡轻食公司| av中文乱码字幕在线| 久久久国产成人免费| 午夜福利高清视频| 桃色一区二区三区在线观看| 黄片wwwwww| 国产精品久久电影中文字幕| 他把我摸到了高潮在线观看| 十八禁国产超污无遮挡网站| 床上黄色一级片| 小蜜桃在线观看免费完整版高清| 免费看美女性在线毛片视频| 伦理电影大哥的女人| 国产精品久久视频播放| 亚洲一区二区三区色噜噜| 精品欧美国产一区二区三| 我的老师免费观看完整版| 精品人妻熟女av久视频| 日本五十路高清| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 日韩欧美在线二视频| 久久精品国产清高在天天线| 国产探花在线观看一区二区| 中文字幕熟女人妻在线| 亚洲国产精品合色在线| 99riav亚洲国产免费| 亚洲电影在线观看av| 99在线视频只有这里精品首页| 国产乱人视频| 一级av片app| 日韩中字成人| 日韩欧美国产在线观看| 麻豆国产97在线/欧美| 亚洲午夜理论影院| 校园人妻丝袜中文字幕| 又紧又爽又黄一区二区| 1024手机看黄色片| 亚洲专区中文字幕在线| 免费看日本二区| 精品人妻视频免费看| 亚洲av不卡在线观看| 国产高清激情床上av| 高清在线国产一区| 深夜精品福利| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 91在线观看av| 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 欧美日韩亚洲国产一区二区在线观看| 日韩一本色道免费dvd| 成人无遮挡网站| 久久人妻av系列| 伦理电影大哥的女人| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 女生性感内裤真人,穿戴方法视频| 国产色婷婷99| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办 | 国产亚洲av嫩草精品影院| 欧美最新免费一区二区三区| av视频在线观看入口| 亚洲,欧美,日韩| 欧美性感艳星| 小蜜桃在线观看免费完整版高清| 变态另类丝袜制服| 联通29元200g的流量卡| 美女高潮喷水抽搐中文字幕| 亚洲第一电影网av| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 亚洲专区中文字幕在线| 精品一区二区三区视频在线| 国产精品亚洲一级av第二区| 精品久久久久久久末码| 亚洲av五月六月丁香网| 美女 人体艺术 gogo| 啪啪无遮挡十八禁网站| 午夜爱爱视频在线播放| 亚洲电影在线观看av| 精品久久久久久久末码| 伦理电影大哥的女人| 69av精品久久久久久| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 天天一区二区日本电影三级| 亚洲无线在线观看| 亚洲天堂国产精品一区在线| 91av网一区二区| 日本撒尿小便嘘嘘汇集6| 成人av一区二区三区在线看| a在线观看视频网站| 国产精品一区二区三区四区免费观看 | 国产精品一区二区免费欧美| 日日撸夜夜添| 亚洲男人的天堂狠狠| 亚洲av二区三区四区| 悠悠久久av| 午夜福利视频1000在线观看| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人| 美女被艹到高潮喷水动态| 久久精品影院6| 亚洲中文日韩欧美视频| 国产高清有码在线观看视频| 全区人妻精品视频| 一级黄片播放器| 热99在线观看视频| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6 | 精品午夜福利在线看| 国产午夜精品论理片| 在线观看午夜福利视频| 欧美三级亚洲精品| 18禁黄网站禁片午夜丰满| eeuss影院久久| 午夜精品一区二区三区免费看| 深爱激情五月婷婷| 成人特级黄色片久久久久久久| 韩国av在线不卡| 黄色女人牲交| 中文字幕av在线有码专区| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 久久草成人影院| 国产精品人妻久久久影院| 亚洲,欧美,日韩| 美女cb高潮喷水在线观看| 最好的美女福利视频网| 国产 一区 欧美 日韩| 听说在线观看完整版免费高清| h日本视频在线播放| 可以在线观看的亚洲视频| 一a级毛片在线观看| 国内精品久久久久精免费| 深爱激情五月婷婷| 欧美三级亚洲精品| 亚洲精品456在线播放app | 国产精品不卡视频一区二区| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 亚洲第一电影网av| 国产精品自产拍在线观看55亚洲| 三级男女做爰猛烈吃奶摸视频| 美女 人体艺术 gogo| 久久久成人免费电影| 18+在线观看网站| 天天躁日日操中文字幕| 欧美又色又爽又黄视频| 一本精品99久久精品77| 俄罗斯特黄特色一大片| 免费观看在线日韩| 蜜桃亚洲精品一区二区三区| 国产国拍精品亚洲av在线观看| 国内精品一区二区在线观看| 禁无遮挡网站| 国产 一区精品| 日韩欧美国产在线观看| 亚洲av一区综合| 不卡一级毛片| 91精品国产九色| 亚洲熟妇熟女久久| 成人国产综合亚洲| 最近在线观看免费完整版| 久久精品国产自在天天线| 欧美一级a爱片免费观看看| 免费观看人在逋| 精品一区二区三区人妻视频| 亚洲av电影不卡..在线观看| 亚洲国产欧美人成| 欧美日韩综合久久久久久 | 老熟妇仑乱视频hdxx| 日韩欧美在线二视频| 亚洲最大成人av| 亚洲中文字幕日韩| 国产精品久久久久久久久免| 国产一区二区在线av高清观看| 国语自产精品视频在线第100页| 一级黄片播放器| 97超视频在线观看视频| 搞女人的毛片| 国产精品一区www在线观看 | 小蜜桃在线观看免费完整版高清| 在线观看午夜福利视频| 无遮挡黄片免费观看| 欧美最黄视频在线播放免费| 性插视频无遮挡在线免费观看| av天堂在线播放| 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 久久精品人妻少妇| 国产又黄又爽又无遮挡在线| а√天堂www在线а√下载| 亚洲专区中文字幕在线| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 22中文网久久字幕| 国产精品永久免费网站| av在线天堂中文字幕| 三级国产精品欧美在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成年女人永久免费观看视频| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 国产精品人妻久久久影院| 伦理电影大哥的女人| 久久精品国产亚洲网站| 亚州av有码| 免费无遮挡裸体视频| 桃色一区二区三区在线观看| АⅤ资源中文在线天堂| 一级黄色大片毛片| 中出人妻视频一区二区| 亚洲精品国产成人久久av| 熟女电影av网| 亚洲av电影不卡..在线观看| 最近视频中文字幕2019在线8| 动漫黄色视频在线观看| 精品日产1卡2卡| 我要看日韩黄色一级片| 我的老师免费观看完整版| 高清在线国产一区| 久久精品综合一区二区三区| 亚洲国产精品合色在线| 日韩亚洲欧美综合| 国产高清激情床上av|