• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A rapid, automated flaw segmentation method using morphological reconstruction to grade wood flooring

    2014-09-06 11:13:30YizhuoZhangSijiaLiuJunCaoChaoLiHuilingYu
    Journal of Forestry Research 2014年4期

    Yizhuo Zhang · Sijia Liu · Jun Cao · Chao Li · Huiling Yu

    ORIGINAL PAPER

    A rapid, automated flaw segmentation method using morphological reconstruction to grade wood flooring

    Yizhuo Zhang · Sijia Liu · Jun Cao · Chao Li · Huiling Yu

    Received: 2013-09-24; Accepted: 2013-11-18

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    Region-Growing Algorithms (RGAs) are used to grade the quality of manufactured wood flooring. Traditional RGAs are hampered by problems of long segmentation time and low inspection accuracy caused by neighborhood search. We used morphological reconstruction with the R component to construct a novel flaw segmentation method. We initially designed two template images for low and high thresholds, and these were used for seed optimization and inflation growth, respectively. Then the extraction of the flaw skeleton from the low threshold image was realized by applying the erosion termination rules. The seeds in the flaw skeleton were optimized by the pruning method. The geodesic inflection was applied by the high threshold template to realize rapid growth of the flaw area in the floor plate, and region filling and pruning operations were applied for margin optimization. Experiments were conducted on 512×512, 256×256 and 128×128 pixel sizes, respectively. The 256×256 pixel size proved superior in time-consumption at 0.06 s with accuracy of 100%. But with the region-growing method the same process took 0.22 s with accuracy of 70%. Compared with RGA, our proposed method can realize more accurate segmentation, and the speed and accuracy of segmentation can satisfy the requirements for on-line grading of wood flooring.

    wood plate, wood plate classification, flaw segmentation, region-growing, morphological reconstruction

    Introduction

    Surface flaws reduce the quality and lower the commercial gradeof wood flooring. Therefore, surface flaw detection is an essential process in the manufacture of wood flooring (Gronlund 1995). As an ordinary method, visual inspection is still used in medium-small manufacturing enterprises. Visual inspection is, however, time-consuming, subjective and compromised by high error rates. Thus, it cannot ensure high speed and high quality classification.

    In recent decades, researchers have begun to develop automatic visual classification systems for on-line classification of wood flooring (Zheng et al. 2009; EstCvez et al. 1998; Pham and Alcock 1998). There are usually four steps in the process of online inspection for wood flooring surface flaws: image acquisition, image segmentation, character extraction and flaw classification (Ruz et al. 2009). In image acquisition, cameras are used to collect the surface information of the wood flooring (Andrade and Gonzaga 1997). A hardware-oriented red, green, and blue model (RGB) is used for color processing. Major image segmentation methods include gradient operator and gray threshold methods (Polzleitner and Schwingshakl 1990). In previous experiments, we determined that the gradient operator method had performed better on dead knot treatment, and the gray threshold method performed better in knot segmentation. For character selection, Pham and Alcock (1999) summarized 32 features of four groups and analyzed the precision of identification of four groups of characters using a neural network as the classifier. Estevez et al. (1998) proposed three methods for flaw classification, viz. a statistical method, a leave-one-out method, and a genetic algorithm. Although the genetic algorith (GA) method took longer, it yielded optimum results (Ruz et al. 1999). By applying GA, Estevez et al. (2003) identified flaws of 10 groups in wood flooring. This algorith selected 64 of 182 characters, and the effectiveness of his method was verified. In the area of flaw classification, Castellani and Rowlands (2009) proposed a method to classify decorative panels by applying GA together with a neural network. Using a support vector machine algorithm, Gu et al. (2008) proposed a method that could classify four types of surface flaws in wood flooring.

    Difficulties of the computer vision method are apparent in the following three areas: the speed and accuracy of segmentation,the rational features selection, and the accurate identification of flaws. With flaw segmentation as the target, we developed a novel flaw segmentation method for online inspection, and solved the problems of long segmentation time and low inspection accuracy caused by neighborhood search in traditional region-growing algorithms.

    Materials and methods

    Detection system

    We focused on differentiating three types of defects of wood flooring, viz. dead knots, live knots and wood cracks. The individual flooring panels measured 40 cm × 20 cm × 2 cm and were manufactured using the wood of Xylosma congestum, Pinus koraiensis and Tilia amurensis. Our image acquisition device is diagrammed in Fig. 1. An industrial camera was used for capturing images of flooring panels (Oscar F810C IRF). We used two parallel LEDs to obtain clearer images, and used images of 512×512, 256×256, and 128×128 pixels with 8-bit gray levels for comparative study of time and accuracy.

    Fig. 1: Image acquisition device diagram

    Mathematical morphology

    Region-growing is the process by which pixels or sub-regions are combined according to previously defined growth rules. In traditional region-growing methods, as there are no detailed conditions for the selection of seeds, the problem of noise often occurs in practice and the result of region-growing is influenced negatively. Because every growth should be decided, the process also requires a lot of time (Kim and Koivo 1994). Mathematical morphology theory can overcome the disadvantages of noise interference and extended processing time by using skeleton extraction, pruning operations, and morphological reconstruction (Bloch 2006; Zhang et al 2012). We addressed the step of skeleton extraction to obtain typical seeds that could either represent flaws or yield noise, while the pruning operation removed noise, and morphological reconstruction reconstructed flaws according to the growing template.

    The first step of mathematical morphology is to extract the skeleton of the image. Given an image target “A”, the extraction of its skeleton can be expressed as:

    In the above equations, “B” is a structural element, and (A Θk B)is the erosion operation of k multiplied by “A”. The “k”in this function is the latest iteration operation before A is corroded into an empty set. While satisfying the requirements of Eq. 1, two other requirements must also be met. We assumed there is a binary object and the pixel of the object region is 1 and the pixel of the background is 0. The margin points are defined as: with 1 as the value of the pixel point, there is at least one pixel that is valued 0 in the 8 connected regions (Eq. 3).

    When p1meets the following requirements, it will be deleted. Requirements of conditions (1) and (2) are shown in Eq. 4 and Eq. 5, respectively.

    In these two equations, N(P1) is the number of neighborhood nonzero pixels of P1, and T(P1) is the number of changes from 0 to 1 in the sequence P2, P3, P4, P5, P6, P7, P8, P9, P2.

    Then a pruning operation is needed to obtain a much cleaner target. Eq. 3 points that satisfy the requirement of Eq. 6 are defined as burr points.

    P1is a margin point in eight connected regions, and the numberof changes from 0 to 1 in the sequence P2, P3, P4, P5, P6, P7, P8, P9, P2is T(P1)1. T(P1)2is the number of changes from 1 to 0 in the sequence. N(P1) is the number of neighboring nonzero pixels. Morphological reconstruction, also referred to as morphological restructuring, is a method with geodesic expansion as its core technique. With F as a marked image (seed image) and G as a template image (defined growth template), and assuming both images are binary and GF? .)(Fis defined as the geodesic expansion of the template with the value of 1 about the marked image:

    The “∩” is the intersection operation of the set, and the geodesic expansion of F about G with the value of n is expressed as follows:

    Eq. 7 and intersection operator control template G are used to control the expansion of F.

    With two morphological reconstruction definitions obtained from the two core definitions, the marked image is defined by F and G as the template image. The morphological reconstruction of the inflation of F to G is)(F, which is the geodesic inflation of F to G. Therefore, stability will be reached after repeated iteration.

    Where, K is for the number of iterations, and the operation continues until:

    R component extraction

    Each color image contained three component images (RGB).We extracted the three component images from the image with wood defects and made comparisons. Examples of a flooring panel image and its three component images show that the R component image contained less textural noise (Figs. 2a?2c). Figs. 2d?2f also show all the defects in the segmentation result of the R component image, however, in G and B component images, the segmentation did not mark the defect areas accurately. Especially the B component image (Figs. 2c and 2f) shows that the deeper texture led to more noise in the segmentation.

    Steps of segmentation method

    Steps of the proposed segmentation method were:

    (1) R component extraction: We directly extracted the R component as the target image to conduct segmentation;

    (2) Selection of prepared seeds: Flaws on wood plates resulted in pixel points of low gray-scale value. Hence, we selected the points of low gray-scale value as prepared seeds;

    (3) Skeleton extraction and pruning operation: We removed the interfering points from the seeds using the pruning method to extract the skeleton of prepared seed points and we then obtained the final seeds;

    (4) Obtaining growth range: We selected the binary images that covered the majority of the gray-scale flaw image as the template for morphological reconstruction;

    (5) Morphological reconstruction: With seeds as the beginning of growth and the scope of growth as the template, we applied morphological reconstruction to complete the growth of the core;

    (6) Region filling: This operation ensured the completeness of flaw targets;

    (7) Edge smoothing: We implemented pruning to remove interferences of the target edge;

    (8) Target flaw determination: We multiplied the binary images with the original images to derive the target flaws.

    Fig. 2: Renderings of three extraction images. a: R component image; b: G component image; c: B component image; d: segmentation result of R component image; e: segmentation result of G component image; f: segmentation result of B component image.

    Results and discussion

    Processed pictures and time

    The experimental computer was a 32-bit PC (Intel Core2 Duo CPU T6600@2.20GHz, 2.19 GHz, 1.99 GB RAM) with WIN 7 operation system, and the image processing platform wasMATLAB 2011b.

    Directly extracting the R component of the image consumed less kernel time than transforming the color image into the gray image (Table 1). Considering the reduced time consumption and noise, we selected the R component image for the segmentation step.

    Table 1: Time comparison of Fig. 1

    The segmentation steps were as follows. First, we transformed the color image into an R component extraction image (Fig. 3a). We used the gray-scale selection method to select the reserved seeds (the scope of gray-scale values ranged from 0 to 50) (Fig. 3b), and we then optimized the seeds. We applied morphological skeleton extraction to reserve selected seeds (Fig. 3c). Lastly, we pruned the seeds, to obtain the desired seeds (Fig. 3d). We used gray-scale selection to determine the largest area in which growth would occur. The gray-scale area was selected to contain as many flaws as possible. Based on repeated tests, the gray-scale range should not be too large so a range of 0?100 was defined (Fig. 3e) and region-growing was realized through morphological reconstruction (Fig. 3f). To ensure the integrity of the flaws, morphological region fillings were applied (Fig. 3g). We pruned ten times to smooth the images and weaken the interference of burred points on feature extraction (Fig. 3h). We multiplied the binary images with the original images to obtain the segmentation results (Fig. 3i).

    Fig. 3: Processed pictures of the segmentation. a: R component image; b: Reserved seeds; c: Skeleton extraction; d: Pruning operation; e: Growth range; f: Morphological reconstruction; g: Region filling; h: Edge smoothed by pruning; i: The segmentation result.

    Time required by each step of the algorithm

    Tic and Toc functions were used to calculate the time required by the CPU during each step of this algorithm in the MATLAB. Smaller images required less time for processing. In manufacturing situations, however, smaller images might increase therate of misidentification. When the size of an image was reduced from 512×512 to 256×256, the processing time decreased by 19 s, while the same value for an image whose size was reduced from 256×256 to 128×128 was 0.05 s (Table 2). So images of 256×256 proved most desirable as they simultaneously ensured fast segmentation and reduced flaw misidentification.

    Segmentation comparison with the result of Region-growing Algorithm (RGA)

    The result obtained by the application of RGA is shown in Fig. 4c. Misidentification appeared at the bottom of the image adjacent to the knot. For contrast, the result obtained by applying the proposed process is shown in Fig. 4, and its effect is superior to that obtained using the RGA method: misidentification did not occur in the segmentation results.

    Table 2: Comparison of kernel time processing with Fig.3

    Fig. 4: Comparison of the results of two methods. a: Original image; b: Image form proposed method; c: Image from RGA method

    The comparison of results of the method used in our study with those of the RGA method using 256×256 pixels is shown in Table 3. Our proposed method reduced the segment time and flaw misidentification, as compared with the traditional RGA method.

    Table 3: Comparison between proposed method and traditional region-growing method for Fig.4

    Conclusion

    Traditional segmentation methods used in the identification of flaws in wood flooring have the problems of extended segmentation time and low inspection accuracy. Here we propose a flaw segmentation method for wood flooring that is based on morphological reconstruction. This method simultaneously ensured processing accuracy while greatly increasing processing speed. Segmentation is the first and most important step for wood floor classification. With fast speed and high accuracy of segmentation, the features of the flaws can be extracted and the flaw identification can be modeled.

    Bloch I. 2006. Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. International Journal of Approximate Reasoning, 41(2): 77?95.

    Castellani M, Rowlands H. 2009. Evolutionary artificial neural network design and training for wood veneer classification. Engineering Applications of Artificial Intelligence, 22: 732–741.

    de Andrade MG, Gonzaga A. 1997. Feature extraction for defect classification in surfaces of wooden boards. Workshop on Cybernetic Vision, Proceedings - CYBVIS.

    Estevez PA, Fernandez M. 1999. Selection of features for the classification of wood board defects. Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on. No. 470: 347?352.

    Estevez PA, Perez CA, Caballero RE, Buhler G, Goles E. 1998. Classification of defects on wood boards based on neural networks and genetic selection of features. In: Proceedings of 4th International Conference on Information Systems, Analysis and Synthesis, ISAS’98, 1: 624?629.

    Estevez PA, Perez CA, Goles E. 2003. Genetic input selection to a neural classifier for defect classification of radiata pine boards. Forest Products Journal, 53: 87?94.

    Gronlund U. 1995. Quality improvements in forest products industry. Dissertation, Lulea University of Technology, Sweden.

    Gu Irene Y.H. Gu,, Andersson H, Vicen Renrik Andersson. 2008. Raul Vicen., Automatic classification of wood defects using support vector machines.Computer Vision and Graphics Lecture Notes in Computer Science, 5337: 356?367.

    Kim CW, Koivo AJ. 1994. Hierarchical classification of surface defects on dusty wood boards. Pattern Recognition Letters, 15(7): 713?721.

    Pham DT, Alcock RJ. 1998. Automated grading and defect detection: A review. Forest Products Journal, 48(4): 34?42.

    Pham DT, Alcock RJ. 1999. Automated visual inspection of wood boards: selection of features for defect classification by a neural network, Proc Instn Mech Engrs Vol 213 Part E: 231?245.

    Polzleitner W, Schwingshakl G. 1990. Real-time classification of wooden boards. SPIE, High-Speed Inspection Architectures, Barcoding, and Character Recognition, 1384: 38?49.

    Ruz GA, Estevez PA, Ramirez PA. 2009. Automated visual inspection system for wood defect classification using computational intelligence techniques. International Journal of Systems Science, 40(2): 163–172.

    Zhang QS, Song X, Shao XW, Shibasaki R, Zhao HJ. 2012. Unsupervised skeleton extraction and motion capture from 3D deformable matching. Neurocomputing, 100: 170?182.

    Zheng Y, Li GY, Sun XH, Zhou XM. 2009. Fast edge integration based active contours for color images. Computers and Electrical Engineering, 35(1): 141?149.

    DOI 10.1007/s11676-014-0543-1

    Project funding: This work was financially supported by the Fundamental Research Funds for the Central Universities (DL12EB04-03), (DL13CB02), and the Natural Science Foundation of Heilongjiang Province (LC2011C25)

    The online version is available at http://www.springerlink.com

    E-mail: nefuzyz@163.com

    Yizhuo Zhang

    Zhejiang University, Hangzhou 310058, China.

    Corresponding editor: Yu Lei

    69人妻影院| 国产欧美日韩精品一区二区| 精品99又大又爽又粗少妇毛片| 国产精品熟女久久久久浪| 亚洲av熟女| 精品免费久久久久久久清纯| 色综合站精品国产| 中文精品一卡2卡3卡4更新| 久久精品久久久久久噜噜老黄 | 国产免费福利视频在线观看| 成人亚洲欧美一区二区av| 黄色一级大片看看| 久久久久久久久中文| 免费一级毛片在线播放高清视频| 在线播放国产精品三级| 亚洲人成网站在线播| 一级av片app| 免费看日本二区| 欧美3d第一页| av黄色大香蕉| 久久久久久久久久久丰满| 亚洲久久久久久中文字幕| 亚洲国产成人一精品久久久| 日本黄色片子视频| 国产人妻一区二区三区在| 国产片特级美女逼逼视频| 国产精华一区二区三区| 国产成人a∨麻豆精品| 久久久久九九精品影院| 99久久无色码亚洲精品果冻| 免费看美女性在线毛片视频| 在线观看一区二区三区| 久久久国产成人精品二区| 观看美女的网站| 听说在线观看完整版免费高清| 亚洲国产精品专区欧美| 久久精品国产自在天天线| 1000部很黄的大片| 91狼人影院| 啦啦啦啦在线视频资源| 久久久色成人| 男插女下体视频免费在线播放| av卡一久久| 亚洲高清免费不卡视频| 一本久久精品| 99久久精品国产国产毛片| 嫩草影院入口| 精品人妻熟女av久视频| 国产人妻一区二区三区在| 国产成人aa在线观看| 最近的中文字幕免费完整| 国产麻豆成人av免费视频| 水蜜桃什么品种好| 国产人妻一区二区三区在| 国产中年淑女户外野战色| 久久精品国产亚洲网站| 亚洲av不卡在线观看| 亚洲久久久久久中文字幕| 亚洲精品一区蜜桃| 真实男女啪啪啪动态图| 国产又黄又爽又无遮挡在线| 国产综合懂色| 国产成人a区在线观看| 国产成人精品一,二区| 99热这里只有是精品50| 午夜精品一区二区三区免费看| 99热这里只有是精品50| 久热久热在线精品观看| 啦啦啦观看免费观看视频高清| 国产在线男女| 中文字幕av在线有码专区| kizo精华| 91狼人影院| 少妇熟女aⅴ在线视频| 成人高潮视频无遮挡免费网站| 大香蕉久久网| 日韩国内少妇激情av| 午夜福利在线观看免费完整高清在| 九九在线视频观看精品| 永久免费av网站大全| 在线观看av片永久免费下载| 91午夜精品亚洲一区二区三区| 久久欧美精品欧美久久欧美| 日本五十路高清| 精品国产三级普通话版| 国产精品av视频在线免费观看| av免费在线看不卡| 亚洲av成人av| 国产国拍精品亚洲av在线观看| 久久精品久久精品一区二区三区| 午夜老司机福利剧场| 男人的好看免费观看在线视频| 99在线视频只有这里精品首页| 国产麻豆成人av免费视频| 啦啦啦啦在线视频资源| 亚洲av不卡在线观看| 久久精品国产鲁丝片午夜精品| 国产又黄又爽又无遮挡在线| 欧美97在线视频| 一个人看视频在线观看www免费| 久久久久久久久久久免费av| 亚洲电影在线观看av| 午夜福利网站1000一区二区三区| 亚洲自拍偷在线| 五月伊人婷婷丁香| 欧美bdsm另类| 国产精品av视频在线免费观看| 九九久久精品国产亚洲av麻豆| 97人妻精品一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 免费av毛片视频| 精品午夜福利在线看| 成年女人永久免费观看视频| 久久久久久大精品| 成人特级av手机在线观看| 久久久精品欧美日韩精品| 噜噜噜噜噜久久久久久91| 欧美性猛交╳xxx乱大交人| 久久久精品94久久精品| 嫩草影院入口| 亚洲最大成人手机在线| 人妻少妇偷人精品九色| 水蜜桃什么品种好| 99热6这里只有精品| 又爽又黄无遮挡网站| 欧美另类亚洲清纯唯美| 午夜久久久久精精品| 精品人妻一区二区三区麻豆| 又黄又爽又刺激的免费视频.| 国产一区有黄有色的免费视频 | av天堂中文字幕网| 亚洲中文字幕日韩| 国产高潮美女av| 一本一本综合久久| 好男人在线观看高清免费视频| 国产成人aa在线观看| 国产淫片久久久久久久久| 亚洲精品国产av成人精品| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜爱| 两个人视频免费观看高清| 国产黄片视频在线免费观看| 亚洲欧美日韩卡通动漫| 午夜爱爱视频在线播放| 99热6这里只有精品| 国产精品久久久久久久久免| 精品人妻一区二区三区麻豆| 国产乱人偷精品视频| 国产精品国产三级国产专区5o | 色综合色国产| 国内精品美女久久久久久| 人人妻人人澡欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆| 日本爱情动作片www.在线观看| 日韩欧美精品免费久久| 99热6这里只有精品| 午夜精品国产一区二区电影 | 2022亚洲国产成人精品| 久久国产乱子免费精品| 日本wwww免费看| 久久久久久大精品| or卡值多少钱| 精品欧美国产一区二区三| 蜜桃亚洲精品一区二区三区| 国产色爽女视频免费观看| 波多野结衣巨乳人妻| 成人高潮视频无遮挡免费网站| 国产av在哪里看| 日本wwww免费看| 男女国产视频网站| 好男人视频免费观看在线| 国产精品美女特级片免费视频播放器| 欧美另类亚洲清纯唯美| 国产精品乱码一区二三区的特点| 亚洲欧美精品自产自拍| 亚洲自拍偷在线| 日韩欧美三级三区| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说| 午夜老司机福利剧场| 狂野欧美白嫩少妇大欣赏| 国产淫语在线视频| 看十八女毛片水多多多| 精品国产露脸久久av麻豆 | 99久久成人亚洲精品观看| 看片在线看免费视频| h日本视频在线播放| 久久亚洲精品不卡| 成人午夜高清在线视频| 能在线免费观看的黄片| 亚洲丝袜综合中文字幕| 国产免费男女视频| 一区二区三区高清视频在线| 日韩中字成人| 蜜臀久久99精品久久宅男| 色哟哟·www| 国产免费视频播放在线视频 | 美女cb高潮喷水在线观看| 久久草成人影院| 免费观看精品视频网站| 99久久九九国产精品国产免费| 天天躁夜夜躁狠狠久久av| 欧美bdsm另类| 国国产精品蜜臀av免费| 欧美激情在线99| 狂野欧美白嫩少妇大欣赏| 高清在线视频一区二区三区 | 高清午夜精品一区二区三区| 自拍偷自拍亚洲精品老妇| 国产精品一区二区三区四区久久| 国产黄片视频在线免费观看| 国产亚洲av嫩草精品影院| 欧美3d第一页| 久久精品熟女亚洲av麻豆精品 | 亚洲国产精品成人综合色| 久久久国产成人免费| 亚洲欧美日韩高清专用| 中文字幕人妻熟人妻熟丝袜美| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av涩爱| 在线观看66精品国产| 国产三级在线视频| 亚洲自偷自拍三级| 最近中文字幕高清免费大全6| 午夜老司机福利剧场| 国产69精品久久久久777片| 男女那种视频在线观看| 久久久久国产网址| 亚洲精品aⅴ在线观看| 国产不卡一卡二| 综合色av麻豆| 春色校园在线视频观看| 超碰97精品在线观看| 精品国内亚洲2022精品成人| 看十八女毛片水多多多| 自拍偷自拍亚洲精品老妇| 美女黄网站色视频| 青青草视频在线视频观看| 水蜜桃什么品种好| 色尼玛亚洲综合影院| 不卡视频在线观看欧美| 欧美一区二区精品小视频在线| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx在线观看| 男插女下体视频免费在线播放| 亚洲久久久久久中文字幕| kizo精华| 三级国产精品欧美在线观看| 3wmmmm亚洲av在线观看| 欧美一区二区国产精品久久精品| 亚洲精品国产av成人精品| 特大巨黑吊av在线直播| 国产久久久一区二区三区| 久久久欧美国产精品| 最近中文字幕2019免费版| 日本五十路高清| 床上黄色一级片| 一级毛片我不卡| 一卡2卡三卡四卡精品乱码亚洲| 赤兔流量卡办理| 成年女人看的毛片在线观看| 亚洲欧美成人综合另类久久久 | 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 国产一区有黄有色的免费视频 | 啦啦啦啦在线视频资源| 国产伦精品一区二区三区四那| 精品国产露脸久久av麻豆 | 成人美女网站在线观看视频| 伦理电影大哥的女人| 2021天堂中文幕一二区在线观| 亚洲精品国产成人久久av| 国产成人a∨麻豆精品| 久久精品夜色国产| 国产综合懂色| 国产毛片a区久久久久| 黄片无遮挡物在线观看| 国产精品日韩av在线免费观看| 毛片女人毛片| 高清在线视频一区二区三区 | 国产av码专区亚洲av| 午夜a级毛片| 超碰av人人做人人爽久久| 能在线免费观看的黄片| 一级爰片在线观看| .国产精品久久| 精华霜和精华液先用哪个| 国产一区二区在线av高清观看| 美女内射精品一级片tv| 嘟嘟电影网在线观看| 可以在线观看毛片的网站| 三级男女做爰猛烈吃奶摸视频| 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| 久热久热在线精品观看| 久久久久免费精品人妻一区二区| av在线蜜桃| 97人妻精品一区二区三区麻豆| 色综合亚洲欧美另类图片| 国产男人的电影天堂91| 国产精品女同一区二区软件| 欧美xxxx黑人xx丫x性爽| av女优亚洲男人天堂| 日韩欧美国产在线观看| 国产精品国产高清国产av| 少妇人妻一区二区三区视频| 色哟哟·www| 午夜福利视频1000在线观看| 欧美另类亚洲清纯唯美| 少妇熟女aⅴ在线视频| 亚洲欧美精品专区久久| 国产国拍精品亚洲av在线观看| 性色avwww在线观看| 亚洲国产精品久久男人天堂| 一个人看视频在线观看www免费| 伦精品一区二区三区| 亚洲精品aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩精品成人综合77777| 我要看日韩黄色一级片| 国产片特级美女逼逼视频| 级片在线观看| 国产精品.久久久| www日本黄色视频网| 深爱激情五月婷婷| 中文字幕精品亚洲无线码一区| 啦啦啦观看免费观看视频高清| 熟女电影av网| 国产精品av视频在线免费观看| 校园人妻丝袜中文字幕| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 91久久精品电影网| 亚洲18禁久久av| 99久久精品国产国产毛片| 高清毛片免费看| 岛国毛片在线播放| 精华霜和精华液先用哪个| 99九九线精品视频在线观看视频| 99热全是精品| 午夜视频国产福利| 两个人的视频大全免费| 五月玫瑰六月丁香| 毛片女人毛片| 国产一区有黄有色的免费视频 | 日韩欧美精品免费久久| 中文字幕亚洲精品专区| 欧美人与善性xxx| 亚洲欧美日韩无卡精品| 国产黄色小视频在线观看| 亚洲天堂国产精品一区在线| 国产三级中文精品| 卡戴珊不雅视频在线播放| 中文字幕久久专区| 少妇人妻一区二区三区视频| 性色avwww在线观看| 欧美变态另类bdsm刘玥| 日韩精品有码人妻一区| 一本一本综合久久| 熟妇人妻久久中文字幕3abv| 七月丁香在线播放| 最近的中文字幕免费完整| 免费无遮挡裸体视频| 亚洲内射少妇av| 成人亚洲精品av一区二区| 身体一侧抽搐| 青青草视频在线视频观看| 秋霞在线观看毛片| 日韩成人伦理影院| 日本与韩国留学比较| 久久久精品欧美日韩精品| 亚洲高清免费不卡视频| 日本黄色片子视频| 全区人妻精品视频| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| a级一级毛片免费在线观看| 精品人妻偷拍中文字幕| 乱人视频在线观看| 国产69精品久久久久777片| 国产伦理片在线播放av一区| 免费看a级黄色片| 一级毛片久久久久久久久女| 国产一级毛片在线| 伦理电影大哥的女人| 草草在线视频免费看| 午夜免费激情av| 国产成人精品一,二区| 全区人妻精品视频| 九色成人免费人妻av| 亚洲欧美清纯卡通| 欧美另类亚洲清纯唯美| 亚洲成色77777| 久久久久久伊人网av| 最近手机中文字幕大全| 久久久精品大字幕| 国产免费一级a男人的天堂| 床上黄色一级片| 少妇人妻精品综合一区二区| 日韩在线高清观看一区二区三区| 亚洲欧美精品专区久久| 久久99热这里只频精品6学生 | 国产探花在线观看一区二区| 日韩av不卡免费在线播放| 国产亚洲最大av| 色视频www国产| 国产毛片a区久久久久| 99久久精品热视频| 亚洲四区av| 欧美变态另类bdsm刘玥| av播播在线观看一区| 久久6这里有精品| 欧美成人精品欧美一级黄| 夜夜爽夜夜爽视频| 国产极品精品免费视频能看的| 成人三级黄色视频| 中国国产av一级| 亚洲一区高清亚洲精品| 国产片特级美女逼逼视频| 久热久热在线精品观看| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 我的女老师完整版在线观看| 久久午夜福利片| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜 | a级一级毛片免费在线观看| 村上凉子中文字幕在线| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 永久免费av网站大全| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av天美| 午夜福利高清视频| 岛国在线免费视频观看| 亚洲国产精品久久男人天堂| 日本黄色视频三级网站网址| 国产精品三级大全| 在线免费观看不下载黄p国产| 伊人久久精品亚洲午夜| 久久这里只有精品中国| 国产老妇伦熟女老妇高清| 赤兔流量卡办理| eeuss影院久久| 午夜免费激情av| 国产精品人妻久久久久久| eeuss影院久久| 男人和女人高潮做爰伦理| 国产精品野战在线观看| 亚洲精品成人久久久久久| 日韩欧美三级三区| 亚洲人成网站在线播| 国产淫语在线视频| 深夜a级毛片| 午夜精品在线福利| 波多野结衣巨乳人妻| 日本与韩国留学比较| 欧美成人一区二区免费高清观看| 日韩一区二区视频免费看| 日本色播在线视频| 2021少妇久久久久久久久久久| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 亚洲成av人片在线播放无| 草草在线视频免费看| 日韩 亚洲 欧美在线| 国产精品.久久久| 国产成人福利小说| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站 | 1024手机看黄色片| 成人高潮视频无遮挡免费网站| 国产亚洲91精品色在线| 99久久精品国产国产毛片| 国产精品不卡视频一区二区| 亚洲国产精品sss在线观看| 99久久精品国产国产毛片| 亚洲,欧美,日韩| 国产男人的电影天堂91| 免费看日本二区| 身体一侧抽搐| 久久韩国三级中文字幕| 成人欧美大片| 成人国产麻豆网| 一本一本综合久久| 日韩,欧美,国产一区二区三区 | 丝袜喷水一区| 看免费成人av毛片| 亚洲国产欧美人成| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| www.色视频.com| 国产乱来视频区| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| 国产精品无大码| 精品欧美国产一区二区三| 黄色日韩在线| 亚洲精品影视一区二区三区av| 大香蕉久久网| 国产三级中文精品| 精品一区二区三区人妻视频| 亚洲自偷自拍三级| 成人美女网站在线观看视频| 国产精品人妻久久久影院| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 午夜福利成人在线免费观看| 午夜a级毛片| 国产91av在线免费观看| 精品国产三级普通话版| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 午夜福利成人在线免费观看| 搡女人真爽免费视频火全软件| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| 亚洲国产精品国产精品| 亚洲av男天堂| 老师上课跳d突然被开到最大视频| 免费电影在线观看免费观看| 丝袜喷水一区| 长腿黑丝高跟| 中文字幕久久专区| 爱豆传媒免费全集在线观看| 精品久久久噜噜| 色综合亚洲欧美另类图片| 亚洲精品一区蜜桃| 七月丁香在线播放| 精品久久久噜噜| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 国产视频首页在线观看| 亚洲国产最新在线播放| 麻豆成人av视频| 精品免费久久久久久久清纯| 精品酒店卫生间| 能在线免费看毛片的网站| 午夜福利在线观看免费完整高清在| 日本欧美国产在线视频| 中文天堂在线官网| 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱| 桃色一区二区三区在线观看| av在线观看视频网站免费| 免费在线观看成人毛片| 久久久午夜欧美精品| 国产亚洲一区二区精品| 亚洲欧美精品专区久久| 极品教师在线视频| 国产 一区精品| 亚洲不卡免费看| 国产私拍福利视频在线观看| 亚洲在线观看片| 九九热线精品视视频播放| 亚洲精华国产精华液的使用体验| 少妇裸体淫交视频免费看高清| 99久久九九国产精品国产免费| 97热精品久久久久久| 亚洲第一区二区三区不卡| 能在线免费观看的黄片| 亚洲成人精品中文字幕电影| 高清毛片免费看| 中文精品一卡2卡3卡4更新| 午夜免费男女啪啪视频观看| 国产黄色小视频在线观看| 99久久九九国产精品国产免费| 最后的刺客免费高清国语| 麻豆久久精品国产亚洲av| 午夜激情欧美在线| 91aial.com中文字幕在线观看| 如何舔出高潮| 久久久久久久久大av| 免费观看精品视频网站| 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 一级毛片我不卡| 91久久精品电影网| 免费看av在线观看网站| 草草在线视频免费看| 一级爰片在线观看| or卡值多少钱| 大香蕉久久网| 国产亚洲av嫩草精品影院| 午夜日本视频在线| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| .国产精品久久| 在线免费十八禁| 亚洲乱码一区二区免费版| 亚洲精品一区蜜桃| 日本猛色少妇xxxxx猛交久久| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| a级一级毛片免费在线观看| 91在线精品国自产拍蜜月| 插逼视频在线观看| 在线免费观看不下载黄p国产| 欧美日韩精品成人综合77777| 老师上课跳d突然被开到最大视频| 国国产精品蜜臀av免费| 日韩,欧美,国产一区二区三区 | 尾随美女入室| 好男人视频免费观看在线| 中文天堂在线官网| 蜜桃亚洲精品一区二区三区| 亚洲av.av天堂| 日韩在线高清观看一区二区三区| 卡戴珊不雅视频在线播放|