• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Full length cDNA cloning and expression analysis of annexinA2 gene from deer antler tissue

    2014-09-06 11:13:31LiHaoXianghongXiaoHepingLi
    Journal of Forestry Research 2014年4期

    Li Hao · Xianghong Xiao · Heping Li

    ORIGINAL PAPER

    Full length cDNA cloning and expression analysis of annexinA2 gene from deer antler tissue

    Li Hao · Xianghong Xiao · Heping Li

    Received: 2013-10-09; Accepted: 2013-12-03

    ? Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2014

    ANXA2(AnnexinA2), a calcium-dependent phospholipid binding protein, is involved in various Ca2+-related biological activities. In the present study, full-length cDNA of ANXA2 was isolated from the velvet antler tip tissue of sika deer (Cervus nippon hortulorum); the amino acid sequence and gene expression was analyzed by using bioinformatics and real-time reverse transcriptase polymerase chain reaction (RT-PCR) techniques. Nucleotide sequence analysis reveals that the full-length cDNA of the ANXA2 gene was 1372 bp, of which 1020 bp was in the open-reading frame (ORF) encoding 339 amino acids; its relative molecular weight was 38.3 kDa; and isoelectric point was 6.72. Sequence analysis indicates that the protein includes four conserved tandem-duplication ANX domains. The gene-accession nucleotide sequence number in GenBank is JX315571. Expression analysis by RT-PCR reveals that ANXA2 gene expression has a significant positive correlation with the antler-tissue mineralization process, indicating that this gene may play an important role in the regulation of antler-tissue mineralization.

    velvet antler, AnnexinA2 (ANXA2) gene, cDNA library, clone, real-time quantitative RT-PCR

    Introduction

    Velvet antler is the dense fuzzed, immature horn of male deer (excluding reindeer) (Brockes and Kumar 2002; Price and Allen2004), it has attracted the attentions of many scientists due to its incomparable growth rate, regeneration mechanism, and perceived magical medicinal value (Li et al. 1995; Odelberg 2005).

    Velvet antler has a long growth period of about 90?120 days every year, and the fastest growth rate has been recorded at 1?2 cm per day (Brockes and Kumar 2005; Han et al. 2005). Some researchers divide the development of antler into two phases: growth period and ossification period (Gerke et al. 2005; Markoff and Gerke 2005). In the first phase, growth is dominant, with a slow ossification rate. In contrast, during in the second phase, antler can be ossified fast, being accompanied with the accumulation of large amounts of mineral matters; however, this process produces an inhibitory effect on antler growth. Antler with a high level of ossification contains a high concentration of mineral matter and a declining ratio of organic components. Therefore, ossification degree indexes the old and young degree of velvet antler and the changes of components, further decides the rank of velvet antler. Improvement in the yield of velvet antler and the economic benefits of the deer industry should not only inhibit or reduce antler ossification but also not influence antler growth rate. Illuminating the relationship between the growth rate and ossification is the basis to achieve this objective (Benaud et al. 2004; Rescher and Gerke 2004).

    ANXA2 is a calcium/phospholipids-binding multi-functional protein (Filipenko et al. 2004; Yamada et al. 2005; Mussunoor and Murray 2008). It plays important roles in the formation of biomembranes, endocytosis/exocytosis, osteoblast and osteal reabsorption, membrane transport, ion channels, DNA synthesis, and cell proliferation (Chiang et al. 1999; Gerke and Moss 2002; Okuse et al. 2002). In the present study, the ANXA2 gene in the constructed velvet antler tip tissue of sika deer belongs to this high-abundance expression gene, indicating that it may be an important factor regulating antler development.

    To date, there is no record of deer-derived ANXA2 gene sequences in GenBank. In this paper, the full-length cDNA of ANXA2 genes were cloned successfully from the full-length cDNA library of velvet antler tip tissues of sika deer. Further, the gene structure and the expression levels of different tissue layers of the antler tip were studied using bioinformatics and real-timequantitative RT-PCR technique. These results provide an important basis for further study of the biological functions of ANXA2 genes, molecular mechanism of regulating antler development, and velvet antler production.

    Materials and methods

    Velvet antler tissue

    Antler grown for 80 days were collected from anaesthetized adult sika deer (Cervus nippon hortulorum) stags. The distal 4 cm of the tips was removed. Different tissue layers (skin, reserve mesenchyme, precartilage, and cartilage) of the growing antlers were determined as described by Li et al. (2002). After being harvested, all samples were immediately preserved in liquid nitrogen and kept at -80°C until they were used for isolating the RNA.

    Methods for obtaining full length cDNA of ANXA2 genes

    Total RNA extraction and cDNA library construction were based on the protocols of SV Total RNA Isolation System reagent (Promega) and CreatorTMSMARTTMcDNA Library Construction Kit (Clontech), respectively. Using M13 primer, single colonies randomly selected from velvet antler tip tissue in the original library were put through large-scale 5’-end EST sequencing, by using a 3730XL sequencer (Applied Biosystems, Foster City, CA, USA). High-quality ESTs were clustered and spliced, using Phrap software. The consensus sequence splice was programmed by BLASTX and BLASTN; from there, the sequence homology comparison and function notes of the obtained genes were conducted with non-redundant proteins and nucleic acid database in GenBank. ANXA2 genes with corresponding positive colonies were selected to carry out PCR identification, bacterial amplification, and plasmid extraction, and then two-way sequencing for the plasmid DNA.

    Nucleotide sequence analysis

    The ANXA2 gene sequence was analyzed and compared using the BLAST P and ORF search programs with GenBank database search. The multiple sequence alignment of ANXA2 gene was carried out, using the Clustal W analysis program; the signal-peptide site was predicted by Signal P3.0; and the ANXA2 protein MW and pI were computed by using the ProtParam tool. A phylogenetic tree, based on evolutionary distances, was constructed from amino-acid sequences using the njplotWIN95 program.

    Quantification of the ANXA2 gene expression by real-time RT-PCR

    Total RNAs using SV Total RNA Isolation System reagent (Promega) were isolated from different tissues including skin, mesenchyme, precartilage, and cartilage. The DNA residue was removed by DNase Ι digesting, at 37°C for 30 min. Four microgram of the total RNA were used in each lane and electrophoresed in a 0.8% agarose gel, at 100 V/12 cm for 15 min. First-strand cDNA synthesis was performed using M-MLV reverse transcriptase (TaKaRa Biotechnology (Dalian) Co., Ltd. Japan) to transcribe poly (A)+RNA with oligo-d(T)18 and random six as the primers; reaction conditions were set as the manufacturer’s instructions. The cDNA was used for the assay of quantitative real-time PCR. The SYBR Green I real-time RT-PCR assay was carried out in an Option-II Sequence Detection System (MJ Research, U.S.).

    In a real-time RT-PCR study, specific primers (ANXA2-F: 5'-AGCTGCAGGAAATCAACAG-3' and ANXA2-R: 5'-ATCAATGACAGAGCCATCC-3') were used to amplify a 146 bp fragment with cDNA from skin, reserve mesenchyme, precartilage and cartilage, and organs using 18S as a positive control. Quantitative real-time PCR primers were designed on the basis of EST sequences of the ANXA2 gene and 18S rRNA gene from deer-antler tip tissue by using Primer 5.0 and Oligo 6.0 software. The EST sequences of the two genes were obtained by large-scale EST sequencing of the full-length cDNA library from deer-antler tip tissue constructed by our lab. The amplifications were performed in a 96-well plate, in a 25 μL reaction volume containing 12.5 μL of 2 × SYBR Green Master Mix (TARAKA), 2.5 μL (each) of ANXA2-F and ANXA2-R primers (10 mM), 1 μL of template, and 9 μL of DEPC-water. The thermal profile for SYBR Green real-time PCR was 95°C for 2 min, followed by 45 cycles of 94°C for 12 s, and 55°C for 30 s. In the 96-well plate, each sample was amplified in triplicate. DEPC-water for the replacement of template was used as negative control. The relative expression was calculated as 2?ΔΔCt(Livak and Schmittgen 2001).

    Statistical analysis

    A multiple comparisons (Duncan’s) test was conducted to compare significant differences in the ANXA2 expression between skin, mesenchyme, precartilage, and cartilage, using the SPSS13.0 software. A significance level of p = 0.05 was chosen.

    Results and discussion

    Sequencing and bioinformatics analysis of ANXA2

    Computer analysis, using the BLAST algorithm, confirmed that the selected sequence corresponded to ANXA2. The full-length ANXA2 cDNA contains 1372 bp, of which 21 bp in the 5'-untranslated region (UTR); 1020 bp in the open reading frame (ORF); and 331 bp in 3'-UTR with poly (A) tail (Fig. 1). The ORF encodes a polypeptide of 339 amino acids. The calculated molecular mass of the mature protein (339 amino acids) is 38.3 kDa, with an estimated pI of 6.72. ANXA2 is in shortage of signal peptides, so they belong to non-secretory proteins and can not be excreted out cells by the classical protein excretion pathway. However, in a temperature stress state, these substances can betransferred from the cytoplasm to the membrane surface (Deora et al. 2004). The cDNA sequence has been submitted to the NCBI GenBank as accession number JX315571.

    Fig. 1: Nucleotide and deduced amino acid sequences of ANXA2 cDNA of velvet antler from sika deer

    The C'-end of ANXA2 gene has four homologous duplication sequences (ANX domains) that are from the amino acids 37 to 102, 122 to 174, 207 to 259, and 282 to 334 (Fig. 2). They can be bound with Ca2+, phospholipids, and F-actin, thus having important significance in cytoskeleton recombination and various membrane-related changes (Hayes et al. 2006).

    Fig. 2: Search for the conserved domains in deduced amino acid sequence of ANXA2 cDNA

    The N'-end of the gene contains three loci, namely Tyr23, Ser11, and Ser25. Among them, Ser1 and Ser25 can be phosphorylated by the action of protein kinase; Tyr23 can be modified by some membrane-binding kinases such as the IGF-1 and PDGF receptors. Therefore, the three protein kinases play important roles in cellular signal transduction and cell differentiation (Babbin et al. 2007).

    Homology comparison of ANXA2

    The comparison of the ORFs with other known ANXA2s indicated that the ANXA2 shows a homology of Identities = 338/339 (99%) with Bos Taurus, Identities = 333/339 (98%) with Homo sapiens, Identities = 323/339 (95%) with Rattus sp., Identities = 304/339 (89%) with Gallus gallus, Identities =275/339 (81%) with Xenopus laevis, Identities =215/339 (63%) with Monopterus albus. Homological analysis indicated that ANXA2 gene encoding regions of different genus show a high homology. Multiple alignment of ANXA2 protein sequences showed large variation in the beginning of C'-end, but in general, ANXA2 mature protein is highly conservative (Fig. 3). The evolutionary tree can be divided into two branches: one branch is mammals; the other branch contains birds, amphibians, and fish. The mammal graph showed that in the gene locus, sika deer has the closest evolutionary relationship with cattle (Bos Taurus) and the furthest genetic relationship with fish such as Monopterus albus (Fig. 4). This result is in agreement with their traditional taxonomic position for the tested species, according to animal evolution relationships.

    Fig. 3: Multiple alignment of ANXA2 protein sequences

    Tissue expression of ANXA2

    ANXA2 expressed in each tissue of velvet antler tip is shown in Fig. 5. The real-time RT-PCR showed that the ANXA2 gene was detected in skin, reserve mesenchyme, precartilage, and cartilage. However, the gene has a low expression level in the skin layer and reserve mesenchyme layer of velvet antler, but a high expression level in the precartilage and cartilage layers. The gene expression has a significant positive correlation with antler tissue mineralization process, indicating an important role of the gene in the process of antler tissue mineralization.

    ANXA2 genes belong to protein super-family members thatcan be combined to negative-charge membrane phospholipids by Ca2+mediated pathway, thus these proteins are involved in various Ca2+-related biological activities. Francis and Suttie (1998) detected ANXA2 gene expression in red deer antler by using the Western blotting technique, and found that ANXA2 proteins were located in the edge of osteoblastic membrane. Based on our findings and previous results, it is assumed that ANXA2 genes play a partial role in antler-tissue mineralization by participating in the formation of a Ca2+-ion channel.

    Fig. 4: The phylogenetic tree of ANXA2 from animals. Clustal W was used to establish the phylogenetic tree, and the result was displayed using Treeview software.

    Fig. 5: Expression of ANXA2 in different tissues of velvet antler tip, 1-skin; 2-reserve mesenchyme; 3-precartilage; 4-cartilage

    Velvet antler, as the most active growing point, stores large numbers of cell factors; these substances are the biochemical basis for clinical functions of velvet antler. Currently, our laboratory is conducting studies on the biological functions of ANXA2 genes. Research on antler ossification can not only reveal the old and young degree of velvet antler and component changes, which directly decide the optimal picking time and rank, but it also has significance for the construction of antler bone development models. Moreover, the related researches are helpful to improve velvet antler yield and quality, and provide the theoretical foundation for new drug development.

    Babbin BA, Parkos CA, Mandell KJ, Winfree LM, Laur O, Ivanov AI, Nusrat A. 2007. Annexin 2 regulates intestinal epithelial cell spreading and wound closure through Rho-related signaling. Am J Pathol, 170: 951?966.

    Benaud C, Gentil BJ, Assard N, Court M, Garin J, Delphin C, Baudier J. 2004. AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J Cell Biol, 164: 133–144.

    Brockes JP, Kumar A. 2002. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol, 3: 566–574.

    Brockes JP, Kumar A. 2005. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science, 310: 1919–1923.

    Chiang Y, Rizzino A, Sibenaller ZA, Wold MS, Vishwanatha JK. 1999. Specific down-regulation of annexin expression in human cells interferes with cell proliferation. Mol Cell Biochem, 199: 139–147.

    Deora AB, Kreitzer G, Jacovina AT, Hajjar KA. 2004. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J Biol Chem, 279: 43411–43418.

    Filipenko NR, MacLeod TJ, Yoon CS, Waisman DM. 2004. Annexin A2 is a novel RNA-binding protein. J Biol Chem, 279: 8723–8731.

    Francis SM, Suttie JM. 1998. Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J Exp Zool, 281: 36–42.

    Gerke V, Moss SE. 2002. Annexins: From structure to function. Physiol Rev, 82: 331–371.

    Gerke V, Creutz CE, Moss SE. 2005. Annexins: Linking Ca2+signalling to membrane dynamics. Nat Rev Mol Cell Biol, 6: 449–461.

    Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K. 2005. Limb regeneration in higher vertebrates: Developing a roadmap. Anat Rec B New Anat, 287: 14–24.

    Hayes MJ, Shao D, Bailly M, Moss SE. 2006. Regulation of actin dynamics by annexin 2. EMBO J, 25: 1816–1826.

    Li C, Clark DE, Lord EA, Stanton JA, Suttie JM. 2002. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec, 268: 125–130.

    Li C, Waldrup KA, Corson ID, Littlejohn RP, Suttie JM. 1995. Histogenesis of antlerogenic tissues cultivated in diffusion chambers in vivo in red deer (Cervus elaphus). J Exp Zool, 272: 345–355.

    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25: 402–408.

    Markoff A, Gerke V. 2005. Expression and functions of annexins in the kidney. Am J Renal Physiol, 289: 949–956.

    Mussunoor S, Murray GI. 2008. The role of annexins in tumour development and progression. J Pathol, 216: 131–140.

    Odelberg SJ. 2005. Cellular plasticity in vertebrate regeneration. Anat Rec B New Anat, 287: 25–35.

    Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN. 2002. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature, 417: 653–656.

    Price J, Allen S. 2004. Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond B Biol Sci, 359: 809–822.

    Rescher U, Gerke V. 2004. Annexins-unique membrane binding proteins with diverse functions. J Cell Sci, 117: 2631–2639.

    Yamada A, Irie K, Hirota T, Ooshio T, Fukuhara A, Takai Y. 2005. Involvement of the annexin II-S100A10 complex in the formation of E-cadherin-based adherens junctions in Madin-Darby canine kidney cells. J Biol Chem, 280: 6016–6027.

    DOI 10.1007/s11676-014-0542-2

    Project funding: This research was funded by the General Program of the National Natural Science Foundation of China (31271324), and the Fundamental Research Funds for the Central Universities (2572014EA05-03), and the Fundamental Research Funds for the Central Universities (DL10BA08).

    The online version is available at http://www.springerlink.com

    Li Hao, Xianghong Xiao, Heping Li ()

    College of Wildlife Resource, Northeast Forestry University, 26# Hexing Road, Harbin 150040, China. Email: 89187762@qq.com

    Corresponding editor: Hu Yanbo

    男人舔女人的私密视频| 国产熟女午夜一区二区三区| 免费看a级黄色片| 91精品国产国语对白视频| 国产精华一区二区三区| 91麻豆精品激情在线观看国产 | 久久精品人人爽人人爽视色| 久久欧美精品欧美久久欧美| 久久人人爽av亚洲精品天堂| 久久九九热精品免费| 欧美日本中文国产一区发布| 午夜两性在线视频| 夜夜躁狠狠躁天天躁| 日韩人妻精品一区2区三区| 别揉我奶头~嗯~啊~动态视频| 深夜精品福利| 欧美亚洲日本最大视频资源| 国产亚洲精品综合一区在线观看 | 国产精品爽爽va在线观看网站 | 免费少妇av软件| 一级毛片高清免费大全| 精品无人区乱码1区二区| 国产熟女午夜一区二区三区| 亚洲一区二区三区色噜噜 | 最近最新中文字幕大全电影3 | 免费搜索国产男女视频| 国产亚洲精品久久久久5区| 成年人免费黄色播放视频| 一二三四社区在线视频社区8| 免费日韩欧美在线观看| 午夜久久久在线观看| 大香蕉久久成人网| 琪琪午夜伦伦电影理论片6080| 久久欧美精品欧美久久欧美| 香蕉久久夜色| 一级片'在线观看视频| 国产精品一区二区三区四区久久 | 国产精品1区2区在线观看.| 亚洲男人的天堂狠狠| 大香蕉久久成人网| 天堂√8在线中文| 999久久久国产精品视频| 国产精品野战在线观看 | 悠悠久久av| 国产精品电影一区二区三区| 精品久久久久久电影网| 久久人妻熟女aⅴ| 国产免费av片在线观看野外av| 日韩中文字幕欧美一区二区| 看免费av毛片| 成人国语在线视频| 成年人黄色毛片网站| 国产精品av久久久久免费| 一区福利在线观看| 免费在线观看影片大全网站| 日日夜夜操网爽| 日韩一卡2卡3卡4卡2021年| 少妇裸体淫交视频免费看高清 | 亚洲精品国产色婷婷电影| 久久性视频一级片| 香蕉丝袜av| 国产成人精品无人区| 亚洲av第一区精品v没综合| 精品人妻在线不人妻| 丰满饥渴人妻一区二区三| 丁香六月欧美| 日韩一卡2卡3卡4卡2021年| 日日干狠狠操夜夜爽| 天堂动漫精品| 亚洲成人精品中文字幕电影 | 女人被躁到高潮嗷嗷叫费观| 日日夜夜操网爽| 久99久视频精品免费| 亚洲狠狠婷婷综合久久图片| 在线观看一区二区三区| 国产精品亚洲一级av第二区| 欧美久久黑人一区二区| 大陆偷拍与自拍| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 动漫黄色视频在线观看| 欧美日韩一级在线毛片| 91成人精品电影| 成年女人毛片免费观看观看9| 久久精品国产清高在天天线| 咕卡用的链子| 色精品久久人妻99蜜桃| 久久人人97超碰香蕉20202| 国产熟女xx| 丰满迷人的少妇在线观看| 老司机午夜福利在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 91国产中文字幕| 午夜亚洲福利在线播放| 亚洲精品美女久久久久99蜜臀| 国产精品久久久av美女十八| 不卡一级毛片| 国产免费男女视频| 人妻丰满熟妇av一区二区三区| 美女扒开内裤让男人捅视频| 99香蕉大伊视频| 日韩欧美免费精品| 男人舔女人下体高潮全视频| 国产精品综合久久久久久久免费 | 久久午夜亚洲精品久久| 欧美日韩乱码在线| 女性生殖器流出的白浆| 免费av毛片视频| 久久欧美精品欧美久久欧美| 亚洲精品在线美女| 久久久久国产精品人妻aⅴ院| 亚洲色图综合在线观看| 精品国产乱码久久久久久男人| 亚洲国产看品久久| www.自偷自拍.com| 欧美日韩黄片免| 变态另类成人亚洲欧美熟女 | 久久人妻av系列| 欧美日韩一级在线毛片| 这个男人来自地球电影免费观看| 久久中文字幕一级| 99热只有精品国产| 国产精品久久久人人做人人爽| 久久国产精品男人的天堂亚洲| 美女大奶头视频| 久久人人97超碰香蕉20202| 亚洲精品中文字幕在线视频| 国产成人欧美| 久久精品91蜜桃| 天堂俺去俺来也www色官网| 亚洲熟女毛片儿| 九色亚洲精品在线播放| 在线十欧美十亚洲十日本专区| 欧美人与性动交α欧美软件| 欧美性长视频在线观看| 欧美性长视频在线观看| 日韩精品中文字幕看吧| 又黄又爽又免费观看的视频| 老司机深夜福利视频在线观看| 热re99久久国产66热| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩高清在线视频| 欧美久久黑人一区二区| 高潮久久久久久久久久久不卡| 精品久久久久久久久久免费视频 | 亚洲一区二区三区不卡视频| 中文字幕精品免费在线观看视频| 欧美人与性动交α欧美软件| 国产精品乱码一区二三区的特点 | 高清欧美精品videossex| 亚洲av成人一区二区三| xxxhd国产人妻xxx| 最近最新中文字幕大全电影3 | 黑人操中国人逼视频| 国产日韩一区二区三区精品不卡| 成人国语在线视频| 女人精品久久久久毛片| 女人精品久久久久毛片| 99香蕉大伊视频| 欧美色视频一区免费| 久久午夜亚洲精品久久| 久久九九热精品免费| 青草久久国产| 在线观看免费日韩欧美大片| 国产精品久久视频播放| 电影成人av| 久久精品91无色码中文字幕| 精品福利永久在线观看| av网站免费在线观看视频| cao死你这个sao货| 欧美在线一区亚洲| 久久99一区二区三区| 天堂中文最新版在线下载| 久久久久久久午夜电影 | 国产成人啪精品午夜网站| 久久精品国产99精品国产亚洲性色 | 亚洲自偷自拍图片 自拍| 在线观看免费高清a一片| 国产熟女xx| 高潮久久久久久久久久久不卡| 国产极品粉嫩免费观看在线| 在线观看免费日韩欧美大片| 久久天躁狠狠躁夜夜2o2o| 黄色视频,在线免费观看| 日韩视频一区二区在线观看| 深夜精品福利| 一级a爱片免费观看的视频| 乱人伦中国视频| 久久欧美精品欧美久久欧美| 欧美日韩黄片免| 中文亚洲av片在线观看爽| 色老头精品视频在线观看| 又黄又爽又免费观看的视频| 美国免费a级毛片| 中文字幕精品免费在线观看视频| 国产成人免费无遮挡视频| 欧美久久黑人一区二区| 久久伊人香网站| 国产激情久久老熟女| 亚洲精品国产一区二区精华液| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三| 亚洲美女黄片视频| 国产男靠女视频免费网站| 国产又色又爽无遮挡免费看| 国产高清激情床上av| 他把我摸到了高潮在线观看| 国产免费av片在线观看野外av| 1024香蕉在线观看| 国产精品一区二区三区四区久久 | 69av精品久久久久久| 日韩高清综合在线| 成人黄色视频免费在线看| 亚洲人成电影观看| 久久精品成人免费网站| a在线观看视频网站| 国产熟女午夜一区二区三区| 中文欧美无线码| 午夜精品在线福利| 久久久国产精品麻豆| 黄片小视频在线播放| 在线观看一区二区三区| а√天堂www在线а√下载| 两人在一起打扑克的视频| 久久国产精品人妻蜜桃| 美女福利国产在线| 在线观看免费视频日本深夜| 91成人精品电影| 色综合站精品国产| 电影成人av| 日本撒尿小便嘘嘘汇集6| 高清在线国产一区| 国产片内射在线| 久久影院123| 国产视频一区二区在线看| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美日韩在线播放| 亚洲 欧美 日韩 在线 免费| 色哟哟哟哟哟哟| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 国产精品一区二区免费欧美| 伦理电影免费视频| 一级毛片女人18水好多| 午夜91福利影院| 国产精品99久久99久久久不卡| 亚洲国产欧美日韩在线播放| 亚洲成人精品中文字幕电影 | 88av欧美| 国产av精品麻豆| 国产成人精品无人区| 国产黄色免费在线视频| 在线观看日韩欧美| 国产精品亚洲av一区麻豆| 精品欧美一区二区三区在线| 国产激情久久老熟女| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区久久| a级毛片黄视频| 一边摸一边做爽爽视频免费| 久久久久久人人人人人| 国产真人三级小视频在线观看| 欧美老熟妇乱子伦牲交| 精品久久久久久久毛片微露脸| 欧美成人性av电影在线观看| 欧美成狂野欧美在线观看| 亚洲免费av在线视频| 国产精品永久免费网站| 亚洲精品av麻豆狂野| 久久精品亚洲熟妇少妇任你| 久久精品91蜜桃| 99久久人妻综合| 精品人妻在线不人妻| 淫秽高清视频在线观看| 亚洲精华国产精华精| 黄频高清免费视频| 国产精品久久久久久人妻精品电影| 成人亚洲精品一区在线观看| 午夜a级毛片| 丁香欧美五月| 999久久久精品免费观看国产| 亚洲精品一区av在线观看| 99国产极品粉嫩在线观看| 亚洲国产精品999在线| 国产不卡一卡二| 亚洲成人国产一区在线观看| avwww免费| 亚洲精品粉嫩美女一区| а√天堂www在线а√下载| 人成视频在线观看免费观看| 成人手机av| 亚洲欧美激情综合另类| 亚洲男人的天堂狠狠| 9色porny在线观看| 99国产精品99久久久久| 免费在线观看视频国产中文字幕亚洲| 久久国产精品影院| www.自偷自拍.com| 国产又色又爽无遮挡免费看| 天堂√8在线中文| 法律面前人人平等表现在哪些方面| 大码成人一级视频| 高潮久久久久久久久久久不卡| 欧美日韩av久久| 日韩免费av在线播放| 国产真人三级小视频在线观看| 亚洲成av片中文字幕在线观看| 91av网站免费观看| 男人的好看免费观看在线视频 | 国产精品久久久久久人妻精品电影| 免费人成视频x8x8入口观看| 久久香蕉激情| 色尼玛亚洲综合影院| 精品高清国产在线一区| 日本黄色视频三级网站网址| 久久人人精品亚洲av| 国产精品一区二区三区四区久久 | 十八禁人妻一区二区| 操美女的视频在线观看| 久久影院123| 成人永久免费在线观看视频| 国产成人欧美| 亚洲性夜色夜夜综合| 自拍欧美九色日韩亚洲蝌蚪91| 激情在线观看视频在线高清| 国产xxxxx性猛交| 亚洲人成77777在线视频| 亚洲国产精品一区二区三区在线| 国产极品粉嫩免费观看在线| 国产精品永久免费网站| 九色亚洲精品在线播放| 久久久水蜜桃国产精品网| 最近最新免费中文字幕在线| 十分钟在线观看高清视频www| 国产精品电影一区二区三区| 国产欧美日韩一区二区三区在线| 日韩欧美一区视频在线观看| 日本黄色日本黄色录像| 在线看a的网站| 久久久久精品国产欧美久久久| 欧美 亚洲 国产 日韩一| 每晚都被弄得嗷嗷叫到高潮| 99re在线观看精品视频| 久久久久久久精品吃奶| bbb黄色大片| 亚洲国产中文字幕在线视频| 国产aⅴ精品一区二区三区波| 亚洲精品国产区一区二| 日韩欧美一区二区三区在线观看| 久久久久久久午夜电影 | 亚洲午夜精品一区,二区,三区| 欧美+亚洲+日韩+国产| 午夜福利一区二区在线看| 久久人妻福利社区极品人妻图片| 男人的好看免费观看在线视频 | 国产亚洲欧美在线一区二区| 亚洲激情在线av| 一区福利在线观看| 亚洲精品久久成人aⅴ小说| 免费看a级黄色片| 亚洲精品一区av在线观看| 国产深夜福利视频在线观看| 自线自在国产av| 波多野结衣高清无吗| 91字幕亚洲| 97碰自拍视频| 久久欧美精品欧美久久欧美| 欧美+亚洲+日韩+国产| 亚洲自拍偷在线| 男人舔女人下体高潮全视频| a级片在线免费高清观看视频| 日韩欧美一区视频在线观看| 欧美黑人精品巨大| 国产精品av久久久久免费| 日本wwww免费看| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 亚洲激情在线av| 操出白浆在线播放| 好看av亚洲va欧美ⅴa在| 12—13女人毛片做爰片一| 国产精品一区二区三区四区久久 | 日本vs欧美在线观看视频| 亚洲中文日韩欧美视频| 亚洲全国av大片| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 久久精品影院6| 99热国产这里只有精品6| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 国产色视频综合| 淫妇啪啪啪对白视频| 精品国产超薄肉色丝袜足j| 亚洲第一青青草原| 18禁裸乳无遮挡免费网站照片 | 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 成人免费观看视频高清| 久久这里只有精品19| 韩国av一区二区三区四区| 欧美av亚洲av综合av国产av| 一夜夜www| 窝窝影院91人妻| 国产亚洲精品久久久久久毛片| 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 欧美日韩乱码在线| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 精品国产一区二区久久| 女人爽到高潮嗷嗷叫在线视频| 国产在线观看jvid| 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 国产精品综合久久久久久久免费 | 亚洲一区二区三区色噜噜 | av网站免费在线观看视频| 欧美大码av| 男人舔女人的私密视频| 国产成人欧美| 在线观看免费视频网站a站| 高清毛片免费观看视频网站 | 国产亚洲精品久久久久久毛片| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看| 免费观看精品视频网站| 亚洲专区中文字幕在线| 中文字幕人妻丝袜制服| 9色porny在线观看| 波多野结衣高清无吗| 欧美在线一区亚洲| 欧美久久黑人一区二区| 波多野结衣高清无吗| 欧美在线一区亚洲| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 国产成人精品无人区| 黄色a级毛片大全视频| av天堂在线播放| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 国产男靠女视频免费网站| cao死你这个sao货| 人人澡人人妻人| 亚洲av成人不卡在线观看播放网| 最近最新中文字幕大全免费视频| 两个人看的免费小视频| 黑人巨大精品欧美一区二区蜜桃| 在线看a的网站| 黄色怎么调成土黄色| 波多野结衣av一区二区av| 亚洲五月天丁香| 黄色毛片三级朝国网站| 美女午夜性视频免费| 一级作爱视频免费观看| 好看av亚洲va欧美ⅴa在| av视频免费观看在线观看| 久99久视频精品免费| 欧美国产精品va在线观看不卡| 精品乱码久久久久久99久播| 国产麻豆69| 一级黄色大片毛片| 90打野战视频偷拍视频| 免费av中文字幕在线| 成人国产一区最新在线观看| 亚洲国产欧美一区二区综合| 99精品在免费线老司机午夜| 美女午夜性视频免费| 国产精品成人在线| 国产伦一二天堂av在线观看| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| xxx96com| 热re99久久精品国产66热6| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费 | 久久精品亚洲精品国产色婷小说| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 黄色视频不卡| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼 | 日韩大尺度精品在线看网址 | 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 真人做人爱边吃奶动态| 精品人妻在线不人妻| 国产极品粉嫩免费观看在线| 国产精品免费视频内射| cao死你这个sao货| 欧美精品啪啪一区二区三区| 露出奶头的视频| 免费一级毛片在线播放高清视频 | 亚洲国产欧美日韩在线播放| 黄频高清免费视频| 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 1024视频免费在线观看| 一本综合久久免费| 亚洲精品美女久久av网站| 精品午夜福利视频在线观看一区| ponron亚洲| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 亚洲精品美女久久av网站| 色尼玛亚洲综合影院| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| a级片在线免费高清观看视频| 制服诱惑二区| 免费一级毛片在线播放高清视频 | 他把我摸到了高潮在线观看| 亚洲专区中文字幕在线| 亚洲精品在线观看二区| 成人亚洲精品一区在线观看| 亚洲精品国产色婷婷电影| 在线视频色国产色| 国产成人av教育| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 欧美日韩国产mv在线观看视频| 国产成人精品在线电影| 在线国产一区二区在线| 免费高清在线观看日韩| 国产亚洲精品综合一区在线观看 | 男人的好看免费观看在线视频 | 两个人免费观看高清视频| 在线播放国产精品三级| 亚洲自偷自拍图片 自拍| 男人舔女人下体高潮全视频| 久9热在线精品视频| 黄色 视频免费看| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 在线观看66精品国产| 久久久久国内视频| 中文亚洲av片在线观看爽| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 乱人伦中国视频| e午夜精品久久久久久久| 亚洲自拍偷在线| 精品久久蜜臀av无| 99久久人妻综合| 性少妇av在线| 涩涩av久久男人的天堂| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 多毛熟女@视频| 精品乱码久久久久久99久播| 欧美最黄视频在线播放免费 | 日韩人妻精品一区2区三区| 亚洲人成网站在线播放欧美日韩| 真人一进一出gif抽搐免费| 大型黄色视频在线免费观看| 中出人妻视频一区二区| 国产一区二区三区综合在线观看| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 亚洲激情在线av| 国产成+人综合+亚洲专区| 欧美日韩视频精品一区| 免费少妇av软件| av国产精品久久久久影院| 久久久久久久久久久久大奶| 午夜免费成人在线视频| 国产高清videossex| 日韩欧美免费精品| 不卡一级毛片| www.精华液| 成在线人永久免费视频| 999久久久精品免费观看国产| 人妻久久中文字幕网| 视频区欧美日本亚洲| 国产亚洲精品久久久久久毛片| 久久精品国产99精品国产亚洲性色 | 好看av亚洲va欧美ⅴa在| 两性夫妻黄色片| 在线观看一区二区三区| 99久久99久久久精品蜜桃| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 日韩欧美在线二视频| 免费高清在线观看日韩| 变态另类成人亚洲欧美熟女 | 午夜91福利影院| 久久午夜亚洲精品久久| av欧美777| 久久精品国产综合久久久| tocl精华| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区不卡视频| 69精品国产乱码久久久| 国产免费av片在线观看野外av|