• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability analysis of time-varying systems via parameter-dependent homogeneous Lyapunov functions

    2014-09-06 10:49:44ZhangHuashengZhangKanjian
    關(guān)鍵詞:充分條件東南大學(xué)魯棒

    Zhang Huasheng Zhang Kanjian

    (1Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education,Southeast University, Nanjing 210096, China)(2School of Automation, Southeast University, Nanjing 210096, China)(3School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, China)

    ?

    Stability analysis of time-varying systems via parameter-dependent homogeneous Lyapunov functions

    Zhang Huasheng1,2,3Zhang Kanjian1,2

    (1Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education,Southeast University, Nanjing 210096, China)(2School of Automation, Southeast University, Nanjing 210096, China)(3School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, China)

    This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.

    linear time-varying systems; polytopic uncertainty; robust stability; linear matrix inequality

    The study of linear time-varying system stability has been an important issue in control theory for many years. It is well known that quadratic stability is a sufficient condition for the stability of linear systems with arbitrarily fast time-varying parameters. This condition is appealing from a numerical point of view mainly because of its simplicity, and it has been widely used for robust control and robust filter design, in most cases through convex problems formulated in terms of linear matrix inequalities (LMIs)[1-2]. In order to reduce conservativeness, more general classes of Lyapunov functions have been considered, including polyhedral Lyapunov functions[3-4], piecewise quadratic Lyapunov functions[5], and homogeneous polynomial Lyapunov functions (HPLFs)[6-7].

    Homogeneous polynomial Lyapunov functions are a viable alternative to the above classes of Lyapunov functions. In fact, that this class of Lyapunov functions can improve the robust stability results provided by quadratic Lyapunov functions has been recognized for a long time[8]. Recently, it has been shown that for these systems, robust stability is equivalent to the existence of a smooth Lyapunov function that turns out to be the sum of the squares of homogeneous polynomial forms[9-10].

    This paper focuses on the stability analysis of linear systems where dynamic matrices are affected by uncertain time-varying parameters with a bounded variation rate. The problem can be tackled by HPLFs and constructing HPLFs can be formulated in terms of special convex optimization techniques based on linear matrix inequalities (LMI). An example here is shown, which proves that HPLFs are powerful tools for stability analysis.

    1 Problem Formulation and Preliminaries

    Consider the linear time-varying system

    (1)

    wherex(t)∈Rnis the state andA(α(t))∈Rn×nis an uncertain time-varying matrix belonging to the polytopeΛgiven by

    In other words, for allt>0 with components,αj(t) represents time varying unknown parametric perturbations such thatA(α(t))∈co{A1,…,AN}, where co{·} denotes the convex hull.

    The parameters of this system are assumed to have bounded time-derivatives, i.e.,

    (2)

    The functionfm(x) is a homogeneous form of degreeminx∈Rnif

    wherei1,i2, …,inare non-negative integers, andci1i2…imare the weighting coefficient. The formfm(x) is said to be positive iffm(x)>0, ?x≠0.

    The following result provides a sufficient condition for establishing the existence of an HPLF of degree 2mfor system (1).

    Lmma 1[11]LetAj,{m}denote the extended matrix ofAj. If the system of the LMIs

    admits a feasible solutionV=VT∈Rn×n, thenv2m(x)=x{m}TVx{m}is an HPLP for Eq.(1).

    The next lemma presents a sufficient LMI condition for the robust stability of linear time-varying systems in the polytopic form of Eq.(1).

    Lmma 2[12]For given real scalarsρi>0,i=1,2,…,N-1, if there exist symmetric positive definite matricesPj∈Rn×n,j=1,2,…,N, satisfying

    (3)

    j=1,2,…,N-1;k=j+1,…,N

    (4)

    then the system (1) is asymptotically stable for all time-varying uncertain parameters inside the polytopeΛrespecting the time-derivative constraints (2) with the parameter dependent Lyapunov matrix given by

    2 Main Results

    The main result of the paper is a sufficient condition to determine the sought Lyapunov function, which amounts to solving an LMI feasibility problem, derived via a suitable parameterization of homogeneous polynomial forms.

    Theorem 1 For given real scalarsρi>0,i=1,2,…,N-1, if there exist symmetric positive definite matricesPij∈Rn×n,j=1,2,…,N, satisfying

    (5)

    PNk+2(Pij-PNj))<0

    (6)

    ρi(Pij-PNj+2(Pik-PNk))<0

    (7)

    (8)

    Proof Consider the quadratically parameter-dependent Lyapunov function v(x)=xTP(α)xwith

    i,j=1,2,…,N

    whereP(α(t))=P(α(t))T. It is clear thatP(α(t)) is a positive definite parameter dependent Lyapunov matrix.

    Observing that

    we have

    (9)

    In the caseN=2 (two vertices) of Theorem 1, a simpler formulation can be obtained as

    Following the ideas of square matricial representations (SMR) of homogeneous forms and Lemma 2, a new sufficient condition based on homogeneous parameter-dependent Lyapunov functions is stated in the next theorem.

    Theorem 2 LetAj,{m}andPij,{m}denote the extended matrix ofAjandPij, respectively. Then, the system (1) is asymptotically stable ifPij exists,{m}>0 exists, such that the following set of LMIs is satisfied:

    (10)

    (11)

    (12)

    (13)

    wherek=2,3,…,N;l=2,3,…,N.

    Proof According to Lemma 1, letv2m(x)=x{m}T·P(α){m}x{m}be the HPLF of the system (1).

    By differentiatingv2m(x) along the trajectories of the system and exploiting the properties of SMR, we can obtain

    x{m}TQ(α(t))x{m}

    With a similar approach as proof of Theorem 1, we can obtain (10), (11), (12) and (13).

    Several remarks can be given on the results above.

    Remark 1 The conditions of Theorem 2 are used more for scalar variables in the tests (10) to (13) than in the tests of Lemma 2 and Theorem 1, which can provide less conservative evaluations of stability at the price of a slightly higher numerical complexity.

    Remark 2 The family of HPLFs in the casem=1, which have been considered by Theorem 1, can be reduced to quadratic Lyapunov functions with affine parameter dependence. The condition provided by Theorem 2 is based on the SMR of homogeneous polynomial forms.

    3 Numberical Example

    Example 1 The following second-order linear differential equation is considered:

    (14)

    Fig.1 shows the regions of stability below of each curve provided by Ref.[14] (dashed line), and Theorem 2 in the casem=2 (solid line), respectively, calculated with an LMI solver that verifies the feasibility of each stability condition. The same example was also considered in Ref.[15], which gives the limits of stability corresponding to the region of the plane (ω=4 andδ=0.23). The limits of stability corresponding to the region of the plane are:ω=4 andδ=0.27. It is to be noted that an important improvement is when the present result is compared with Ref.[15].

    Fig.1 Stability regions

    4 Conclusion

    In this paper, we introduce some new stability conditions for time-varying continuous-time polytopic systems using homogeneous Lyapunov functions. With respect to previous work on this class of Lyapunov functions, better results have been obtained by exploiting a complete parameterization of homogeneous forms of a given degree. Compared with some previous stability conditions, the main results via HPDFs in this paper have less conservatism. An numerical example is proposed to show less conservativeness with some existing results.

    [1]El Ghaoui L, Niculescu S I.Advancesinlinearmatrixinequalitymethodsincontrol[M]. Philadelphia: Advances in Design and Control, 2000.

    [2]Lacerda M J, Oliveira R C L F, Peres P L D. RobustH2andH∞filter design for uncertain linear systems via LMIs and polynomial matrices [J].SignalProcessing, 2011, 91(5): 1115-1122.

    [3]Montagner V F, Oliveira R C L F, Peres P L D, et al. Stability analysis and gain scheduled state feedback control for continuous time systems with bounded parameter variations[J].InternationalJournalofControl, 2009, 82(6):1045-1059.

    [4]Ambrosino R, Ariola M, Amato F. A convex condition for robust stability analysis via polyhedral Lyapunov functions [J].SIAMJControlOptim, 2012, 50(1): 490-506.

    [5]BenAbdallah A, Hammami M A, Kallel J. Robust stability of uncertain piecewise-linear systems: LMI approach [J].NonlinearDyn, 2011, 63(1/2): 183-192.

    [6]Chesi G, Garulli A, Tesi A, et al. Homogeneous Lyapunov functions for systems with structured uncertainties [J].Automatic, 2003, 39(6): 1027-1035.

    [7]Chesi G. Robust stability of time-varying uncertain systems with rational dependence on the uncertainty [J].IEEETransactionsonAutomaticControl, 2010, 55(10): 2353-2357.

    [8]Brockett R W.LiealgebraandLiegroupsincontroltheory[M]. Netherlands: Springer, 1973.

    [9]Prajna S, Papachristodoulou A, Seiler P, et. al. New developments in sum of squares optimization and SOSTOOLS [C]//Proceedingsofthe2004AmericanControlConference. Boston, USA, 2004:5606-5611.

    [10]Ahmadi A A, Parrilo P A. Converse results on existence of sum of squares Lyapunov functions [C]//IEEEConferenceonDecisionandControlandEuropeanControlConference(CDC-ECC). Orlando, FL, USA, 2011: 6516-6521.

    [11]Chesi G, Garulli A, Tesi A, et al.Homogeneouspolynomialformsforrobustnessanalysisofuncertainsystems[M]. Heidelberg: Springer, 2009.

    [12]Montagner V E, Peres P L D. A new LMI condition for the robust stability of linear time-varying systems [C]//Proceedingsofthe42ndIEEEConferenceonDecisionandControl. Maui, Hawaii, USA, 2003:6133-6138.

    [13]Montagner V E, Peres P L D. Robust stability and H1 performance of linear time-varying systems in polytopic domains [J].IntJControl, 2004, 77(15): 1343-1352.

    [14]Geromel J C, Colaneri P. Robust stability of time varying polytopic systems [J].SystemsandControlLetters, 2006, 55(1): 81-85.

    [15]Aouani N, Salhi S, Garcia G, et al. New robust stability and stabilizability conditions for linear parameter time varying polytopic systems [C]//The3rdInternationalConferenceonSignals,CircuitsandSystems. Medenine, Tunisia, 2009: 1-6.

    基于參數(shù)依賴齊次多項(xiàng)式的時(shí)變系統(tǒng)穩(wěn)定性分析

    張化生1,2,3張侃健1,2

    (1東南大學(xué)復(fù)雜工程系統(tǒng)測量與控制教育部重點(diǎn)實(shí)驗(yàn)室,南京210096)(2東南大學(xué)自動(dòng)化學(xué)院,南京210096)(3聊城大學(xué)數(shù)學(xué)科學(xué)學(xué)院,聊城252000)

    基于齊次多項(xiàng)式Lyapunov函數(shù)這一新工具研究了時(shí)變不確定系統(tǒng)魯棒穩(wěn)定性問題.針對(duì)常見的含參數(shù)時(shí)變且有界連續(xù)可微線性系統(tǒng)的最大穩(wěn)定區(qū)域問題,首先構(gòu)造常用的參數(shù)依賴二次Lyapunov函數(shù),進(jìn)而給出一個(gè)時(shí)變系統(tǒng)穩(wěn)定的充分條件.然后,通過構(gòu)造適合的參數(shù)依賴齊次Lyapunov函數(shù),并利用齊次多項(xiàng)式矩陣表示方法,最終以線性不等式的形式給出系統(tǒng)全局漸近穩(wěn)定的一個(gè)充分條件.數(shù)值仿真結(jié)果表明齊次Lyapunov函數(shù)方法得到的結(jié)論對(duì)于某些系統(tǒng)比之前類似文獻(xiàn)具有更小的保守性.

    線性時(shí)變系統(tǒng);多面體不確定性;魯棒穩(wěn)定性;線性不等式

    TP202.1;TP271.7

    s:The Major Program of National Natural Science Foundation of China (No.11190015), the National Natural Science Foundation of China (No.61374006).

    :Zhang Huasheng, Zhang Kanjian. Stability analysis of time-varying systems via parameter-dependent homogeneous Lyapunov functions [J].Journal of Southeast University (English Edition),2014,30(3):302-305.

    10.3969/j.issn.1003-7985.2014.03.008

    10.3969/j.issn.1003-7985.2014.03.008

    Received 2013-12-19.

    Biographies:Zhang Huasheng (1978—), male, doctor, zhsh0510@163.com; Zhang Kanjian (1971—), male, doctor, professor, kjzhang@seu.edu.cn.

    猜你喜歡
    充分條件東南大學(xué)魯棒
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    集合、充分條件與必要條件、量詞
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》稿約
    有限μM,D-正交指數(shù)函數(shù)系的一個(gè)充分條件
    基于學(xué)習(xí)的魯棒自適應(yīng)評(píng)判控制研究進(jìn)展
    目標(biāo)魯棒識(shí)別的抗旋轉(zhuǎn)HDO 局部特征描述
    基于Cauchy魯棒函數(shù)的UKF改進(jìn)算法
    目標(biāo)軌跡更新的點(diǎn)到點(diǎn)魯棒迭代學(xué)習(xí)控制
    欧美一区二区亚洲| 一边摸一边抽搐一进一小说| 亚洲成人久久爱视频| 亚洲图色成人| 99视频精品全部免费 在线| 国产精品无大码| 国产成人福利小说| 精品欧美国产一区二区三| 国产乱人偷精品视频| 岛国毛片在线播放| 91aial.com中文字幕在线观看| 色综合站精品国产| 国产精品一二三区在线看| 亚洲av中文字字幕乱码综合| ponron亚洲| 中文精品一卡2卡3卡4更新| 最后的刺客免费高清国语| 中出人妻视频一区二区| 亚洲精华国产精华液的使用体验 | 狂野欧美白嫩少妇大欣赏| 日韩视频在线欧美| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 在线免费十八禁| 国产亚洲av片在线观看秒播厂 | 尤物成人国产欧美一区二区三区| 小说图片视频综合网站| 日韩欧美三级三区| 亚洲欧美清纯卡通| 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 亚州av有码| 国产精品久久视频播放| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 菩萨蛮人人尽说江南好唐韦庄 | 1024手机看黄色片| 免费一级毛片在线播放高清视频| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 成人无遮挡网站| 别揉我奶头 嗯啊视频| 国产精品.久久久| 日韩精品有码人妻一区| 97热精品久久久久久| 亚洲欧美精品综合久久99| 内射极品少妇av片p| 亚洲欧美精品专区久久| 搡老妇女老女人老熟妇| 色尼玛亚洲综合影院| h日本视频在线播放| avwww免费| 91久久精品国产一区二区成人| 极品教师在线视频| 看免费成人av毛片| www.色视频.com| 好男人视频免费观看在线| 亚洲精品乱码久久久v下载方式| 色综合色国产| 在线免费观看的www视频| 日韩高清综合在线| 99精品在免费线老司机午夜| av在线蜜桃| 波多野结衣高清作品| 国产精品嫩草影院av在线观看| 国产成人精品一,二区 | 欧美高清性xxxxhd video| 色综合色国产| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 天堂中文最新版在线下载 | 天堂影院成人在线观看| 亚洲成人久久性| 精品久久国产蜜桃| 91精品国产九色| 国内精品一区二区在线观看| 国产成人91sexporn| 亚洲精品久久国产高清桃花| 一级毛片aaaaaa免费看小| 国产高潮美女av| 国产一区二区在线av高清观看| 亚洲人与动物交配视频| 国产成人午夜福利电影在线观看| 美女大奶头视频| 91在线精品国自产拍蜜月| 人妻久久中文字幕网| 成年版毛片免费区| 日韩制服骚丝袜av| 久99久视频精品免费| 免费一级毛片在线播放高清视频| 国产 一区精品| 国产高清有码在线观看视频| 亚洲天堂国产精品一区在线| 日韩av不卡免费在线播放| 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 人妻夜夜爽99麻豆av| 成年女人永久免费观看视频| 国产一级毛片在线| av天堂中文字幕网| 国产成人精品婷婷| 国产麻豆成人av免费视频| 亚洲成av人片在线播放无| 国产精品福利在线免费观看| 一边摸一边抽搐一进一小说| 久久久精品大字幕| 久久99蜜桃精品久久| 亚洲av熟女| 国内久久婷婷六月综合欲色啪| 欧美日韩综合久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 亚洲av免费高清在线观看| 免费观看精品视频网站| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| 国产熟女欧美一区二区| 亚洲精品粉嫩美女一区| 欧美成人精品欧美一级黄| 黄色日韩在线| 色哟哟·www| 人妻系列 视频| 欧美激情国产日韩精品一区| 日韩三级伦理在线观看| 久久99热6这里只有精品| 国产毛片a区久久久久| 国产精品一及| 午夜福利视频1000在线观看| 久久久欧美国产精品| 自拍偷自拍亚洲精品老妇| 日日干狠狠操夜夜爽| av黄色大香蕉| 蜜臀久久99精品久久宅男| 日本免费a在线| 亚洲久久久久久中文字幕| 欧美区成人在线视频| 国产成人精品婷婷| 国产视频内射| 国产老妇女一区| 99在线人妻在线中文字幕| 人妻系列 视频| 伦理电影大哥的女人| 99久久中文字幕三级久久日本| 久久久色成人| 亚洲欧美日韩东京热| www.色视频.com| 能在线免费观看的黄片| 欧美不卡视频在线免费观看| 麻豆国产97在线/欧美| 日韩 亚洲 欧美在线| 国产伦一二天堂av在线观看| 亚洲一级一片aⅴ在线观看| 久久精品夜色国产| h日本视频在线播放| 国产亚洲91精品色在线| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 久久久久久国产a免费观看| 一级av片app| 一级黄色大片毛片| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| 午夜福利在线在线| 久久九九热精品免费| 赤兔流量卡办理| 婷婷色综合大香蕉| 99在线视频只有这里精品首页| 色5月婷婷丁香| 亚洲综合色惰| 一级av片app| 你懂的网址亚洲精品在线观看 | 一级黄片播放器| 大香蕉久久网| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 久久99精品国语久久久| 在现免费观看毛片| 伦理电影大哥的女人| АⅤ资源中文在线天堂| 日本三级黄在线观看| 午夜福利高清视频| videossex国产| 精品久久久久久久人妻蜜臀av| 最新中文字幕久久久久| 最近的中文字幕免费完整| 九草在线视频观看| or卡值多少钱| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 99热6这里只有精品| 免费无遮挡裸体视频| 亚洲国产欧美在线一区| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 日本免费a在线| 亚洲人成网站高清观看| 欧美日韩精品成人综合77777| 亚洲欧美清纯卡通| 国产毛片a区久久久久| 少妇的逼好多水| 中出人妻视频一区二区| ponron亚洲| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| 丰满的人妻完整版| 国产黄色视频一区二区在线观看 | 久久婷婷人人爽人人干人人爱| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 观看美女的网站| av在线老鸭窝| 亚洲欧洲国产日韩| 亚洲成a人片在线一区二区| .国产精品久久| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 最近中文字幕高清免费大全6| av在线老鸭窝| 久久精品国产亚洲av香蕉五月| 欧美xxxx性猛交bbbb| 国产精品1区2区在线观看.| 欧美性猛交黑人性爽| 内地一区二区视频在线| 中文欧美无线码| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 国产精品伦人一区二区| 日韩一本色道免费dvd| 男女视频在线观看网站免费| 欧美日韩国产亚洲二区| 国产精品三级大全| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 小说图片视频综合网站| 色播亚洲综合网| 在线播放无遮挡| 亚洲av男天堂| 中文字幕免费在线视频6| 日本免费一区二区三区高清不卡| 午夜精品在线福利| 国产老妇女一区| 观看美女的网站| 亚洲丝袜综合中文字幕| 亚州av有码| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 99久国产av精品国产电影| 黄色一级大片看看| 搡老妇女老女人老熟妇| 看片在线看免费视频| 99久久精品热视频| 午夜精品国产一区二区电影 | 日本欧美国产在线视频| 三级经典国产精品| 日韩成人av中文字幕在线观看| 国产色婷婷99| 我的女老师完整版在线观看| 婷婷色av中文字幕| 亚洲成人av在线免费| 久久婷婷人人爽人人干人人爱| 午夜老司机福利剧场| 成人综合一区亚洲| 此物有八面人人有两片| 久久久国产成人免费| 国语自产精品视频在线第100页| 国产视频首页在线观看| 天堂av国产一区二区熟女人妻| 国产精品一及| 国产精品永久免费网站| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 欧美三级亚洲精品| 能在线免费看毛片的网站| 国产免费男女视频| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 国产精品国产三级国产av玫瑰| 午夜精品国产一区二区电影 | 国产精品久久久久久精品电影小说 | 欧美3d第一页| 久久久午夜欧美精品| 精品欧美国产一区二区三| 免费av不卡在线播放| 日韩成人av中文字幕在线观看| 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 精品国内亚洲2022精品成人| 亚洲av免费在线观看| 极品教师在线视频| 免费观看a级毛片全部| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 久久九九热精品免费| 国产精品1区2区在线观看.| 国产黄色小视频在线观看| 国产在线男女| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 久久久久久久久久黄片| 中文在线观看免费www的网站| 看非洲黑人一级黄片| 久久99热6这里只有精品| 日本免费一区二区三区高清不卡| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久| 亚洲国产精品成人综合色| 特级一级黄色大片| 精品免费久久久久久久清纯| 亚洲无线观看免费| 青春草亚洲视频在线观看| 免费人成在线观看视频色| 爱豆传媒免费全集在线观看| 日本一本二区三区精品| 亚洲精品色激情综合| 日本三级黄在线观看| 精品久久久久久久久亚洲| 美女高潮的动态| 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产| 边亲边吃奶的免费视频| 精品人妻熟女av久视频| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 日韩欧美精品免费久久| 国产亚洲精品久久久久久毛片| 丝袜美腿在线中文| 国语自产精品视频在线第100页| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看| 欧美日本视频| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 又粗又硬又长又爽又黄的视频 | 99久久精品热视频| 级片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品福利在线免费观看| 久久精品夜色国产| 波多野结衣高清无吗| 久99久视频精品免费| 边亲边吃奶的免费视频| 最近的中文字幕免费完整| 国产爱豆传媒在线观看| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 久久久久网色| 国产高潮美女av| 亚洲国产精品成人久久小说 | 嘟嘟电影网在线观看| 深夜a级毛片| 久久久国产成人精品二区| av在线观看视频网站免费| 久久人人爽人人片av| 神马国产精品三级电影在线观看| 色视频www国产| av天堂在线播放| 少妇人妻精品综合一区二区 | 好男人在线观看高清免费视频| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 国产一级毛片七仙女欲春2| 高清毛片免费观看视频网站| 精品一区二区三区人妻视频| 亚洲国产色片| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 亚洲激情五月婷婷啪啪| a级毛色黄片| 国产亚洲5aaaaa淫片| 国产亚洲欧美98| 国产精品福利在线免费观看| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 久久久久久伊人网av| 丝袜喷水一区| 色哟哟·www| 人人妻人人看人人澡| 中国国产av一级| 麻豆成人av视频| 亚洲av一区综合| 国产伦一二天堂av在线观看| 欧美激情在线99| h日本视频在线播放| 亚洲婷婷狠狠爱综合网| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 久久欧美精品欧美久久欧美| 国产一级毛片在线| 九九久久精品国产亚洲av麻豆| 国产在视频线在精品| 久久中文看片网| 天堂网av新在线| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看| 偷拍熟女少妇极品色| 看黄色毛片网站| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 日日干狠狠操夜夜爽| 亚洲色图av天堂| 在线观看午夜福利视频| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 亚洲精品自拍成人| 国产精品久久久久久久久免| 亚洲综合色惰| 欧美潮喷喷水| 免费大片18禁| 国产精品.久久久| 一边摸一边抽搐一进一小说| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 欧美另类亚洲清纯唯美| 久久精品国产清高在天天线| 大又大粗又爽又黄少妇毛片口| 丰满乱子伦码专区| 伦精品一区二区三区| 岛国在线免费视频观看| 小说图片视频综合网站| 成人性生交大片免费视频hd| 91aial.com中文字幕在线观看| 亚洲av电影不卡..在线观看| 日韩欧美三级三区| 久久久久久久久中文| 99九九线精品视频在线观看视频| 亚洲欧美日韩东京热| 精品久久久久久久末码| 边亲边吃奶的免费视频| 麻豆av噜噜一区二区三区| 国产一区二区在线观看日韩| 丝袜喷水一区| a级毛片a级免费在线| 精品少妇黑人巨大在线播放 | 日本在线视频免费播放| 国产成人精品婷婷| 欧美日韩国产亚洲二区| 美女内射精品一级片tv| 99久久久亚洲精品蜜臀av| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品成人综合77777| 尤物成人国产欧美一区二区三区| 精品久久久久久久久av| 日韩国内少妇激情av| 久久午夜福利片| 国内精品一区二区在线观看| 久久久久九九精品影院| 天天躁夜夜躁狠狠久久av| 成年免费大片在线观看| 国产蜜桃级精品一区二区三区| 精品久久久噜噜| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 国产片特级美女逼逼视频| 国产av在哪里看| 亚洲人成网站在线播| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最新中文字幕久久久久| 日韩视频在线欧美| 免费看美女性在线毛片视频| 在线观看66精品国产| 亚洲国产色片| 18禁黄网站禁片免费观看直播| 午夜久久久久精精品| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 国产精品久久久久久av不卡| 国产精品一区二区性色av| 国产精品一二三区在线看| 久久亚洲精品不卡| 可以在线观看毛片的网站| 欧美日韩乱码在线| 夜夜看夜夜爽夜夜摸| 国产中年淑女户外野战色| 黄片wwwwww| 精品久久久久久久久久免费视频| 一级二级三级毛片免费看| 网址你懂的国产日韩在线| 亚洲四区av| 国产av在哪里看| 欧美成人精品欧美一级黄| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丰满人妻一区二区三区视频av| 波多野结衣巨乳人妻| av在线播放精品| 亚洲第一区二区三区不卡| 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区视频9| 啦啦啦韩国在线观看视频| 日本免费a在线| 国产熟女欧美一区二区| 麻豆精品久久久久久蜜桃| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 两个人视频免费观看高清| 永久网站在线| 久久久国产成人精品二区| 国产精品,欧美在线| 亚洲欧美成人精品一区二区| 97热精品久久久久久| 亚洲精品自拍成人| 99久久人妻综合| 久久久久久久午夜电影| 婷婷精品国产亚洲av| 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 男女那种视频在线观看| 少妇裸体淫交视频免费看高清| 在线观看免费视频日本深夜| 欧美色欧美亚洲另类二区| 丰满的人妻完整版| 亚洲成av人片在线播放无| 一区二区三区免费毛片| 午夜福利在线在线| 一本精品99久久精品77| 青春草亚洲视频在线观看| 国产老妇女一区| 韩国av在线不卡| 久久99热这里只有精品18| 亚洲av中文字字幕乱码综合| 嫩草影院入口| 久久久午夜欧美精品| 国产av一区在线观看免费| a级毛片a级免费在线| 在线观看66精品国产| 精品无人区乱码1区二区| www.色视频.com| 日韩在线高清观看一区二区三区| 性色avwww在线观看| 只有这里有精品99| 日本一本二区三区精品| 精品免费久久久久久久清纯| 两个人的视频大全免费| 亚洲av电影不卡..在线观看| 亚洲精品粉嫩美女一区| 亚洲经典国产精华液单| 韩国av在线不卡| 99久久中文字幕三级久久日本| 久久久久免费精品人妻一区二区| 免费观看的影片在线观看| 精品人妻视频免费看| 国内精品久久久久精免费| 一区二区三区四区激情视频 | 人妻久久中文字幕网| 国产一区二区在线av高清观看| 网址你懂的国产日韩在线| 午夜激情福利司机影院| www.色视频.com| 久久亚洲国产成人精品v| 国产精华一区二区三区| 久久国产乱子免费精品| 成人一区二区视频在线观看| 国产成人a∨麻豆精品| 神马国产精品三级电影在线观看| 中文在线观看免费www的网站| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av| 成年av动漫网址| 国产视频首页在线观看| 欧美日韩一区二区视频在线观看视频在线 | 伦精品一区二区三区| 在现免费观看毛片| 成人国产麻豆网| 亚洲精华国产精华液的使用体验 | 99国产极品粉嫩在线观看| 国产 一区 欧美 日韩| 青青草视频在线视频观看| 国产免费一级a男人的天堂| 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站| 全区人妻精品视频| 婷婷色av中文字幕| 麻豆国产97在线/欧美| 在线a可以看的网站| 亚洲成a人片在线一区二区| 国产精品一区二区三区四区久久| 欧美不卡视频在线免费观看| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 国语自产精品视频在线第100页| 麻豆精品久久久久久蜜桃| av又黄又爽大尺度在线免费看 | 国产精品综合久久久久久久免费| 久久久久久久久久久丰满| 免费观看人在逋| 久久久久久九九精品二区国产| 高清在线视频一区二区三区 | 亚洲va在线va天堂va国产| 免费观看a级毛片全部| 波多野结衣巨乳人妻| 禁无遮挡网站| 国内揄拍国产精品人妻在线| 日韩成人伦理影院| 国产淫片久久久久久久久| 色综合亚洲欧美另类图片| 一个人看视频在线观看www免费| 久久久久网色| 免费av毛片视频| 亚洲欧美日韩东京热| 99热6这里只有精品| 五月玫瑰六月丁香| 免费av不卡在线播放| 嘟嘟电影网在线观看|